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Abstract—The object of the study was the third-
order derivatives formed by pressure, 
temperature, and volume. The results of 
calculating the values of the  third-order 
derivatives for the thermal variables at the critical 
state of a pure substance are presented. These 
calculations were carried for for a variety of low-
temperature pure substances and they were  
used different models of the equation of state. In 
all the considered cases, this derivative took on 
finiteness values. Using this conclusion, the 
ratios between derivatives, which are critical 
conditions for pure substances, are analyzed. 
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I INTRODUCTION 

 

One of the unsolved problems in the thermodynamics of 

the critical point of pure substance is to establish the value 

of the third derivative of pressure with respect to volume at 

a fixed temperature. For instance, in monograph [1], one of 

the topical problems is the question of whether the 

analyzed derivative being is equal to zero or different from 

it. Its solution will make it possible to reasonably approach 

the use of the expansion in a series of pressure as a 

function of volume on the isotherm for the vicinity of the 

critical point. This approach is widely used in the study of 

the features of the critical state [2, 3]. In addition, in the 

case of a finite value of the above derivative at the critical 

point, there is a basis for the statement about the finiteness 

of the quantities and similar derivatives of higher orders. 

Among the works in which this third-order derivative is 

considered, the article [4] should be noted. It analyzes the 

features of a number of thermodynamic functions under 

the assumption of its zero value. In the well-known course 

of theoretical physics [5], based on the analysis of the 

expansion of pressure in a series in powers of volume at a 

fixed temperature, it is concluded that the third-order 

derivative is negative at the critical point. This expansion 

was limited to two terms, and its convergence was not 

analyzed either. In the same work, the possibility of the 

derivative under study vanishing is rejected, proceeding 

from the fact that otherwise "three equations with two 

unknowns will be obtained, which have no general 

solutions." The last conclusion is not confirmed by any 

analytical or numerical results.  

The purpose of this work is to carry out a study at the 

critical state of the values of the some third-order 

derivatives for thermal independed variables. Equations of 

state (EOS), that describes vapour and liquid regions of 

thermodynamic surface, are used as models to calculate 

thermodynamic properties of pure substances. 

 

 II. ANALYSIS OF THE EXISTENCE OF A ZERO 

VALUE AT THE CRITICAL POINT FOR THE THIRD-

ORDER DERIVATIVE OF PRESSURE WITH 

RESPECT TO VOLUME AT A FIXED TEMPERATURE 

BASED ON THE VAN DER WAALS EOS 

 

This problem is to check the existence of equality 

 

,0)/( 33  c
Tvp                                                     (1) 

 

where the symbols p, v, T - denote, respectively, pressure, 

specific (molar) volume, and absolute temperature. The 

superscript or subscript c in equality (1) and further refers 

the considered thermodynamic property to the critical 

state.  

The choice of derivative (1) is due to the prevalence in 

practice of the EOS in the form p=p(T, v).  

When using this thermal EOS for the verification, it is 

necessary to have the critical parameters pc, vc, and Tc. 

Their values are the roots of the next system of equations 
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A feature of the solution of system (2) is the possibility of 

determining the values of vc, Tc from its last two equations 

(critical conditions) with the subsequent calculation of the 

critical pressure directly from the equality pc = p(Tc,vc). In 

this case, another possibility appears for checking the 

general solutions of the critical conditions and equation 

(1). It consists in the successive replacement of each of the 

critical conditions by expression (1). In this work, this way 

is chosen. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 2, February - 2021  

www.jmest.org 

JMESTN42353674 13465 

Some difficulties arise with the choice of a EOS model to 

carry out such a check. It is due to the fact that in the 

general case it is impossible to identify the difference 

between calculated and reference values of critical 

parameters [6]. The calculated parameters mean the values 

obtained from the critical conditions, and the reference 

parameters mean the values adopted in the process of 

creating the EOS. For a correct verification, it is natural to 

use the calculated critical parameters as better 

corresponding to the used EOS model. Nevertheless, it 

must be noted that when applying numerical methods to 

find the design parameters, the obtained values are 

irrational numbers. As a result, incorrect conclusions are 

possible for strongly varying thermodynamic functions in 

the vicinity of the critical point. 

The best option for carrying out this check should be 

considered the choice of the EOS model, in which the 

calculated and reference critical parameters coincide and at 

the same time an analytical solution of the problem under 

consideration is possible. This option can be practically 

implemented in the case of using cubic forms of EOS. 

In particular, they include the van der Waals equation, 

which in the reduced form π= π(φ, τ) is written as 
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where π=p/pc, φ= v/vc, τ=T/Tc are the values of pressure, 

volume and temperature referred to the corresponding 

critical parameters. The representation of the van der 

Waals EOS in dimensionless variables makes it possible to 

avoid the dependence of the results on the type of 

substance in the process of studying. At the same time, the 

qualitatively obtained conclusions do not change. The 

system of equations (1) for EOS (3) takes the form 

 















.0)/(

,0)/(

,1)1,1(

22 c

c











                                                  (4) 

 

The first check based on the van der Waals equation is to 

analyze the following records 
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The analytical solution to the system of equations (5) has 

two roots. The first root corresponds to the following 

values of the variables τ and φ 
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The rounded values of these roots are τ = 0.989 and φ = 

1.138. Their substitution into expression (3) leads to the 

value πс = 0.961. It contradicts the first equation of system 

(4).  

The quantities τ and φ corresponding to the second root of 

system (5) are 
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For this case, the reduced pressure at the critical point 

takes on a non-physical value equal to πс = -189.951. 

In the system of equations formed by the second and third 

derivatives 
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there is one analytically obtained root 
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For approximate values of this root τ = 1.068 and φ = 

1.333, the value of the reduced pressure is πc = 1.161. 

Thus, the solution of system (6) also does not satisfy to the 

critical conditions for a pure substance. 

The facts that system of equations (5) and (6) have 

solutions is interesting. The point of the thermodynamic 

surface corresponding to system (5) is, most likely, in the 

region of unstable states. The same point for system (6) 

determines the gaseous state of the substance. 

Thus, for the Van der Waals model, the systems of 

equations (4) - (6) do not have the same roots. This 

conclusion cannot be universal, since it was obtained by 

studying one specific equation of state. But it gives 

grounds for the assumption that the hypothesis of the 

existence of solutions satisfying the critical point of the 

substance for the analyzed third derivative as at least one 

of the critical conditions cannot be considered in general 

terms either. 

 

 

III. DETERMINATION OF THE VALUES OF THE 

THIRD DERIVATIVE ON THE BASIS OF VARIOUS 

MODELS OF EQUATIONS OF STATE 

 

In this section of the work, we will analyze the calculations 

obtained by using other thermal EOS that describe the 

thermodynamic properties in the regions of liquid and 

gaseous states of pure substances, as well as in the 

conditions of their vapour-liquid equilibrium. 

The simplest way to study the derivative (∂3p/∂v3)Т  at the 

critical point is to directly calculate it from EOS. For the 

Van der Waals model (3), its reduced value, equalled to -9, 

is determined analytically. In fig. 1 is shown the nature of 

the change of the investigated derivative in the near-

critical region. 
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fig 1. Dependence of the reduced third derivative 

n the reduced volume at the critical isotherm for 

EOS (3) 

 

 

As can be seen from the fig. 1, the curve represented on it 

is smooth, without any singularities at the critical point. In 

addition, in a fairly wide range of variation of φ, the values 

of the analyzed derivative remain negative. 

Below is a three-parameter cubic EOS, which ensures the 

coincidence of all reference and calculated critical 

parameters 

 

,
)(

)(1















cvv

Ta

bv
RTp                                 (7) 

 

where b, c are constants, a(T) is the temperature function, 

R is universal gas constant. 

The method for determining the constants of this equation 

is given in [7]. For exact correspondence to the accepted 

reference critical parameters of the substance pc, vc, Tc, it is 

convenient to represent the temperature function a(T) as 

 

                        )()( TaTa c  , 

 

where ac is a parameter calculated from the critical 

conditions. In this case, the choice of the form of the 

temperature function α(T) is limited by the condition 

 

1)( cT . 

 

Since the derivative (∂3p/∂v3)Т  is analyzed at a constant 

critical temperature, then Eq. (7), when solving the 

problem under consideration, and taking into account the 

last equality, is convenient to write in the form 
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In its reduced form, equation (8) is written as 
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where zc is the compressibility factor of the substance at 

the critical point. The subscript r at the parameters of the 

equation of state (9) means that their values are referred to 

the value of the critical volume. 

Table 1 shows the results of calculations of the reduced 

derivative (∂3π/∂φ3)τс for 24 pure substances used in low-

temperature technology. In this table Subst means the 

name of substance 

 

Table 1. Values of analyzed parameters for pure 

substances 

 

Subst zc (∂3π/∂φ3)τ
с Subst zc (∂3π/∂φ3)τ

с 

CH4 0,280 -4,554 R115 0,288 -4,554 

N2 0,241 -4,784 C2H6 0,274 -4,784 

R14 0,280 -4,090 R12 0,266 -4,090 

H2 0,300 -5,150 R11 0,233 -5,150 

C3H8 0,286 -4,228 R21 0,280 -4,228 

CO2 0,276 -3,990 R22 0,241 -3,990 

O2 0,292 -4,442 R23 0,280 -4,442 

iC4H10 0,274 -4,263 R142 0,300 -4,263 

R218 0,253 -4,124 R13B1 0,286 -4,124 

R114 0,243 -4,023 R143 0,276 -4,023 

C3H6 0,280 -4,023 R13 0,292 -4,023 

Ar 0,276 -4,863 Ne 0,274 -4,863 

 

 

As follows from this table, for all the presented substances, 

the inequality (∂3π/∂φ3)τ
c<0 takes place. These negative 

values exceed the value obtained for the van der Waals 

EOS. For this EOS, as it is known, the value of zc=0.375 

does not depend on the type of pure substance. At the same 

time, as our studies show [7], the parameters of the 

equation of state (9) acr, br, cr can be analytically expressed 

az the functions of variable zc. Thus, for EOS (9), the 

effect of the type of substance is determined by the value 

of zc. 

The plot shown in fig. 2 is based on the data in table 1. In 

this figure, the circles indicate the values of the coefficient 

zc given in table 1, and the solid curve is the analytical 

dependence following from the EOS (9). 

 

 
fig. 2. Dependence of the reduced third derivative as a 

function of the compressibility factor at the 

critical point for the EOS (9) 

 

As seen from fig. 2, the dependence shown on it is a 

monotonically decreasing function of the variable zc. It is 

essential that the value (∂3π/∂φ3)τ
c remains negative even 

outside the range of variation of the coefficient zc for real 

substances, which is 0.23 - 0.33 [8]. 
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Calculations of the analyzed derivative were also carried 

out according to the reliable polynomial form of EOS [9], 

written in the form 
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where bi,j is an element of the array of coefficients of the 

equation (10), determined from various thermodynamic 

properties of substances. For the convenience of 

calculating the analyzed derivative, EOS (10) was 

represented as 
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Table 2 below shows the results of obtaining the values of 

derivatives (∂3π/∂φ3)τ
c based on EOS (10). 

 

Table 2. Values of the third derivatives at the  

critical point for cryogenic substances, calculated from the 

EOS (11) 

 

Substance     N2 O2 Ar 

(∂3π/∂φ3)τ
с -3,377 -5,025 -3,493 

 

As follows from all the presented data, the values of the 

derivative (∂3π/∂φ3)τ
c significantly depend on both the type 

of substance and the type of the EOS used. But at the same 

time: 

1. the fact of the presence of a zero value in the 

investigated derivative was not established; 

2. all calculated values of the derivative (∂3π/∂φ3)τ
c are 

negative values.  

 

 

IV. GENERAL THERMODYNAMIC RELATIONS 

ASSOCIATED WITH THIRD-ORDER DERIVATIVES 

 

This section of the work contains a discussion of questions 

related to the presence of general thermodynamic 

dependences, which include the third-order derivatives of 

thermal quantities. It was shown in [10] that at the critical 

point of pure substance take place the equalities 
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The first fraction in equalities (12) is the ratio of two 

critical conditions, that it is an indeterminate form 0/0 

type. The three dotes in these equalities mean that, in the 

general case, the chain of fractions is limited by the 

appearance in the denominator the first non-zero 

derivative. This condition is due to the method of 

evaluation of indeterminacy, based on the use of an 

analogue of L'Hospital rule for a function of two variables 

[10], applied to the critical point. Assuming the validity of 

next inequality not refuted by the above studies 

 

,0)/( 33  c
Tvp                                           (13) 

 

the number of fractions in (12) must be limited by two 

equalities. This makes it impossible to apply the approach 

proposed in [10] for the analysis at the critical state of the 

highest derivatives of pressure with respect to volume at a 

fixed temperature. 

In article [10], when evaluating indeterminate forms at the 

critical point of a pure substance, the following general 

relations were obtained between various sets of critical 

conditions 
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The last fraction in equalities (14) in accordance with the 

Planck-Gibbs rule is the slope of the elasticity curve of 

pure substance at the critical point. It was theoretically 

[11] and experimentally [1] substantiated that this slope 

obeys the inequality 

 

.0)/(  c
Tvp                                               (15) 

 

From the analysis of relations (14), (15), it is easy to 

conclude that when inequality (13) is satisfied, the third 

derivative (∂3T/∂v3)p
с  has a positive value. 

 

CONCLUSION 

 

All the results presented in this work indicate the finiteness 

of the values of the analyzed third derivatives at the critical 

point of pure substances. At the same time, one cannot 

speak of the generality of these results, since general  

results can be obtained only by using undoubted 

assumptions about the features of the critical state and the 

laws of thermodynamics. Further research is needed to 

solve the problem considered in this paper. 

 Nevertheless, the obtained conclusions doubt on the 

possibility of categorical statements contradicting the 

above results. First of all, this concerns the zero or infinite 

value of the derivative (∂3p/∂v3)T
с. 
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