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Abstract—This work present an original 
approach for calculus of body mandible, through 
a model of a semicircular spring, embedded at the 
two ends, charged perpendicular of its plane, in 
two cases: first, charged with concentrated 
vertical loads and in second case, charged with an 
uniformly distributed load along the entire length 
of the semicircle. This is an original approach and 
very easy to program. 
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I.  INTRODUCTION  

Mandible is an unpaired mobile bone and very 
important for 3 functions in which it takes part: 
mastication, phonation and aesthetics, which results 
from numerous researches and publications. 

The mandible bone consists of a body and two 
branches, at branches ends is the temporo-
mandibular joint.  

In this article, we present a study of mandible 
body by Transfer-Matrix Method (TMM). 

Due to the important role of the mandible bone, 
there are many studies and research on it. 

[9] presents methods for a bone mandible supply 
in case of severe mandible atrophy and in [6] we have 
some methods and techniques for reconstruction in 
orthodontics. 

[10] gives some bone substitutes and validation. 
In [13] it is presented a study of etiopathogenesis 

and effects of the occlusal trauma. 
[7] studies evolution of bone resorption in 

restorative prosthetic therapy. 

[16] gives a study on the position of the mandible 
channel for total edentation. 

In [11] it is presented some methods for bone 
engineering. 

[14] presents a very interesting of clinical use of 
the fibular flap. 

[12] gives some grafting systems in implanto-
prosthodontics rehabilitation. 

In [15] it is presented some uses of modern 
methods of imaging exploration in orthodontics and [8] 
gives studies with Finite Elements Method (FEM) for 
transmission of masticator forces to the bone 
substrate via titanium and zirconium implants. 

[1] presents some photoelasticimetry applications 
in biomechanics and other applications in orthopedics 
field is gives in [2] and [3]. 

Classical analytical spring calculus is presented in 
[5].  

Basics of TMM calculus are given in [4] and in [17] 
we have general formulas and applications of TMM.  

II. PREMISES OF MANDIBLE BODY CALCULUS AS A 

SEMICIRCULAR SPRING STRESSED PERPENDICULAR TO ITS 

PLANE 

We consider a mandible bone (Fig 1).  
 

 
Fig. 1. Mandible bone 
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The model for study was built by isolating the 
body of the mandible (Fig. 2).  

 

 
Fig. 2. Separating the body of the mandible from the two branches 

 

The mandible body is assimilated with a 
semicircular spring, embedded at both ends (Fig. 3).  
 

 
Fig. 3. Model of mandible body as a semicircular spring 

 
 Transfer-Matrix Method (TMM) allows the 

application of calculus for a semicircular spring, used 
an algorithm based on Dirac’s and Heaviside’s 
functions and operators, [4].  

It is considered that the spring is stressed 
perpendicular to its plane, in two cases: 

- loaded with concentrated vertical loads 
corresponding to each tooth and, for simplification, we 
consider all forces equal to F (Fig. 4), the body of the 
mandible is loaded with teeth, numbering 16, eight on 
a quarter of circle and another 8 on the other quarter 
of circle.  
 

 
Fig. 4. Semicircular spring with concentrated loads 

 
- loaded with a vertical distributed force, which, for 
simplification, will be considered uniformly distributed 
(Fig. 5). 

 

Fig. 5. Semicircular spring with uniformly distributed load 

TMM allows a much easier approach to the 
calculus of circular springs, which means that our 
application for mandible body model will be relatively 
easy and original.  

III. SPRING LOADED PERPENDICULAR TO ITS PLANE 

(FIG. 4 AND FIG. 5) 

We consider a state vector with six components 
for a section θ: 

{SV}θ = {T(θ), Mr(θ), Mt(θ), v(θ), ω(θ), φ(θ)}
-1

     (1) 
where: 

- θ is the current angle at the center of 
semicircular spring 

- {SV}θ is the state vector corresponding at the 
section θ, with 6 components 

- T(θ) force resultant perpendicular to the 
spring plane at the section θ 

- Mr(θ) is the radial moment at the section θ 
- Mt(θ) is the tangential moment at the section θ 
- v(θ) is the arrow at the section θ 
- ω(θ), φ(θ) are angular deformations at the 

section θ. 
Also, we consider a state vector with six 

components for origin section 0: 
{SV}0 = {T0, Mr0, Mt0, v0, ω0, φ0}

-1
                        (2) 

with the same meaning of the components as in (1), 
but referring to origin face 0. 

Generally, the passage from face 0 to face 1, for 
the first element, is made by a growth vector {ÄV}1, 
whose expression is: 

{ÄV}1 = [TM]1·{SV}0+ [TMext]1·{Vext}1                    
(3)           
and, for the face 1, we have the state vector: 

{SV}1 = {SV}0+ {ΔV}1                                           (4) 
where: 

- [TM]1 is the Transfer-Matrix, 6x6, between the 
origin section 0 and the section 1 

- {SV}1 is the state vector corresponding at the 
face 1 

- [TMext]1 is a matrix of external forces 
coefficients corresponding at the element 1  

- {Vext}1 is the vector of external forces. 
(4) can still write: 
{SV}1 = {SV}0+[TM]1·{SV}0+ [TMext]1·{Vext}1         (5) 

because: 
[T]1=[TM]1+ [1]                                                                                 (6) 
With (6), (5) becomes: 
{SV}1 = [T]1·{SV}0+ [TMext]1·{Vext}1                       
(5) 
The growth vector {ÄV}2 for the second element 

is: 
{ÄV}2 = [TM]2·{SV}1+ [TMext]2·{Vext}2                    

(7) 
and the state vector for la face 2 (the right section of 
the second element) is: 

 {SV}2 = {SV}1+ {ΔV}2                                          (8) 
Replacing (7) in (8), we obtain: 
{SV}2=[T]2·[T]1·{SV}0+[T]2·[TMext]1{Vext}1+[TMext]2·{Vext}2 

(9)  
and so on, obtaining the following general relations for 
the state vector of the face è, [17]: 

 F8 
F1 F7 

F6 
F5  F4 

F3  F2 

q 
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and with notations: 
 [T]θ+1= [1]                                                          (11) 

{Vext}0= {SV}0                                                     (12) 
[TMext]0=[1]                                                        (13) 
(12) becomes much simpler: 
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The general Transfer-Matrix [TM]θ for a spring 
loaded in its plane, [4], has expression (15): 
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with elements: 
t11=1 
t12=0 
t13=0 
t14=0 
t15=0 
t16=0 
t21=R·sin θ 
t22=cos θ 
t23=sin θ 
t24=0 
t25=0 
t26=0 
t31= - R·(1-cosθ) 
t32= - sin θ 
t33=cos θ 
t34=0 
t35=0 
t36=0 
t41= - a·R

2
/2[(1-k)(sinθ - θ·cosθ)+2k(1 - cosθ)]

 

t42= - aR/2[(1-k)(1 - cosθ) – (1–k)(θ sinθ - cosθ – 1)] 
t43= - aR/2(1-k)(sinθ - θcosθ) 
t44=1 
t45= - Rsinθ 
t46= R(1-cos θ) 
t51=aR/2[(1-k) θsinθ-2k(1-cos θ)] 
t52= a/2[(1-k)sin θ-(1-k) θcos θ] 
t53= a/2(1-k) θsin θ 
t54=0 
t55= cos θ 
t56= - sin θ 
t61= aR/2(1-k)(sin θ - θcos θ) 
t62= a/2(1-k) θsin θ 
t63= a/2[(1-k)sin θ-(1-k) θcos θ] 
t64=0 
t65= sin θ 
t66= cos θ 

with, [4]: 

JG

IE
k




                                                        (16) 

where: 
- E is Young modulus 
- I is the moment of inertia of the section in 

rapport to the horizontal axis 
- G is transversal modulus 
- J is moment of inertia for torsion 

and: 

IE

R
a


                                                         (17) 

where: 
- R is the rayon of the circle. 
The general expression for the state vector for 

exterior load for element θ is: 
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where elements are function of mode and type 
loading. 

IV. MODEL FOR MANDIBLE BODY AS A SEMICIRCULAR 

SPRING, LOADED PERPENDICULAR TO ITS PLANE WITH 

CONCENTRATED FORCES 

The first model for mandible body, studied by 
TMM, is a mandible body as a semicircular spring, 
loaded with vertical concentrated forces, 
perpendicular to its plane.  

To simplify the study, we make some work 
hypotheses: 

-   the semicircular spring is considered to be       
embedded at both ends, those that have been 
sectioned and isolated the body of the 
mandible from its two branches; 

- we consider the vertical concentrated forces 
in number of 16, corresponding to the 16 
teeth on the body of the mandible; 

- the vertical concentrated forces are equal to 
each other and equal to F; 

- the angular distances between the forces are 
equal to each other and equal to a center 
angle of 11.25°; 

- the angular distances between the two forces 
near the two embedded ends is 5,625° (Fig. 
4). 

As in relation to the load, the semicircular spring is 
symmetrical, it can be considered an element of the 
spring, starting from the left support, which represents 
the origin.  

For applying TMM, we must divide the 
semicircular spring into 16 identical elements. Each 
element is loaded with concentrated vertical load F.  

Each element is bordered by two faces, a left face 
and a right face, so that the right face of one element 
becomes the left face of the next element. For the first 
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element, the left face is the origin face, the face 0 at 
the angle θ=0°, or the section 0. For the last element, 
element, number 16, the right face is the last face, or 
the last section, for angle θ=180°, or θ = π. 

The right section of the element, at an angle of 
11.25° rapport to section 0 (the origin), is considered 
to be the final section for this element.  

We can study this element and, after, the right 
face of this first element (the right section) is the origin 
section (the left section) for the second element, 
identical to the first element.  

Calculus can continue up to the 16th element, 
thus traversing the entire semicircular model of 
mandible body, applying (13). 

Matrix relation (13) must be used successively for 
each element of spring, starting from element 1 
(bordered by faces 0 and 1), then to element 2 and so 
on until the last element, element 16. 

For the face which is at a certain angle θ, we can 
write matrix relationship (13), with the Transfer-Matrix 
[TM]θ (15) and its components given below. 

The vector corresponding at the exterior load at 
the angle θ - {Vext}θ is given by (18). 

For concentrated vertical force, the expression of 
the charge density, for an element, is, [4]: 

q(θ) = - Fδ(θ - θ 0)                                             (19)  
and, [4]: 

T(θ) = T0 + F Y(θ - θ 0)                                      (20)    
where Y(θ - θ 0) is the Heaviside function, [4]. 

Components of vector (18), for a concentrated 
vertical load are:  
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  (21) 

If in last expression (13), applied successively for 
the 16 elements of the semicircular spring, we replace 
θ = π in the state vector corresponding to the section 
16, we obtain: 

{SV(π)}π = [T(π)]π·{SV}0+{Vext((π)}π                     (22) 
That is a relation between the state vector of the 

origin section 0 and the state vector of the final 
section for θ = π. 

In (22) we can put the conditions for the two 
embedded ends. We obtain a linear system of 
equations whose solutions give the other unknowns 
from the two extremities of the semicircular spring, 
meaning the model of mandible body studied.  

Replacing the solutions in the matrix relation (13), 
for the last state vector, at the right end, we can now 
calculate all components for all state vectors for all 
spring sections. 

V. MODEL FOR MANDIBLE BODY AS A SEMICIRCULAR 

SPRING, LOADED PERPENDICULAR TO ITS PLANE WITH  

UNIFORMLY DISTRIBUTED LOAD (FIG. 5) 

The second model for mandible body, studied by 
TMM, is a mandible body as a semicircular spring, 
loaded with vertical uniformly distributed load along 
the entire length of the semicircle and perpendicular to 
its plane (Fig. 5).   

We consider the semicircular spring to be 
embedded at both ends, those that have been 
sectioned and isolated the body of the mandible from 
its two branches. 

The uniformly distributed force materializes the 
action of continuous pressing on the teeth along the 
entire length of the semicircular spring. 

In this case, the density charge is: 
q(θ) = qδ(θ - θ0)                                                (23) 

and: 
q1(θ) = q θ                                                         (24) 
Also, (1) to (13) remain valid for uniformly 

distributed load.  
In (18), elements corresponding to the exterior 

loads become (25):  
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Now, we can write (22) in which are placed the 
conditions on the two supports and after, we obtain a 
linear equation system, which the solutions for the 
state vector in the origin and the state vector in the 
final section (with all components known). 

Replacing in (13) the solutions for state vectors of 
the right end known, we can calculate in all sections, 
the state vector with all its elements.  

VI. CONCLUSIONS 

In this work we present an original approach for 
calculus of body mandible, through a model of a 
semicircular spring embedded at the two ends, 
charged perpendicular of its plane, in two cases: first, 
charged with concentrated vertical loads and in 
second case, charged with an uniformly distributed 
load along the entire length of the semicircle. 

This approach by TMM is very easy to program 
and to use for practical cases of quick calculations for 
shape optimization for the body of the mandible. 

In future, we hope to present an experimental 
validation and a numerical validation by Finite 
Elements Method (FEM). 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 12, December - 2020  

www.jmest.org 

JMESTN42353644 13237 

REFERENCES  

[1] A.-I. Botean, I. A. Takacs and M. Hardau, 
“Photoelasticimetry applications in biomechanics”, 
ATN, Series: Applied Mathematics and Mechanics, 
Vol. 54, Issue I, 2011. 

[2]  A.-I. Botean, D. S. Mândru and M. Hardau, 
“Plan model to analize the state of stresses and 
strains of the human proximal femoral bone”, Acta 
Technica Napocensis, Series: Applied Mathematics 
and Mechanics, Vol. 58, Issue II, June, 2015. 

[3] A.-I. Botean, “Study of changing geometric 
characteristics in proximal femoral bone affected by 
osteoporosis in compliance with Singh index”, Acta 
Technica Napocensis, Series: Applied Mathematics 
and Mechanics, Vol. 60, Issue III, Septembre, 2016. 

[4] P.-M. Gery and J.-A. Calgaro, «Les Matrices-
Transfert dans le calcul des structures», Editions 
Eyrolles, Paris, 1987. 

[5] M. Suciu and M. Tripa, “Strength of 
Materials”, Ed. UTPRESS, Cluj-Napoca, 2016. 

[6] K. Papakoca, “Methods and techniques for 
reconstruction of deficient alveolar ridges”, Thesis of 
Doctorate, UMF “Carol Davila” Bucharest, Romania, 
2011. 

[7] C. C. Andrei, “Studies on the evolution of 
bone resorption in restorative prosthetic therapy”, 
Thesis of Doctorate, UMF “Carol Davila” Bucharest, 
Romania, 2016. 

[8] S. David et allii, “Finite element method 
studies on the transmission of masticatory forces to 
the bone substrate via titanium and zirconium 
implants”, R. J. Stomatol., 64(2), DOI: 
10.37897/RJS.2018.2.8, 2018. 

[9] D. Sirbu et allii, “Creating the bone supply for 
patients with severe atrophy of the mandible for 
rehabilitation prosthetic implants”, R. J. “Medicina 
Stomatologicã”, Nr. 3(28), p. 47-53, 2013. 

[10] C. Ogunsalu, “Bone Substitutes and 
Validation“, Implant Dentistry-The Most Promising 
Discipline of Dentistry, Prof. Ilser Turkyilmaz (Ed.), 
p.129-172, 2011. 

[11] G. Ciapetti et allii, ”Human bone marrow 
stromal cells: In vitro expansion and differentiation for 
bone engineering“, Biomaterials, 27, p. 6150-6160, 
2006. 

[12] C. I. Tataru, “Grafting systems in implanto-
prosthodontics rehabilitation”, Thesis of Doctorate, 
UMF “Grigore T. Popa” Iasi, Romania, 2019. 

[13] A. Ispas, “Study of etiopathogenesis and 
effects of the occlusal trauma”, Thesis of Doctorate, 
UMF “Iuliu Hatieganu” Cluj-Napoca, Romania, 2016. 

[14] I. Muraru et allii, “Clinical use of the fibular 
flap”, R. J. Med. Pract. 15(3), DOI: 
10.37897/RJMP.2020.3.7, 2020. 

[15] O.-F. Ladunca (Rusu), “Use of modern 
methods of imaging exploration in orthodontics”, 
Thesis of Doctorate, UMF “Grigore T. Popa” Iasi, 
Romania, 2014. 

[16] V. Traistaru et allii, “Study on the position of 
the mandibular channel at totally edented patients – 
clinical implications”, AMT, vol. II, nr. 3, p. 128-131, 
2014. 

[17] V.-M. Tripa (maried Suciu), “Optimisation de 
coques axisymetriques: modelisation par Matrices-
Transfert”, Thesis of Doctorate, Institut National des 
Sciences Appliquées, Toulouse, France, 1995.

 

http://www.jmest.org/

