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Abstract—The Computer Aided Engineering 
industry utilizes computer simulations to analyze 
and predict mainly fluid flow phenomena. These 
simulations can be used both for research and 
commercial purposes, to comprehend physical 
phenomena, that will aid in the design of 
engineering systems. There are various 
technologies out there, that can be used to 
perform computing simulations, which are well-
established. In this paper, firstly, the various new 
technologies that are expected to produce a 
disrupt in the market in the near future are 
discussed which are artificial intelligence, 
quantum computing and tensor processing units. 
Thereafter, the various methods to approximate 
partial differential equations are analyzed, and 
focus is given in the solution of convection-
dominated problems, which is a major part of fluid 
simulation phenomena. We therefore discuss the 
advantages and disadvantages of the main 
traditional methods such as the finite difference, 
finite element and finite volume methods, as well 
as more innovative methods such as the Lattice 
Boltzmann method in mesoscopic range. In this 
paper, a very innovative Finite Volume-Total 
Variation Diminishing scheme is proposed, that 
has the capability to ideally predict the fluid flow 
of both diffused and shock wave phenomena, free 
from artificial numerical diffusion, spurious 
oscillations and guaranteeing flux conservation. 
The results demonstrate that the proposed 
method captures the waves in a nearly ideal way 
and guarantees accurate simulations, even when 
long time simulations are performed, excelling in 
accuracy. Since it is developed in a CUDA aware 
MPI environment, it is highly computationally 
efficient and it is expected to disrupt the market 
and establish KYAMOS software, as a competitive 
alternative in the Computer Aided Engineering 
industry.  

Keywords—KYAMOS software, High 
Performance Computing, CUDA-GPU, Finite 
Volume, Total Variation Diminishing; 

I.  INTRODUCTION 

In the solution of advection equations, there is 
always the problem of capturing the shock wave using 
2

nd
 order dynamics which results in the loss of 

monotonicity, artificial numerical diffusion and spurious 

oscillations. To avoid this, the research community has 
been looking for a numerical scheme which would not 
suffer from the above drawbacks and at the same time 
preserve conservation.  

The finite volume falls within this category by 
ensuring conservation through a control volume 
formulation. In this paper, we propose a new method 
proven to work ideally in three-dimensional 
unstructured grids. The code uses the Total Variation-
Diminishing technique (FV-TVD), a property of certain 
discretization schemes that is used to solve hyperbolic 
partial differential equations, usually in computational 
fluid dynamics to preserve monotonicity by ensuring 
that if the solution at current value is monotically 
increasing/decreasing, so does the next time step 
value. This monotonic behavior of TVD schemes 
ensures that non-physical oscillations are eliminated, 
hence are very attractive for solving engineering and 
scientific problems.  

A theorem by Godunov proves that monotonicity is 
only guaranteed and preserved only in 1

st
 order linear 

schemes. For the case of 2
nd

 order linear schemes and 
higher, they perform well at smooth solutions, however 
they create spurious oscillation near shock waves. 
Hence, one extra step is necessary to avoid these 
spurious oscillations and this can be achieved by 
deploying high order flux/slope limiters at shock 
waves. Next, we present some Key Enabling 
Technologies that are expected to disrupt the CAE 
market in the near future. 

 

II. ARTIFICIAL INTELLIGENCE 

Artificial Intelligence is a Key Enabling Technology 
which is expected to bring a change in the way human 
perceive and operate systems with impact in all areas 
of our lives. A subset of Artificial Intelligence, and 
specifically, deep learning can be utilized to predict the 
behavior of the fluid flows without solving the 
appropriate partial differential equations. To achieve 
this, one can utilize the well-known TensorFlow, feely 
available software from google under Apache2 license, 
written in language programme python to train a model 
to predict the fluid flow.  

The data to be input to TensorFlow must be 
provided by a state of the art conventional and/or 
unconventional fluid flow solutions. TensorFlow 
operates more efficiently using GPUs to conduct the 
calculations, hence a cluster-computing GPU 

http://www.jmest.org/
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InfiniBand structure likewise with the one developed by 
KYAMOS LTD, is ideal for such calculations.  

In the literature, it has already been demonstrated 
that deep learning can be used in the simulation of 
partial differential equations with applications in the 
automotive industry [1]. The general idea is to create a 
list of random shapes and domain geometries which 
are variant in shape and size such that a diverse date 
set is created and then be simulated using state-of-
the-art simulators. Then one needs to extract relevant 
data from the simulators and feed them into the Neural 
Network Implementation in TensorFlow. Information 
sources regarding CAE and Artificial Intelligence can 
be found in the following links [2], [3], [4], [5], [6] and 
[7].  

According to [8], one can use neural networks to 
represent approximate solutions to partial differential 
equations modeling fluid phenomena and obtaining the 
optimal Neural Network model using collocation points 
on the interior and boundary of the domain and an 
appropriate optimization method.  

Additionally, using CFD codes, one can generate 
lots of simulation data for different fluid properties and 
using the resulting dataset to construct inverse 
mappings, using Deep Learning or some other 
techniques, one can take a given CFD/experimental 
output and try to estimate the properties of the fluid. 
This is basically an approach one can use to try and 
tackle inverse problems in fluid mechanics; however, 
one needs to develop thousands of examples that will 
be input to TensorFlow, hence this process may need 
to be automated using a software that will generate 
randomly and automatically thousands of geometry 
shapes and domains that will be meshed and 
simulated automatically.  

The thousands of output files which encompasses 
the simulated design i.e. geometry data and the flow 
fields will then be input to TensorFlow that will build the 
deep learning model using artificial neural network in a 
python library utilizing GPU technology. Hence, when 
a customer wishes to run a similar problem, the deep 
learning model library will be called upon and the result 
will be uploaded automatically to their personal 
computer to be visually processed. This will open a 
new field in CAE, since designers will be able to have 
real live insight during the design process, get detailed 
insight and optimize their designed systems. The users 
will also be able to verify the optimized suggested 
result through proper conventional and unconventional 
methods to ensure the validity of the results. Deep 
learning processes are initially dummy and use data 
samples to generate intelligence through trial and error 
and feedback, hence one can say/imply that there is 
no built-in intelligence in artificial intelligence. 

 

III. QUANTUM COMPUTING 

Quantum computing is a new way of conducting 
computer simulations using instead of bits, the so-
called qubits. Qubits take into advantage that fact that 
in the microscopic world, the state of a subatomic 
particle can be a 0 or 1, or any of the intermediate 
states between a 0 and 1. This probability of the state 

of a particle to have multiple states simultaneously 
means it can be used concurrently to analyze mostly 
optimization problems, where multiple paths need to 
be investigated simultaneously for the optimum root or 
solution. Hence, quantum computers are very good in 
solving maze problems or finding the shortest distance 
on a map. In practice, quantum computers  utilize 
highly sophisticated engineering devices to stabilize by 
freezing the state of the particle and ensuring that 
correct physical coupling between the various qubits 
exist at the same time and measuring these states 
accurately and efficiently. Unfortunately, this system is 
very unstable and hard to measure and results into 
uncertainties, hence statistics are used to ensure that 
correct results are given through multiple passes. The 
real breakthrough is expected to occur when scientists 
are able to provide supercomputers without extreme 
cooling, that will open the industry for on-premises 
computer simulations, however we expect this to 
occur, if so, in the next decade or so. 

We have recently seen a few quantum computers 
coming out, based on completely different 
architectures. Google in 2019 demonstrated quantum 
supremacy over supercomputers by utilizing a 54-qubit 
quantum computer called Sycamore that relied on 
superconducting metal loops architecture, Honeywell 
and IonQ have been developing quantum computing 
architectures based on trapped ions, Silicon Quantum 
Computing company has been developing quantum 
computers based on spin-based silicon qubits, and 
finally a Chinese company has been building photonic 
quantum computers, the so-called boson sampling 
machine.  

One of the major drawbacks of quantum 
computers, it is the fact that they need to be extremely 
stable, hence they are usually situated in well shielded 
basements and most importantly, they need to be 
cooled down to nearly zero temperatures. Hence, we 
anticipate that this computing industry will thrive in the 
near future with the usage of cloud-computing 
services, rather than on premises simulations, hence, 
we believe that our company, which specializes on 
cloud-computing services, will be at a step forward 
from our main competitors, which utilize mainly on-
premises computing.  

Regarding the algorithms that can handle quantum 
computing well, they are just emerging now, however, 
they are expected to get increased attention, as 
quantum computers become more readily available 
and new algorithms exist that make their technology 
more optimized.  

We expect that a breakthrough in quantum 
computing for computer aided simulations can only 
come not from quantum computing itself, but from a 
combination of Central Processing Unit, Graphical 
Processing Unit and Quantum Processing Unit, hence 
getting the best of all three technologies. This is similar 
to the currently known CPU-GPU systems, that we, as 
a company, believe and invest on. 

Some have attempted already to apply algorithms 
to solve partial differential equations using quantum 
computing. Finally, we are also looking at 
breakthrough/groundbreaking technologies that could 

http://www.jmest.org/
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potentially disrupt the market. Two such areas are the 
quantum computing and the presence of the TPUs 
from google.  

Regarding quantum computing, it is mainly used for 
optimization problems such as the solution of a maze 
and utilizes the ability of an electron to be in a 
superposition state in combination with quantum 
entanglement. There are currently no applications at 
which quantum computing could be applied, however 
there is scare evidence of small breakthroughs such 
as [9, 10].  

The humble opinion of the authors is that a 
breakthrough in CFD and other areas of computational 
science will probably originate from a combination of 
various technologies i.e. CPU, GPU and quantum 
computing. Due to the fact that quantum computers 
need a controlled environment such as minimal 
vibrations, extreme cooling, it is unlikely to see the 
release of quantum computers in the market for sale 
anytime soon, hence when available, they will be 
offered as cloud computing service (google does it). 
This is in accordance with the fact that GPUs can only 
work in the presence of CPUs.  

 

IV. TENSOR PROCESSING UNITS 

Regarding the Tensor Processing Units (TPUs) 
released by google for Artificial Intelligence on the 
cloud, it is a technology that is specialized and 
designed for tensor calculations and has very low 
precision capabilities, inadequate for CAE simulations 
and does not apply to CFD directly. However, since 
one of the main asks of this company is to incorporate 
AI solutions for its customers, we have high interest in 
TPUs and their applications to CAE simulations, since 
it may indirectly influence CAE simulations by 
predicting instantly flow simulations. This is why we 
intend to utilize GPU cards for the moment with an eye 
opened at Tensor capable devices such as NVIDIA-
V100 and TPUs from google. 

 

V. COMPUTATIONAL FLUID SIMULATION METHODS 

A. Finite Difference Scheme 

 This is a very well-known method in solving partial 
differential equations and it is highly popular, mainly 
due to the fact that it was the first one to come out, 
well known for its simplicity and ease to program. It 
uses a predefined mesh stencil to capture the 
geometry of the problem to be solved and utilizes 
Taylor series expansion to approximate the derivatives 
such as forward, backward and central differencing, 
both for time and space dependent derivatives. In 
many cases, the application of boundary conditions is 
implemented by using ghost cells, which are additional 
cells situated at the boundary of the domain.  

 Finite difference has proven reliable and robust and 
able to solve all three types of partial differential 
equations and it is widely used today, mainly in open 
source software. One of the major drawbacks of finite 
difference is that it cannot handle well non-uniform 
geometries and does not ensure monotonic, as well as 

conservative results. Hence, other methods have been 
implemented that deal with the weaknesses of the 
finite difference method, which are mainly incorporated 
into commercial expensive software. One method used 
is the finite element method, well known for its highly 
complicated mathematics since it uses weak and 
strong formulations of the problem and interpolation 
functions to approximate the solution. 

B. Finite Element Scheme 

 Finite element does very well in non-uniform 
geometries and there are linear, quadratic and higher 
order polynomial approximations for the shape 
functions. Also, there are nodal, as well as edge-based 
elements, which will do well, depending on the physics 
of the problem to be solved. In the solution of the 
Maxwell equations, edge elements are expected to be 
superior, since the electric field is continuous across 
the edges and it is able to capture this easily. Finite 
element is best in analyzing field simulations, where 
conservation is not so important and highly non-
uniform geometries exist. 

C. Finite Volume Scheme 

 The finite volume method has gained very high 
popularity in the fluid dynamics industry, since it is 
based in principle on the concept of conservation. 
Conservation is applied across the control volume and 
the inward and outward fluxes are calculated, 
enforcing conservation in the overall solution domain. 
It can be either a cell centered or vertex centered 
scheme and it can be applied to meshes that consists 
of multiple types of elements. Most of the proprietary 
software in fluid simulations utilize finite volume to 
capture flows.  

 One of the main advantages of finite volume is that 
it is not so highly dependent on the mesh quality of the 
simulation and that it can capture shock waves 
accurately and efficiently, using various proposed 
discretization schemes. The most popular scheme 
utilized in the shock wave simulation is the upwind 
method, which in the finite volume context, 
conservation is conserved, but at the same time, 
monotonicity is achieved.  

 The authors have utilized such a method, and have 
been able to produce excellent shock wave 
propagation results, in which we present in this paper.  

D.    Lattice Boltzmann Scheme 

 The Lattice Boltzmann method is a new method, 
recently being boosted by the advancements in GPUs 
by NVIDIA and their ability to be suited well for parallel 
applications. The LB is based on a mesoscopic 
analysis of the particles in a uniform regular mesh and 
has the ability to capture complex boundary conditions, 
easily and efficiently. It has advantages when used in 
turbulent flows and porous media, when compared to 
the other traditional methods in the macroscopic world. 
It encompasses a distribution function and collision-
streaming operators.  

 According to the dimensions solved, there are a 
number of predefined stencils, with the more accurate, 
being the one with higher number of possible 

http://www.jmest.org/
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directional velocities for the particles. It does extremely 
well in time-dependent diffusion problems such as 
heating in a slab bar. Usual stencils in 2D are D2Q4, 
D2W5, D2Q9 and in 3D, D3Q19 and D3Q27. The 
most difficult part is to find an accurate approximation 
for the collision operator. A thorough and detailed 
explanation of LB is depicted in a paper by Papadakis 
[11]. 

VI. FINITE VOLUME – TOTAL VARIATION DIMINISHING 

MATHEMATICAL FORMULATION 

The partial differential equation for a time-
dependent, convection diffusion dominated problem 
with a source term is given as follows: 

 𝜕𝜑

𝜕𝑡
+ ∇. (𝜑𝑢) − ∇. (𝐷∇𝜑) + 𝑘𝜑 = 𝑆𝜑 

 
 
(1) 

where u=u(x) is the velocity vector,  φ is the dependent 
scalar variable or conserved quantity, t is the time, D is 
the positive diffusion coefficient, k is the reaction 
coefficient and 𝑆𝜑  =𝑆𝜑 (x,t) is the prescribed source 

term for generating the φ property, where 𝑡 ∈ (𝑂, 𝑇) 
and x is the three-dimensional space and T is the total 
time.  

The computational domain is discretized in the 
context of finite volume in a group of non-overlapping 
tetrahedral control volumes 𝑉𝑖 ∈ 𝑉 , with i = 1,….N, 
which completely cover the whole three-dimensional 
domain as follows: 

 
⋃ 𝑉𝑖

𝑁
𝑖=1 , and 𝑉𝑖 ≠ ∅ ,and  𝑉𝑖  ∩ 𝑉𝑗 = ∅  if 𝑖 ≠ 𝑗. 

 

(2) 

If one conducts integration over the control volume 
V and in the time interval from t

n
 to t

n+1
, the time-

dependent convection-diffusion equation with a source 
term will result into the following equation: 

 ∫ ∫ (
𝜕𝜑

𝜕𝑡
+ ∇. (𝜑𝑢 − 𝐷∇𝜑) + 𝑘𝜑 − 𝑆𝜑)

𝑡𝑛+1

𝑡𝑛 𝑑𝑡𝑑𝑥 = 0
𝑉𝑖

  (3) 

Then, we conduct a time integration on the first 
term and the divergence theorem on the second term 
to get: 

 ∫ 𝜑(�⃗�, 𝑡𝑛+1)𝑑𝑥
𝑉𝑖

= ∫ 𝜑(�⃗�, 𝑡𝑛)𝑑�⃗�
𝑉𝑖

−

∫ ∫ �⃗⃗�𝑖(𝜈). (�⃗�(𝜈)𝜑(𝑣, 𝑡) −
𝜕𝑉𝑖

𝑡𝑛+1

𝑡𝑛

𝐷∇𝜑(𝑣, 𝑡))𝑑𝑣𝑑𝑡 − ∫ ∫ (𝑘𝜑(�⃗�, 𝑡)𝑑�⃗�𝑑𝑡)
𝑡𝑛+1

𝑡𝑛𝑉𝑖
+

∫ ∫ (𝑆𝜑(�⃗�, 𝑡)𝑑�⃗�𝑑𝑡)
𝑡𝑛+1

𝑡𝑛𝑉𝑖
  

 

 

(4) 

where �⃗⃗�𝑖(𝑣) is the unit normal vector of 𝑑𝑉𝑖. 

Using finite volume techniques, the cell average is 
approximated over 𝑉𝑖 at time t

n
 and t

n+1
 as follows: 

 𝜑𝑖
𝑛+1 =

1

|𝑉𝑖|
∫ 𝜑(�⃗�, 𝑡𝑛+1)𝑑𝑥

𝑉𝑖
  

𝜑𝑖
𝑛 =

1

|𝑉𝑖|
∫ 𝜑(�⃗�, 𝑡𝑛)𝑑𝑥

𝑉𝑖

 

 
 
 

(5) 

Now substituting the above equations into the other 
equations gives: 

 |𝑉𝑖|𝜑𝜄
𝑛+1 =

|𝑉𝑖|𝜑𝜄
𝑛 − ∫ ∫ �⃗⃗⃗�𝒊(𝜈). (�⃗⃗⃗�(𝜈)𝜑(𝑣, 𝑡) −

𝝏𝑽𝒊

𝒕𝒏+𝟏

𝒕𝒏

𝐷∇𝜑(𝑣, 𝑡))𝑑𝑣𝑑𝑡 − ∫ ∫ (𝑘𝜑(�⃗⃗⃗�, 𝑡)𝑑�⃗⃗⃗�𝑑𝑡)
𝒕𝒏+𝟏

𝒕𝒏𝑉𝑖
+

∫ ∫ (𝑆𝜑(�⃗⃗⃗�, 𝑡)𝑑�⃗⃗⃗�𝑑𝑡)
𝒕𝒏+𝟏

𝒕𝒏𝑉1𝑖
  

 
 
 
(6) 

Next, we isolate the convection and diffusion terms 
and apply the surface integral over the control volume. 
In the case of a tetrahedral finite volume mesh, the flux 
integral over a control volume is approximated by the 
summation of fluxes that passes through the four cell 
faces that define the control volume of the tetrahedral 
element. 

 ∫ ∫ �⃗⃗⃗�𝒊(𝜈). (�⃗⃗⃗�(𝜈)𝜑(𝑣, 𝑡) −
𝝏𝑽𝒊

𝒕𝒏+𝟏

𝒕𝒏

𝐷∇𝜑(𝑣, 𝑡))𝑑𝑣𝑑𝑡 =

∆𝑡 ∑ |𝐴𝑖,𝑗||�⃗⃗⃗�𝒊,𝒋| [(𝒗𝒊,𝒋)𝜑𝑖,𝑗,𝑓(𝑡𝑛) −𝟒
𝒋=𝟏

𝐷∇𝜑𝑖,𝑗,𝑓(𝑡𝑛) ]  

 
 
(7) 

where Ai,j is the surface of boundary 𝜕𝑉𝑖 between the 
two control volumes Vi and Vj. 

  𝜕𝑉𝑖 = ⋃ 𝐴𝑖,𝑗
4
𝑗=1  and 𝐴𝑖,𝑗 = 𝜕𝐴𝑖 ∩ 𝜕𝐴𝑗 

   
    (8) 

 Regarding the reaction term, one has: 

 
∫ ∫ (𝑘𝜑(�⃗�, 𝑡)𝑑�⃗�𝑑𝑡)

𝑡𝑛+1

𝑡𝑛
𝑉𝑖

= ∆𝑡|𝑉𝑖|𝑘𝜑𝜄
𝑛 

 
 

(9) 

and: 

 
∫ ∫ (𝑆𝜑(�⃗�, 𝑡)𝑑�⃗�𝑑𝑡)

𝑡𝑛+1

𝑡𝑛
𝑉1𝑖

= ∆𝑡|𝑉𝑖|𝑆𝜑(𝑥, 𝑡𝑛) 

 
(10) 

Now substituting equations (7, 9, 1066667777) into 
equation ( 6), one gets the finite volume formulation as 
follows: 

 𝜑𝜄
𝑛+1 =

𝜑𝜄
𝑛 −

∆𝑡

|𝑉𝑖|
∑ |𝐴𝑖,𝑗||�⃗⃗�𝑖,𝑗| [(𝑣𝑖,𝑗)𝜑𝑖,𝑗,𝑓(𝑡𝑛) −4

𝑗=1

𝐷∇𝜑𝑖,𝑗,𝑓(𝑡𝑛) ] − ∆𝑡(𝑘𝜑𝜄
𝑛 − 𝑆𝜑(𝑥, 𝑡𝑛))  

 

(11) 

 One needs to find a way to calculate the 
perpendicular face values at the mesh faces. Since 
TVD can only be ensured in 1

st
 order, one needs to 

utilize a high order accurate interpolation scheme, 
hence we have chosen to use a 2

nd
 order accurate 

interpolation scheme based on central and single 
sided upwind differencing. 

VII. STANDARD FLUX LIMITERS AND SWEBY DIAGRAMS 

   The Sweby diagram is a plot of the Flux limit 
value (FL) versus a ratio variable r as shown in Fig. 1 
and defined by: 

http://www.jmest.org/
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 𝑟 =
𝜑𝐶 − 𝜑𝑈

𝜑𝐷 − 𝜑𝐶
 

 
(12) 

where 𝜑𝐷  stands for the dependent variable 
downstream, 𝜑𝐶  stands for the dependent variable at 
the center and 𝜑𝑈  stands for the dependent variable 
upstream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1 Sweby diagram depicting Bean Warming and Lax-Wendroff 
limiters. 

 

The Sweby diagram of the minmod flux limiter is 
shown in Fig.2. The minmod limiter is defined as 
follows: 

 𝐹𝐿(𝑟) = max (0, min(2, 𝑟)) 
 

(13) 

Regarding the minmod limiter, it is considered to be 
dissipative, as well as a compressive limiter, however 
it performs fairly well and it is very simple to 
implement. However, the compressive Min-mod limiter 
may suffer from its slightly poor convergence [12]. 
Since minmod flux limiter applies the maximum 
possible  
limiting allowed within the second order TVD region 
and being rather dissipative, it smears out 
discontinuities.  

 

 

 

 

 

 

 

 

 

 

Fig.2 Sweby diagram depicting the minmod limiter. 

The Sweby diagram of the Superbee flux limiter is 
shown in Fig.3. The Superbee limiter is defined as 
follows: 

 𝐹𝐿(𝑟) = max (0, min(1,2𝑟) , min(2, 𝑟)) 
 
(14) 

Regarding the Superbee limiter, it applies the 
minimum limiting and maximum steepening 
possible to remain the TVD, therefore it suffers from 
excessive sharpening of slopes and has a general 
tendency to flatten the peaks and steepen the slopes. 
However, in our case, when used in conjunction with 
the modified face interpolated scheme, it produces 
excellent results, both for the peaks and smooth 
slopes. 

The Van Leer limiter is defined as follows: 

 
𝐹𝐿(𝑟) =

r + |r|

1 + |𝑟|
 

 
(15) 

The Sweby diagram of the Van Leer flux limiter is 
shown in Fig.4. Regarding the Van Leer limiter, it 
offers smooth variation and hence no abrupt changes 
and it is symmetric. Is clips the smooth peaks and it is 
unable to capture the steep gradients from shock 
waves, even though it captures well the peak values. 

 

 

 

 

 

 

 

 

Fig.3 Sweby diagram depicting the Superbee limiter. 

 

 

 

 

 

 

 

 

Fig.4 Sweby diagram depicting the Van Leer limiter. 

 

The Sweby diagram of the MUSCL flux limiter is 
shown in Fig.5. The MUSCL limiter is defined as 
follows: 

 𝐹𝐿(𝑟) = max (0, 𝑚𝑖𝑛(2𝑟, (𝑟 + 1)/2,2)) 
 

(16) 
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Regarding the MUSCL limiter, it is able to capture 
smooth slopes very well, however clips the peaks and 
it is unable to capture sharp edges.  

 

 

 

 

 

 

 

 

Fig.5 Sweby diagram depicting the MUSCL limiter. 

 

The Sweby limiter is defined as follows: 

 𝐹𝐿(𝑟) = max (0, 𝑚𝑖𝑛(𝛽𝑟, 1), 𝑚𝑖𝑛(𝑟, 𝛽))) 
 

(17) 

The Sweby diagram of the Sweby flux limiter is 
shown in Fig. 6. Regarding the Sweby limiter, in 
smoothed regions, it is able to capture well the slopes, 
however it clips the peak values. In the presence of 
shocks, the Sweby limiter, it is able to capture fairly 
well the slopes and the peak value, however not as 
accurately as the Superbee flux limiter. 

 

 

 

 

 

 

 

 

 

 

Fig.6 Sweby diagram depicting the Sweby limiter. 

 

VIII. MODIFIED FLUX LIMITERS AND SWEBY DIAGRAMS 

In this paper, the work of Hou et al. [13] is extended 
in three-dimensional coordinates in tetrahedral meshes 
and tested for its ability to capture the shocks and slow 
varying slopes in two-dimensions. The innovation of 
this scheme emanates from the fact that instead of 
limiting the centroid values between volume elements, 
it uses only the projections to the normal of the faces 
in the context of a 2

nd
  order scheme for accuracy. This 

is ideal since fluxes being transported across adjacent 
volume elements through common sharing faces only 
exchange flux in the normal to the face direction, 
hence a centroid based approach would be expected 
to produce non-accurate results, especially in the case 
of non-good quality meshes, where the centroid lines 
and normal to the faces lines are far apart. Hence, this 

face developed algorithm depicts advanced superiority 
on unstructured bad quality grids and it is also very 
fast since it uses only the predetermined projected 
distances along the normal boundary faces which are 
kept constant along the simulations, hence reduced 
times are possible. Due to this process, there is no 
expensive interpolation necessary during the 
simulation process. Additionally, the mesh size 
differences, as well as the face positions are also 
taken into consideration and has superior performance 
in both sharp and smooth fronts when compared to 
Darwish et al. [14], Li et al. [15] and Hou et al. [16].  

Darwish and Li calculate the face value between 
center and downwind element φcd with the method 
proposed by Bruner et al. [17], which uses the ratio of 
the central difference of u to the one-sided (or upwind) 
difference of u to calculate 𝑟𝐶,𝐷:  

 
𝑟𝐶,𝐷 =

(𝜑𝑐−𝜑𝑈)

(𝜑𝐷−𝜑𝑐)
 

 
 

(18) 

 
𝜑(𝐶, 𝐷) = 𝜑𝑐 +

1

2
𝐹𝐿(𝑟𝐶,𝐷)(𝜑𝐷 − 𝜑𝑐) 

 
 

(19) 

Hou et al. [16] utilize an alternative approach by 
utilizing weighted factors as follows: 

 
𝑟𝐶,𝐷 =

(𝜑𝑐−𝜑𝑈)

(𝜑𝐷−𝜑𝑐)
 

 
 

(20) 

 
𝜑(𝐶, 𝐷) = 𝜑𝑐 +

1

𝑅𝐶𝐷
𝐹𝐿(𝑟𝐶,𝐷)(𝜑𝐷 − 𝜑𝑐) 

 
 

(21) 

 
𝑅𝐶𝐷 =

(𝐷𝐶𝐹−𝐷𝐹𝐷)

𝐷𝐶𝐹
 

 
   (22) 

where 𝐷𝑈𝐶 and 𝐷𝐶𝐷  depict the distances between 
upwind and center point and centroid and downwind 
point, respectively.  

Most recent work by Hou et al. [13], which is the 
work adopted from the authors of this paper, is to use 
a modified better version of the above as follows: 

 
𝑟𝐶,𝐷 =

(𝜑𝑐−𝜑𝑐)/𝐷𝑈𝐶

(𝜑𝐷−𝜑𝑐)/𝐷𝐶𝐷
 

 
 

(23) 

 
𝜑(𝐶, 𝐷) = 𝜑𝑐 +

1

𝑅𝐶𝐷
𝐹𝐿(𝑟𝐶,𝐷)(𝜑𝐷 − 𝜑𝑐) 

 
 

(24) 

In order to avoid excessive interpolation in an 
unstructured mesh, instead of using the values at the 
exact U, D, C points, we use the central element 
values for simplicity. 
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Fig.7 Mesh diagram depicting the centered, downwind and upwind 
nodes. 

In this paper, we investigate the performance of a 
modified SUPERBEE limiter, used by Hou et al. as 
follows: 

 𝐹𝐿(𝑟) = max (0, min(𝑅𝑟, 1) , min(𝑟, 𝑅)) 
 
(25) 

which results in a Sweby diagram as shown in Fig. 8. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 Sweby diagram depicting the Superbee modified limiter. 

Instead of extending the centroid, we use the 
distances with reference to the normal line to the 
boundary face, hence making the algorithm more 
accurate, since finite volume TVD deals occurs in this 
direction and not along centroid directed lines. 

One needs to mention that in the case the dot 
product between the velocity from the central value 
and the normal to the surface of the control volume is 
negative, then one needs to reconsider which are the 
upwind, downwind and center points, since now the 
center point is transformed to downwind, the upwind to 
center point and one needs to look and find the upwind 
point (multiple candidates exist) for the new center 
point and ex-upwind point. This transformation of the 
points in the case of negative dot product between the 
velocity and the outward normal to the boundary face, 
can be predetermined beforehand in the beginning, 
hence not adding additional computational cost during 
the time looping process.  

The current time-dependent, convection-diffusion 
with source term equation solver has been developed 
in 3-dimensional tetrahedral mesh structures in a 
distributive computing environment. To minimize inter-

communication, the usage of ghost cells is further 
complicated by also the additional need to keep track 
of the transformation of points in the case that the dot 
product is negative. 

Near the boundaries, where there are possibilities 
that a downwind or an upwind point does not exist, and 
this occurs usually at the physical boundaries of the 
overall domain, the modified Superbee limiter is not 
used and the centroid value of the center element is 
used.    

 

IX. FINITE VOLUME – TVD SIMULATIONS 

In the finite volume formulation, optimization testing 
is performed in two-dimensions, rather than in three-
dimensions, since analysis is much easier and faster 
to be performed. It is expected that the same accuracy 
and flux limiting values will hold also in the three-
dimensional case as well.  Hence, we test our solver in 
the case of a two-dimensional geometry and 
specifically through a square box of size 200 m x 200 
m with three meshes created in NETGEN software. 
The square wave pulse has a starting point of (20 m, 
20 m) and spans a length and width of 50 m, and a 
height value of 1, whereas the rest of the mesh, a 
height value of 0.3. The wave propagates with a 
velocity of 1 ms

-1
 either in the x-direction only, y-

direction only or in both x and y-directions.   

We have tested the algorithm under various 
conditions. One case was to push the limit and see 
when results started being unstable. We have 
computed that approximately at a time step of 0.1 s the 
results were stable and accurate. Provided that we 
used speeds of 1 ms

-1
, then the distance travelled 

every time step was 0.1 s, hence indicating that for a 
tolerance of approximately 0.5 m, the rule of thumb is 
that the time step needs to be approximately ~ 0.5/0.1 
= 5 times less than the mesh tolerance to produce 
stable results. In all simulations, the wave was 
propagating and traversing across the whole mesh. It 
was found that the modified Van Leer scheme became 
unstable in the Mesh3 case, which we believe is a 
combination of the Van Leer scheme stability and of 
the mesh quality, whereas the modified Superbee 
scheme exhibited stable behavior at all times. Table 
No1. shows the data information for the three different 
meshes used such as node and element numbers, 
tolerance of the mesh and minimum element quality. 
Additionally, we depict the Mean Percentage Error 
(MPE) for the propagation of a square wave pulse for 
100 s, which is calculated as follows: 

   
MPE =

100

𝑛
∑

𝐴𝑛 − 𝐸𝑛

𝐴𝑛
𝑖<𝑛

 

 
 

   (26) 

where An is the analytical solution and En is the 
estimated solution and n is the number of mesh 
elements. 

 The very low values of the MPE error show that 
our results are in excellent agreement with the 
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analytical solution after 10,000-time steps and the 
shock can be captured, using the modified Superbee 
flux limiter. Furthermore, one can deduce that the 
solution converges, as finer meshes are used, which is 
expected according to the finite element mathematical 
formulation.  

 

Table No1: Meshes used in the simulation of finite volume-total 
variation diminishing technique 

 Nodes Elements Tolerance Minimum 
element 
quality 

Mean 
Percentage 

Error  

(MPE %)  
Square 
Pulse) 

Mesh 
No1 

46739 92672 0.746 0.808 0.024 

 

Mesh 
No2 

72532 144058 0.559 0.794 0.021 

Mesh 
No3 

109725 218216 0.488 0.800 0.020 

 

 

Since we thrive for the best, we tried to improve the 
simulation results even further, hence thereafter, we 
used the Mean Percentage Absolute Error (MPAE), 
which is calculated as the sum of the absolute value of 
the difference between analytical and estimated value 
divided by analytical value as follows: 

   
MPAE =

100

𝑛
∑ |

𝐴𝑛 − 𝐸𝑛

𝐴𝑛
|

𝑖<𝑛

 

 
 

   (27) 

to give as a more accurate sense of the error in the 
results.  

 In order to test also the behavior of our solver in 
diffused wave pulses, we conducted a test of a 
Gaussian pulse propagated in time along the x-
direction for 100 s. This was performed in steps of Δt = 
0.01 s and 10,000 steps. The simulation was 
performed for the three different meshes extracted 
from NETGEN software. The Gaussian pulse has the 
following characteristic equation:   

 
𝐺𝑃(𝑥, 𝑦) = 𝑎 e

−(𝑏2∗((𝑥𝑖𝑛𝑖𝑡−𝑥)2+(𝑦𝑖𝑛𝑖𝑡−𝑦)2)
2𝑐2  

 
(28) 

where a = 1, b = 0.4 , c = 50, xinit  = 46 m and yinit = 
46 m.  

Fig. 9 below shows the two-dimensional distribution 
of the propagated Gaussian pulse in the x-direction for 
a duration of 100 s and shows the ability of the 
modified Superbee limiter to capture and maintain the 
shape of the pulse through long calculations.  

Fig. 10 shows the one-dimensional comparison 
between analytical and actual solution for the 
propagation of a Gaussian pulse for a duration of 100 
s at 10,000 steps of Δt = 0.01 s using the modified 
Superbee limiter. We observe that in this case, there is 
some flattening at the top which emanates from the 
tendency of the modified Superbee limiter to sharpen 
and square edges, as well as minor differences at the 
bottom of the Gaussian pulse again from the 
sharpening tendency of the limiter.  

 

 

Fig. 9. Two-dimensional plot of a Gaussian plot propagated using the 
FV-TVD scheme for 100 s in the x-direction using the modified 
Superbee limiter.  

 

Fig. 10. One-dimensional plot depicting the comparison between 
analytical (red solid line) and actual solution (blue solid line) of a 
Gaussian plot propagated using the FV-TVD scheme for 100 s in the 
x-direction. 

 

Fig. 11. The Mean Percentage Absolute Error value - MPAE (%) is 
plotted vs time for a Gaussian pulse travelling in the x-direction for 
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100 s using the modified Superbee limiter for 3 different meshes – 
blue (MeshNo1), red (MeshNo2) and green (MeshNo3).  

Fig. 11 shows the MPAE for the three different 
meshes regarding the propagation of a Gaussian pulse 
in the x- direction for 100 s. It is shown that the error in 
all three cases,  grows linearly with time as the 
Gaussian pulse traverses through the domain. The 
finer the mesh, the initial offset is closer to 0, and more 
or less, all three cases follow a linear increase, each 
one with a different gradient, with the finer mesh 
having the smallest slope. The results are as 
expected, since the solution seems to converge as a 
finer mesh is used. 

   

Fig. 12. The Mean Percentage Absolute Error value - MPAE (%) is 
plotted vs time for a Gaussian pulse travelling in the x-direction for 
100 s using the modified Superbee and the modified Van Leer limiter 
for MeshNo1.  

Fig. 12 shows the MPAE comparison between the 
modified Superbee and Van Leer schemes in the 
propagation of a Gaussian pulse for a duration of 100 
s in the x-direction for the same mesh and shows that 
there is a significant difference between the results in 
favor of Van Leer modified scheme. However, it has 
been observed that the Van-Leer scheme may also 
cause random instabilities and cannot be used 
exclusively as a modified flux limiter. From the above 
results, it is obvious that the modified Superbee 
performs much better at shock wave like phenomena, 
whereas the Van-Leer performs better at diffused 
wave like phenomena, as expected from the nature of 
the schemes.  

Next, we tested something innovative, never been 
done before to our knowledge, the combination of 
modified Van-Leers and Superbee limiters to try and 
get the best of both worlds. The criterion when 
choosing to use the modified Van-Leer and the 

modified Superbee was the 𝜑(𝐶, 𝐷)  value of the 
modified Superbee scheme. Two limits were set for the 
simulations. The lower limit which was 0.1, meant that 
below this value, the modified Superbee would be 
used at all times to avoid any instabilities caused by 
the modified Van Leer flux limiter. Then we tested to 
find a lower modified Superbee limit, where the 
modified Superbee would kick in, to ensure to capture 
shock waves. In the range between lower and upper 

limit, the modified Van Leer was used that produced 
diffused results.  

Fig. 13 shows a direct comparison between the 
analytical and actual solution of the propagated 
Gaussian pulse and show to be in excellent 
agreement, provided that the wave has already 
propagated 10,000 steps. The criteria used was using 
the mixed modified Superbee and the modified Van 
Leer limiter for MeshNo3 using 0.1 and 1.9 limits vs 
the Van Leer scheme. It was shown that the MPAE 
error halved, which gave as confidence that our 
approach was in the right direction. Thereafter, we 
have run a series of tests and plotted dynamically the 

modified Superbee 𝜑(𝐶, 𝐷) of the wave and identified 
the limits of 0.1 and 0.8 as ideal. We have seen that 
the MPAE error was not changing significantly when 
compared to the 0.1 and 1.9 limits, however the 
capturing of the shape of the curve was significantly 
improved.  

Fig. 14 shows the two-dimensional plot for the 
propagation of a square wave pulse in the x-direction 
for a duration of 100 s at 10,000 steps of Δt = 0.01 s 
using the combined modified Superbee and Van Leer 
flux limiter using 0.1 and 0.8 limits. We observe that 
the proposed method is nearly ideal, preserving the 
shape of the square wave pulse, even after 10,000-
time steps, producing nearly ideal results. 

 Fig. 15 shows the one-dimensional plot depicting 
the comparison between analytical and actual solution 
of a square wave pulse propagated using the FV-TVD 
scheme for 100 s in the x-direction using the mixed 
modified Superbee and the modified Van Leer limiter 
for MeshNo3 using 0.1 and 0.8 limits. This graph 
shows clearly the ability of the proposed algorithm to 
capture shock waves in a nearly ideal way. 

 

Fig. 13. The Mean Percentage Absolute Error value - MPAE (%) is 
plotted vs time for a Gaussian pulse travelling in the x-direction for 
100 s using the mixed modified Superbee and the modified Van Leer 
limiter for MeshNo3 using 0.1 and 1.9 limits (red line) vs Van Leer 
(blue) scheme. 
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Fig. 14. Two-dimensional plot of a square wave plot propagated in 
the x-direction using the FV-TVD scheme for 100 s using the mixed 
modified Superbee and the modified Van Leer limiter for MeshNo3 
using 0.1 and 0.8 limits. 

. 

 

Fig. 15. One-dimensional plot depicting the comparison between 
analytical (red solid line) and actual solution (blue solid line) of a 
square wave pulse propagated using the FV-TVD scheme for 100 s 
in the x-direction using the mixed modified Superbee and the 
modified Van Leer limiter for MeshNo3 using 0.1 and 0.8 limits. 

 Fig. 16 shows the one-dimensional plot depicting 
the comparison between analytical and actual solution 
of the Gaussian wave pulse propagated using the FV-
TVD scheme for 100 s in the x-direction using the 
mixed modified Superbee and the modified Van Leer 
limiter for MeshNo3 using 0.1 and 0.8 limits. This 
graph shows clearly the ability of the proposed 
algorithm to capture diffused waves in a nearly ideal 
way. The fact that we are able to achieve a universal 
scheme with flux limiting values of 0.1 and 0.8 that can 
guarantee accurate results, both in diffused and shock 
phenomena, paves the way for the basis of very 
accurate Euler, Navier-Stokes and turbulent solvers, 
that could potentially establish KYAMOS software as 
market leader in the CAE market in the long run. 

   To conclude, we anticipate that if one uses even 
finer meshes, the algorithm will eventually converge 
and produce results that will be indistinguishable to 
the naked eye. 

 

 

Fig. 16. One-dimensional plot depicting the comparison between 
analytical (red solid line) and actual solution (blue solid line) of a 
Gaussian wave propagated using the FV-TVD scheme for 100 s in 
the x-direction using the mixed modified Superbee and the modified 
Van Leer limiter for MeshNo3 using 0.1 and 0.8 limits. 
 

X. CONCLUSIONS 

 KYAMOS software aims to realize the formulation, 
development, validation, and optimization of FV-TVD  
solvers that can be applied to engineering problems by 
utilizing high performance computing through cloud-
based distributed GPUs and state-of-the-art 
mathematical algorithms. One of the most challenging 
problems in computational fluid simulations is the 
ability of an algorithm to be able to capture a flow 
accurately and efficiently, without artificial numerical 
diffusion, loss of monotonicity and spurious 
oscillations. It is clearly shown that our suggested 
scheme overall behaves extremely well in analyzing 
both diffused and shock phenomena of the advective 
term and is expected to be a game changing solver for 
the simulation of multiphysics engineering phenomena. 
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