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Abstract— The coupled axial-transverse steady 
state dynamic response of symmetric sandwich 
beam under harmonic bending forces is studied. 
Starting with Hamilton’s variational principle, the 
dynamic governing coupled equations and related 
boundary conditions based on the Euler-Bernoulli 
beam theory are derived. The resulting governing 
equations for three-layered symmetric sandwich 
beams are solved exactly and the closed form 
solutions for steady state axial-transverse coupled 
dynamic response analysis are then investigated 
for cantilever, simply supported and fixed-fixed 
boundary conditions. The applicability of the 
present closed form solutions is established 
through numerical examples with different 
transverse harmonic loads. Numerical results are 
compared with Abaqus finite shell element and 
exact solutions available in the literature to assess 
the accuracy of the present solution. Additional 
results are provided to investigate the effects of 
the core thickness and length of the sandwich 
beam on the natural frequencies, quasi-static and 
steady state dynamic responses. 

Keywords— Closed form solution, Coupled 
axial-transverse response, Harmonic forces, quasi-
static response, Steady state response.  

 

I. INTRODUCTION AND OBJECTIVE 

Sandwich structural beams and panels are one of 
the most important structural components frequently 
used in several industries such as aerospace, marine, 
sports equipment, automotive and civil applications due 
to their extremely high strength to low weight ratios that 
leads to reduction in the total weight, high flexural and 
transverse shear stiffness, good corrosion resistance, 
high damping capacities and excellent thermal 
insulation properties. In addition, their materials are 
capable of absorbing large amounts of energy due to 
impact loads which results in high structural 
crashworthiness. The most common sandwich 
structural beam is composed of two thin stiff faces with 
a thicker lightweight low stiffness core to separate the 
faces. Common materials used for the face layers are 
metals and composite while the core is often made of 
foam or honeycomb metal. A core material is required 
to achieve two essential tasks, (1) it must keep the face 

layers the correct distance apart, and (2) it must not 
allow one face to slide over the other. It is also very 
important that, although the core is weaker than the 
face layers, but it is strong enough to resist the 
bending, buckling and crushing failures.  

Although the dynamic analysis of sandwich beams 
based on different beam theories was the subject of 
major research studies during the past few years, but 
most of these studies are limited to free vibrations of 
sandwich beams. Numerous scientists developed and 
presented the analytical and finite element solutions for 
free vibration response of sandwich beams. Among 
them, [1] and [2] employed the finite element method to 
analyze the flexural vibration characteristics of a 
curved sandwich beam with an elastic core. Reference 
[3] developed the dynamic stiffness method for the free 
vibration analysis of three-layered symmetric sandwich 
beams. In another work, [4] derived a tenth-order 
governing differential equations for three-layered 
asymmetric sandwich beam and studied the free 
vibration characteristics using the dynamic stiffness 
matrix. Reference [5] developed an exact dynamic 
stiffness matrix to study the free flexural vibration of 
three-layered sandwich beams of unequal faces. 
Reference [6] used a trigonometric shear deformation 
beam theory to investigate the flexural analysis of 
sandwich beams. The free vibration characteristic of 
various viscoelastic sandwich Euler-Bernoulli beams 
for different boundary conditions is studied by [7]. 
Reference [8] presented the trigonometric shear 
deformation theory considering the effect of the 
transverse shear deformation to study the static 
flexural analysis of the soft core sandwich beams. 
Their theory based on transverse shear deformation 
employed the principle of the virtual work to formulate 
the governing differential equations and the associated 
boundary conditions. They derived the closed-form 
solutions for the sandwich beams with simply 
supported boundary conditions using Navier solution 
technique. Reference [9] developed a dynamic 
stiffness matrix to analyze the coupled bending-
longitudinal free vibration of three-layered sandwich 
beam.  

It should be observed that the previous studies are 
mainly focused to free vibration analysis of sandwich 
beams, with no attention on studying the dynamic 
analysis of sandwich beams subjected to harmonic 
forces. Thus, the main purpose of this paper is to 
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formulate the governing differential equations and 
boundary conditions of symmetric sandwich beams 
and provide the closed form exact solutions for 
sandwich beams of equal faces under various bending 
harmonic forces. The present general exact solution is 
appropriate and efficient in analyzing the steady state 
dynamic response of symmetric sandwich beams 
subjected to transverse harmonic excitations. It is also 
capable to capture the quasi-static response and 
predict the eigen-frequencies and eigen-modes of the 
sandwich beams. 
 

II. MATHEMATICAL FORMULATION 

The coordinate system and notations for the three-

layered symmetric sandwich beam of length L and 

width b is illustrated in Fig. (1). The top and bottom 

layers have an equal thickness 1 2h h h  , while the 

core layer thickness is 2h . The sandwich beam under 

bending harmonic force caused the sandwich beam to 
bend in the x-z plane only. The face layers are 
modelled as Euler-Bernoulli beam having only axial 
and bending rigidity and the core layer is assumed to 
have only shear rigidity in which the stresses in the 
core along the axial direction are neglected. All layers 
are assumed to have the same transverse 

displacement ( , )w x t , whereas the centre line 

displacements of the top and bottom layers in the axial 

direction are 1( , )u x t and 3( , )u x t , respectively.  

 

Fig. (1): Sandwich beam under harmonic forces 
 

The sandwich beam model is based on the following 
assumptions [3]: 
1. Displacements and strains are assumed small, then 

the theory of linear elasticity is applied. 
2. The faces and core are made of homogeneous and 

isotropic materials. 

3. Top and bottom face layers are considered as 
Euler-Bernoulli beams with axial and bending 
rigidities.  

4. The three layers of sandwich beam are assumed to 
be perfectly bonded and there is no slippage 
between the layers during deformation. 

5. The transverse normal strains in the three layers of 
the sandwich are negligible. 

6. The transverse shear deformation within the face 
layers is negligible. 

 
Using the deformation continuity of sandwich beam, 

the displacements at the layer boundaries between top 
and bottom layers and core layer can be expressed as: 

At 2 2z h : 

        1
1 1

2
b

h
u u w   and 2

2 2
2

t

h
u u w               

(1) 

and at 2 2z h :  

         3
3 3

2
t

h
u u w   and 2

2 2
2

b

h
u u w         (2) 

At continuity conditions, 1 2b tu u and 3 2t bu u : 

        1 2
1 2

2 2

h h
u w u w    , and 

         3 2
3 2

2 2

h h
u w u w                               (3) 

where the prime denotes differentiation with respect to 
x. 
The axial displacement in the core layer at point p that 
located at height z from the core middle surface can be 
obtained (Figure 1) as: 

 
3 1 3

2 2

2

p t b t
u u u u

h h
z

 


 
 

 

   

or, 

1 3
1 3

2

( )
( )

2

b t
p b t

u u z
u u u

h


              (4) 

Substituting equations (1) and (2) into equation (4), one 
obtains: 

 1 3
2 1 3

( )

2 4

u u w
u h h


                          (5) 

The transverse displacement of arbitrary point ( , )p x z

is given as: 

 ( , , ) ( , )pw x z t w x t                               (6) 

The transverse shear strain of point p located in the 
core (layer 2) is: 

 p p
xzp

w u

x z


 
 

 
                                  (7) 

Substituting equations (4) and (6) into equation (7), 
gives: 

1 3

2

( )b t
xzp

u u
w

h



                       (8) 

From equations (1) and (2), by substituting into 
equation (8), one obtains: 

z

x

p(x,z)

p

z

up
wp

u3t

u1b

p

u1

u3

u2

h1

h2

h3

zh2

p
up

u1b

u3t

x
(b)

(c)

z

x

(a)

qz(x,t)
Fz(L,t)

My(L,t)L

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 8 Issue 2, February - 2021 

www.jmest.org 

JMESTN42353665 13433 

 
   1 3 1 3

2 2

1
2

xzp

h h u u
w

h h


  
   
 

             

(9) 
From the symmetry of the motion of the sandwich 
beam, in which the thicknesses of the faces are 

identical (i.e., 1 3h h h  ) : 1 3( , ) ( , ) ( , )u x t u x t u x t  .  

On substitution, equation (9) becomes: 

 
2 2

2
1xzp

h u
w

h h


 
   
 

                               (10) 

 

III. TOTAL POTENTIAL ENERGY OF SANDWICH BEAM 

A. Strain Energy of Sandwich Beam 

The strain energy due to axial stress in both faces is 
given by: 

   2 2

0 0fU EA u dx EI w dx                   

(11) 

where i iA t b and 
3 12iI bt , (for 1,3)i . 

The strain energy of the core (layer 2) due to shear 
strain is given as: 

  2
2 2 20

1

2
xzpU G A dx                          

(12) 

where  is the shear correction factor, 2A is the cross-

section area of the core layer, and 2G is the shear 

modulus of the core material. 
 
Substituting equation (10) into equation (12), one 
obtains: 

2

2 2 20
2 2

1 2
1

2

h u
U G A w dx

h h


  
    

   
          

(13) 
Then, the total strain energy U of the three-layered 
symmetric sandwich beam due to normal and shear 
strains are written as: 

2

2 2 2 2

0
2 2

2
1

2

G A h u
U EAu EI w w dx

h h


            
     

                   

                                                                     (14) 

B. Potential Energy of Applied Forces 

The symmetric sandwich beam subjected to  
dynamic bending forces, distributed transverse force 

( , )zq x t , concentrated transverse forces ( , )z eF x t  and 

bending moments ( , )x eM x t applied at the beam ends, 

i.e., 0,ex L is considered as shown in Fig. (2). 

 

Fig. (2): Three-layered sandwich beam under dynamic 
bending forces 

 
The potential energy of the external dynamic forces 
and moments is given by:  

     
0 00

, , ,z z xV q x t wdx F x t w M x t w            

(15) 
The total potential energy of the three-layered 
sandwich beam is: 

   

 

       

2 2

0

22 2
22

2

0 0

2
2

, , , ,

z

z x

U V EA u EI w

G A
u w h h q w dx

h

F x t w x t M x t w x t






    




       


       



         

(16) 
  

C. Kinetic Energy of Sandwich Beam 

It is assumed that the core layer is made of light 
material so that the core mass is negligible in 
comparison with the mass of the face layers [3], the 
kinetic energy of the sandwich beam is given by: 

    
22

0fT A u w dx   
                                (17) 

where  is the density of the face material. 

 

IV. HARMONIC VIBRATION 

The symmetric sandwich beam subjected to various 
harmonic bending forces as shown in Fig. (2) are given 
as: 

     
0 0

, , , , , ( ), ( ) , ( ) i t
z z x z z xq x t F x t M x t q x F x M x e  

  

                                                              (18) 

where  is the exciting frequency of the applied 

harmonic forces, 1i   is the imaginary constant, 

( , )zq x t is the distributed transverse harmonic force 

along the sandwich beam axis, ( , )zF x t and ( , )xM x t

are the end harmonic transverse forces and bending 

moments applied at the beam ends ( ., 0, )i.e x L .  

 
Under the given applied harmonic forces and 

moments, the axial and transverse displacements are 
assumed to take the following form: 

 ( , ), ( , ) ( ), ( ) i tu x t w x t U x W x e        (19) 

where ( )U x and ( )W x are the axial and transverse 

displacement amplitudes, respectively.  

z

x

qz(x,t)
Fz(L,t)

My(L,t)

L

Fz(0,t)

My(0,t)
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Since the present formulation is proposed to 

capture only the coupled axial-transverse bending 
steady state dynamic response of the three-layered 
symmetric sandwich beam, thus, the axial and 
transverse displacement functions suggested in 
equation (19) neglect the transient response of the 
sandwich beam.   

V. DYNAMIC DIFFERENTIAL EQUATIONS 

In order to derive the dynamic differential equations 
and the associated boundary conditions, the Hamilton’s 
variational principle can be applied. The principle 
required that:  

   
 2

1

2 2

1 1

0,

for ( , ) ( , ) 0

t

ft
t t

t t

T dt

u x t w x t

  

 

 

 


         (20) 

where  is the variational operator, 1t and 2t define 

the time interval. 
From Equations (18-19) and by substituting into 

energy expressions (16-17), the resulting equations 
into Hamilton’s equation (20), performing integration by 

parts and collecting the terms in u and w yields the 

governing differential equations for coupled axial-
transverse response of symmetric sandwich beams 
under harmonic bending forces as: 

2 2 2 2 2
22 2

2 2

2
( ) 0

G A G A
EAU A U h h W

h h

 
 
 

      
 
 

   

          (21) 
2

2 2 2 2
2
2

2 2 2
2
2

( )
2 2

2 ( )
( )

iv

z

G A h h
A W EIW W

h
G A h h

U q x
h


 




  


 

      

(22) 
It is noted that, the governing differential equations (21-
22) are similar to those derived by [3] for free vibration 
of symmetric sandwich beams with two differences: (a) 
the presence of non-zero forcing functions on the right 
hand sides of equation (22), and (b) the time 
dependence of the coupled equations for motion has 
been eliminated as direct outcome of the substitution 
made in equations (21-22), (c) the inertia terms are 
now specialized for the case of harmonic bending 
forces. The associated natural and essential boundary 
conditions are: 

 
0

2 0
L

EAU U                           (23) 

 2 2 2
22

2 0

( )
2 2 ( ) 0

L

z

G A h h
EIW U h h W F W

h




  
        

   

                                                                                 

 
0

2 0
L

xEIW M W                 (24-25) 

A. Exact Homogeneous Solution of Coupling 
Equations 

The exact homogeneous solutions of the coupled 
axial-transverse bending equations (21-22) are 
obtained by setting the right-hand side of the equations 

equal to zero, i.e., ( ) 0zq x  . The homogeneous 

solutions of the axial and transverse displacement 
functions to take the following forms: 

      
2 1

2 1 2 1

( )
( )

( )

h xi i

h i

U x A
x e

W x B




 

    
    

    
                 

(26) 
Substituting equation (26) into coupled equation (21-
22), yields in matrix form:   

       11 12

2 1
21 22 2 2 2 1

0i

i

T T A

T T B 
 

  
  

   
                          

(27) 
in which 

2 22 2
11 2

2

2
i

G A
T EA A

h


  

 
    
 

, 

 2 2 2
12 21 2

2

2
i

G A h h
T T

h





  ,  

 
24 2 22 2

22 22
2

2 2i i

G A
T EI h h A

h


   

 
     
 

, 

1 2i iA B


is a vector of constants corresponding to 

root i . For a non-trivial solution, the determinant of 

the bracketed matrix in equation (27) is set to zero, 
leading to the sixth order polynomial equation of the 

form 
6 4 2

3 2 1 0i i i oq q q q      , in which oq

through 3q are constants arising from the expansion of 

the determinant of 2 2 matrix and depend upon cross-
section properties, sandwich material constants and 

exciting frequency  and are given as: 
2

3q E AI ,

  22 2 2
2 22

22

G A E
q A EI I A h h

h


 
 

    
  

, 

 
22 2 2

1 22
22

G A
q A h h EA

h


 

 
   

  

, and  

2 2 2 2

2
2

2
o

G A
q A A

h


   

 
   

 

. 

The exact homogeneous solutions for the axial and 

transverse displacements ( )U x and ( )W x are written 

as: 

      
6 6

1 1

( ) , ( )
x xi i

h i h i

i i

U x A e W x B e
 

 

                 

(28) 
Equation (28) has twelve unknown integration 

constants , for 1,2,...,6i iA B i , but only six boundary 
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conditions are provided in equation (23-25). It is 

necessary to reduce the two sets iA and iB of 

unknown integration constants to six independent 

boundary conditions by writing the set of constants iB  

in terms of the constants of the other set iA . By back-

substitution into equation (27), one can relate 

constants iB through i i iB G A , where:  

 
 

 

2 2 2 2
2 2 2 2

2 2 2

2i

i
i

A h EA h G A
G

G A h h

   

 

 



 

The exact homogeneous solutions for axial ( )U x and 

transverse displacements ( )W x presented in equation 

(28) govern the axial-transverse coupled steady state 
response are obtained as:  

             6 62 1 2 6 6 1
( ) ( )h x G E x A

  
  

                  

(29) 

in which
1 2 1 2

( ) ( ) ( )h h hx U x W x
 
 ,  

6 6
( )E x


is a 

diagonal matrix consisting of the exponential functions 

(for 1,2,3,....,6)i x ie  , 1 2 3 61 6 1 6
....A A A A A

 
 is 

the vector of unknown constants to be determined from 
the boundary conditions of the sandwich beam, and   

        
2 6

1 2 3 4 5 6 2 6

1 1 1 1 1 1
G

G G G G G G


 
    

 

. 

 

B. Particular Solution for Sandwich Beam  

For a symmetric sandwich beam under distributed 

transverse force, ( ) i t
z zq x q e  , the corresponding 

particular solution 
1 2P ×

 is obtained as:  

      
2

1 2 1 2 1 2
0P p p z× × ×

U W q A             

(30)  
The total coupled axial-transverse bending steady state 
response is obtained by adding the homogeneous 
solution in equation (29) to the particular solution in 
equation (30), one obtains: 

            1 6 62 6 1 2 1
( ) ( ) px G E x A 

   
         

(31)    

C. Exact Solution of Cantilever Sandwich Beam 

A sandwich cantilever beam subjected to distributed 

harmonic force ( , ) i t
z zq x t q e  , concentrated force 

( , ) i t
z zF L t F e  and concentrated bending moment 

( , ) i t
x xM t M e  applied at the cantilever free end is 

considered. The unknown constants are obtained from 
the following boundary conditions at both ends: 

(0) (0) (0) ( ) 0U W W U L     , 

 
 2 2 2

22
2

2 ( ) 2 ( ) ( ) ( )z

G A h h
EIW L U L h h W L F L

h

 
      

and 2 ( ) ( )xEIW L M L  . 

Imposing the displacement functions in (28) into the 
boundary conditions, the total steady state solution for 
a symmetric sandwich cantilever beam becomes: 

         1

6 61 6 62 6 1 2 1
( ) ( )c c c px G E x Q 



   
    

                      (32) 
where  

 

1 2 3 4 5 6

1 1 2 2 3 3 4 4 5 5 6 6

6 6
1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 6 6

1 1 1 1 1 1

c

G G G G G G

G G G G G G     


     

     

     





 
 
 
 

 
 
 
 
  

1 8 1 8
0 0 ( ) ( )c p p z xQ U W F L M L

 
    .  

Li
i i e

  , 
22

Li
i i iEI G e

  and 

3 2 2 2
22

2

( )
2 2 ( )

Li
i i i i i

G A h h
EIG h h G e

h


  

 
       

 

. 

    

D. Exact Solution for Simply-supported Sandwich 
Beam 

A simply-supported sandwich beam subjected to 

distributed harmonic transverse force ( , ) i t
z zq x t q e  , 

and bending moments ( , ) i t
x e xM x t M e  at sandwich 

beam ends ( 0, )ex L is considered. The boundary 

conditions are: (0) (0) 0U W  , 2 (0) (0)xEIW M  , 

( ) (0) 0U L W   , and 2 ( ) ( )xEIW L M L  .  

From equation (31), by substituting into the above 
boundary conditions, the total closed form steady state 
solution for simply-supported symmetric sandwich 
beam is determined as: 

         1

6 61 6 62 6 1 2 1
( ) ( )s s s px G E x Q 



   
    

                      (33) 
in which,                                  

     

1 2 3 4 5 6

1 2 3 4 5 6

6 6
1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 6 6

1 1 1 1 1 1

s

G G G G G G

     


     

     

     





 
 
 
 

 
 
 
 
  

,  

1 6 1 6
(0) 0 ( )s p p x p xQ U W M W M L

 
     , 

where 
22i i iEI G  , 2

Li
i iEA e

  ,
Li

i iG e
  and

22
Li

i i iEI G e
  . 
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E. Exact Solution for fixed-fixed Sandwich Beam 

A fixed-fixed symmetric sandwich beam subjected 
to distributed harmonic transverse force 

( , ) i t
z zq x t q e  is considered. The boundary conditions 

for given beam are

(0) (0) (0) ( ) ( ) ( ) 0U W W U L W L W L       . 

The total closed-form steady state solution for fixed-
fixed symmetric sandwich beam under harmonic 
transverse force is then obtained as: 

         1

1 6 6 6 62 6 1 2 1
( ) ( )F F F px G E x Q 



    
    

                                  (34) 
where      

      

1 2 3 4 5 6

1 2 3 4 5 6

6 6
1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6 6 6

1 1 1 1 1 1

F

G G G G G G

     


     

     

     





 
 
 
 

 
 
 
 
  

,  

1 6 1 6
0 0s p p p pQ U W U W

 
     , 

 i i iG  ,
Li

i e
  , iL

i iG e
  , and 

Li
i i iG e

  . 

VI. NUMERICAL RESULTS AND DISCUSSION 

Although the exact closed-form solution developed 
in the present formulation provides the steady state 
dynamic axial-transverse coupled response of three-
layered symmetric sandwich beams under various 
harmonic bending forces, it can also capture the quasi-
static axial-transverse coupled response under the 
given harmonic forces when adopting a very low 

exciting frequency 10.01  compared to the first 

natural frequency 1 of the given sandwich beam. To 

validate the accuracy of the present solution, two 
examples are presented. The results based on the 
present formulation are compared with available exact 
solutions in the literature and established Abaqus finite 
shell element.  
 

A. Example (1): Symmetric sandwich beam - 
Verification  

In order to show the validity and accuracy of the 
present closed-form solution, a cantilever symmetric 

sandwich beam of length 0.9114L mm is subjected to 

concentrated force ( , ) 200e i t
zF L t N applied at the 

free end. The following sandwich beam date taken 
from the literature [3] are used in the present analysis: 
the top and bottom layers have the same thickness

0.4572h mm , core thickness 2 12.7h mm , the width 

of the sandwich 25.4b mm , 31500EA N ,

21.362EI Nm , 2 2 1050G A N  , 
31.225 10 /m kg m  .   

 
Extracting Natural Frequencies 

Multiple steady-state dynamic response analyses 

under distributed transverse force ( , ) 200 i t
zF L t e N

are performed for an exciting frequency f varying from 

nearly zero to 1000Hz. The coupled axial-transverse 
natural frequencies are then extracted from the peaks 
of the displacements-frequency relationships. The 

transverse maxW and axial maxU displacements at the 

tip of cantilever sandwich beam against the exciting 
frequency are shown in Fig. (3). Peaks on the 
diagrams indicate resonance and then indicators of the 
natural frequencies of the sandwich beam. It is 
observed that the transverse displacement peaks are 
matched with the axial displacement peaks indicating 
that the mode shapes are indeed coupled. The first 
four natural frequencies extracted at the peaks in Fig. 
(3) are provided in Table (1). The natural frequencies 
of the symmetric sandwich beam predicted using the 
present solution are compared to those published by 
Banerjee [3] and other results reported in Ahmed [1]. 
As a general observation, the present results for 
natural frequencies are exactly matched with the 
corresponding results of Banerjee [3]. It is also noted 
that, the frequencies predicted by both present and 
Banerjee solutions are differed from 7.39% to -9.59% 
from those based on Ahmed results. In addition, the 
first four steady state modes for normalized transverse 
and axial displacements are illustrated in Figs. (3b and 
3d), respectively.  

Table (1): Natural frequencies of the three-layered symmetric 

sandwich beam 

Freq. 
No. 

Natural frequencies in (Hz) Error % 

Banerjee 
(2003) 

 [1] 

Ahmed 
(1971) 

[2] 

Present 
Solution 

[3] 
=[1-3]/1 

 
=[2-3]/2 

1 31.46 33.97 31.46 0.00% 7.39% 

2 193.7 200.5 193.7 0.00% 3.39% 

3 529.2 517.0 529.2 0.00% -2.36% 

4 1006 918.0 1006 0.00% -9.59% 

 

B. Example (2): Quasi-state and dynamic analyses 

In order to study the effects of core thicknesses and 
sandwich beam lengths on the natural frequencies, 
quasi-static and steady state dynamic responses, a 
symmetric sandwich cantilever beam subjected to 

distributed harmonic force ( , ) 100 /i t
zq x t e N m is 

considered as shown in Fig. (4). The sandwich beam 

has a width 40b mm and identical face thicknesses

2h mm , while the core thickness is varied from 

20mm to 70mm and sandwich length is varied from 
0.8m to 2.4m. The material properties for faces are:

70E GPa , 
32700 /kg m  , and the core properties 

are:  

2 80G GPa , and 
3

2 100 /g m  .  
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Fig. (4): Sandwich cantilever beam under distributed harmonic 
transverse force 

 
Natural frequencies 

The steady state dynamic analyses of symmetric 
sandwich cantilever beam under the given distributed 
harmonic force is investigated in order to extract the 
coupled axial-transverse natural frequencies. The first 
five natural frequencies (in Hz) extracted from the 
steady state responses presented in Table (2) are 
conducted based on the present closed-form solution 

for core thickness 2 50h mm and for various sandwich 

lengths ( 0.8,1.2,1.6,2.0,2.4 )L m .  

 
Table (2): Natural frequencies (in Hz) of symmetric sandwich beam 

for different beam lengths 

Freq. 
No. 
(Hz) 

Natural frequencies in Hz 

L=0.8m L=1.2m L=1.6m L=2.0m L=2.4m 

1 95.02 46.69 27.35 17.85 12.53 

2 358.6 206.1 134.1 93.73 68.83 

3 725.4 440.1 299.7 217.9 165.4 

4 1068 672.7 473.7 354.4 275.8 

5 1413 905.4 649.6 495.1 391.9 

 

 

 

 
 

 

 
 

Fig. (3): Natural frequencies and mode vibration of symmetric sandwich cantilever beam 
 
 
It is noted from Table (2) that, the natural frequencies 
decrease with increase of the sandwich beam length. 
Furthermore, the first five natural frequencies of the 
symmetric sandwich beam obtained using the present 
formulation against the sandwich beam length are 
shown in Fig. (5). It is observed that, as sandwich 
length is increased the natural frequency is decreased 
for various steady state mode numbers. This may be 
because of natural frequency is inversely proportional 
to the sandwich beam length. 
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Fig. (5): Natural frequencies of symmetric sandwich beam for 
different sandwich lengths (h2=50mm) 

 
Quasi-static Analysis 
Based on the present formulation, the quasi-static 
response of the three-layered symmetric sandwich 
cantilever beam under given harmonic distributed force 

( , ) 100 /i t
zq x t e N m with very low exciting frequency

0.0628 /secrad is approached. The static 

response results for the transverse and axial 
displacement functions for sandwich beam length

1.20L m and core thickness 2 50h mm are shown in 

Fig. (6). Results are based on (a) the closed-form 
solution developed in the present study, and (b) 
Abaqus finite shell solution. The static transverse and 
axial displacements results predicted by using the 
present formulation are observed to nearly coincide 
with those based on the Abaqus finite shell element 
solution.  
 
Core thickness Effect on Quasi-static response 
To study the influence of core thickness on the quasi-
static response, the transverse and axial 
displacements of symmetric sandwich beam having 
length 1.20m are plotted for different core thicknesses. 
Fig. (7) show the effect of increase of the core 
thickness on the static response. It is observed that, as 
the core thickness increase, both the transverse and 
axial displacements are decreased. It is also observed 
that the maximum value of the static transverse 
displacement is decreased about 86% (from 20.44mm  
to 2.929mm) and the  axial 

  

Fig. (6): Static response of symmetric sandwich cantilever beam (L=1.2m and h2=50mm) 

 
displacement is decreased about 64% (from 0.2331mm to 0.0829mm) when the core thickness changed (from 
20mm to 60mm). For quasi-static response, it can be conclude that the increase of the core thickness leads to an 
increase in the sandwich beam stiffness.  
 

  
Fig. (7): Quasi-static response of symmetric sandwich beam of length L=1.2m under harmonic distributed transverse force  

 
Effect of Sandwich length on Quasi-static response 

Another parametric study related to the study of 
variation of the sandwich beam length versus the 

quasi-static response are provided for various core 
thicknesses in Table (3). Fig. (8) illustrates the 
influence of sandwich beam length on the maximum 
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transverse and axial displacement functions. The 
mentioned results reveal that, the quasi-static 
responses increase by increasing the sandwich beam 
length and decrease by increasing the core thickness.  

 
 

 
Table (3): Quasi-static response of three-layered symmetric sandwich cantilever beam under distributed harmonic transverse force 

L 
(m) 

h2=20mm h2=30mm h2=40mm h2=50mm h2=60mm 

Wmax 

(mm) 
Umax 

(mm) 
Wmax 

(mm) 
Umax 

(mm) 
Wmax 

(mm) 
Umax 

(mm) 
Wmax 

(mm) 
Umax 

(mm) 
Wmax 

(mm) 
Umax 

(mm) 

0.8 4.371 6.907 2.214 4.756 1.370 3.625 0.949 2.929 0.706 2.457 

1.2 11.89 22.45 5.918 15.45 3.606 11.78 2.463 9.519 1.811 7.985 

1.6 42.55 54.39 20.69 37.45 12.33 28.55 8.255 23.07 5.953 19.35 

2.0 111.7 107.1 53.73 73.71 31.72 56.19 21.03 45.40 15.03 38.08 

2.4 242.8 185.6 116.2 127.8 68.23 97.43 45.01 78.72 32.01 66.03 

 

  

Fig. (8): The influence of sandwich beam length and core thickness on the Quasi-static response 

 

Dynamic response analysis 
The steady state dynamic response results of 

transverse and axial displacement functions versus the 
sandwich beam axis are plotted in Fig. (9) for exciting 

frequency 377 /secrad . Figure (9) is provided for 

sandwich beam length 1.20L m  and core thickness  

2 50h mm . Results based on the present closed-form 

solution are slightly differ from those based on Abaqus 
S4R shell model. The differences are attributed to 
shear deformation effects which are captured in 
Abaqus shell solution but not in the present 
formulation. 
 
 

  

Fig. (9): Steady state dynamic response of symmetric sandwich cantilever beam (L=1.2m and h2=50mm) 
 

Effect of Core thickness on Dynamic response 
The steady state dynamic response of three-layered 

symmetric sandwich cantilever beam of 1.20m length 

subjected to harmonic force ( , ) 100 /i t
zq x t e N m with 

exciting frequency 440 / secrad  is investigated. 

The dynamic analysis focuses on the effect of varying 
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core thickness from 30mm to 70mm on the steady 
state response. The transverse and axial 
displacements are presented in Fig. (10) for various 
values of core thicknesses

2( 30,40,50,60 and 70 )h mm . It is noted that, as the 

core thickness increased, the steady state transverse 
and axial displacements are increased.  It is also 
observed that, the effect of the core thickness is more 
significant when the core thickness is greater than 

50mm 2( . ., 50 )i e h mm . This leads to conclude that, for 

steady state response, the increase of the core 
thickness provides to decrease the stiffness of the 
sandwich beam.  

 
Effect of Sandwich length on Dynamic response 

The influence of length of the sandwich beam on 
the steady state response is investigated as shown in 
Fig. (11). As can be seen from Fig. (11), the steady 
state results indicate that as the sandwich length 
increases, both the transverse and axial displacements 
increase. 

 

VII. SUMMARY AND CONCLUSION 

Based on the Hamilton variational principle, the 
dynamic differential equations and associated boundary 
conditions governing the coupled axial-transverse 
response for symmetric sandwich beams subjected to 
general harmonic bending forces are derived. Exact 
expressions for the analytical closed-form solutions for   

 

  

Fig. (10): Steady state dynamic response of symmetric sandwich beam of length L=1.2m under harmonic distributed transverse 

force with 440 /secrad  

 

  

Fig. (11): Steady state response of symmetric sandwich beam for different core thicknesses and sandwich lengths 

axial and transverse responses are formulated for 
cantilever, simply-supported and fixed-fixed symmetric 
sandwich beams. The present exact closed form 
solutions are efficient in capturing the quasi-static and 
steady state dynamic responses of symmetric 
sandwich beams under harmonic bending forces. It is 
also capable of extracting the axial-transverse coupled 
natural frequencies and steady state axial-transverse 
bending modes. Comparison with established Abaqus 
finite shell element and exact solutions available in the 
literature exhibits the validity and accuracy of the 
present closed form solutions. Additionally, numerical 
results provided in the present study investigated the 
effects of the core thickness and sandwich beam 

length on the natural frequencies, quasi-static and 
steady state responses. 
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