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Abstract—In this paper, the exponential 
stability for a class of uncertain nonlinear 
discrete-time systems is investigated. Based on 
the time-domain approach, a simple criterion is 
developed to ensure the exponential stability of 
such systems. An estimate of the exponential 
decay rate of such stable systems is also derived. 
Besides, the domain of attraction (DOA) of such 
stable systems can be accurately calculated. 
Finally, several numerical simulations are offered 
to verify the feasibility and correctness of the 
obtained results. 

Keywords—Discrete-time system; uncertain 
systems, exponential stability; domain of 
attraction 

I.  INTRODUCTION 

In recent years, various issues related to discrete 
systems, such as stability sub-system and controller 
design, have been investigated and discussed by 
experts and scholars. In addition, various analysis 
methods and design methodologies have been 
developed for discrete systems; see, for example, [1]-
[7] and the references therein. 

On the other hand, due to the inaccuracy of the 
system model or the difficulty of estimating the system 
parameters, it is necessary to use nonlinear systems 
as analysis models. At this time, the analysis and 
design of the uncertain nonlinear system become 
more critical. 

A better local stability analysis provides a criterion 
to ensure stability, as well as the scope of DOA. As 
we know, the DOA calculation of a locally stable 
system has always been a problem that researchers 
urgently need to overcome; see, for example, [8]-[11] 
and the references therein. 

In this paper, the exponential stability for a class of 
uncertain nonlinear discrete-time systems is studied. 
Based on the time-domain approach, a simple stability 
criterion is developed to guarantee the exponential 
stability of such uncertain systems. An estimate of the 
exponential decay rate of such stable systems is also 
derived. Furthermore, the domain of attraction of such 
stable systems can be precisely calculated. Finally, 

some numerical simulations are given to demonstrate 
the feasibility and correctness of the obtained results. 

II. PROBLEM FORMULATION AND MAIN RESULTS 

Nomenclature 

1 n    the n-dimensional real space 

x   the Euclidean norm of the vector 1 nx  

 

Consider the following uncertain nonlinear discrete-
time systems: 

      ,,1  Zkkxfkx  (1a) 

 ,)0( x  (1b) 

where 1 nx  is state vector, f  is uncertain vector-

valued function, and   represents the initial condition. 

Without loss of generality, we assume that 0x  is the 

equilibrium point of uncertain nonlinear system (1). 

 The domain of attraction and local exponential 
stability of the exponential decay rate of the system (1) 
are defined as follows. 

Definition 1:  

The origin of the system (1) is exponentially stable 

if there exist two positive numbers   and  , with 

10  , such that 

     Zkxkx k ,0   and   . 

In this case, the positive number   and the set of 

   xx n 1
 are often called the exponential 

decay rate and domain of attraction, respectively. 

 Now, we make the following assumption. 

(A1) There exist Np  and nonnegative constants 

paaa ,,, 21   such that   ,
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 Now we present a simple criterion to guarantee the 
exponential stability of the uncertain nonlinear 
discrete-time systems of (1). 

Theorem 1:  The origin of the uncertain system (1) 
with (A1) is exponentially stable provided that 

 11 a . (2) 

In this situation, the domain of attraction and 

exponential decay rate are     *1 :xx n
 

and   1  g , respectively, where *  is the unique 

positive zero of the following function 

   ,0,1:
1

1

1  




 xxaxg
p

i

i

i
 (3) 

and   is any positive number with *  . 

Proof: Clearly, the polynomial  xg  is increasing 

function for every 0x , in view of (A1). In addition, by 

Descartes' rule of signs [19] in (3) with (2), it is obvious 

that the polynomial equation   0xg  has a unique 

positive root, denoted as * . Moreover, it is easy to 

see that 

       ,,0,0,001 * xxgg  (4a) 

       ,,0,0 **  xxgg . (4b) 

This implies that       111100 *

1   ggga

. From (1) and (4) with (A1), it is easy to see that  
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Consequently, we conclude that 

        Zkxgkx
k

,01  and   0x . 

This completes the proof. □ 

 

III. NUMERICAL SIMULATIONS 

 Consider the following uncertain discrete-time 
system: 
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where   12
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kx  and 6,'  isbi

, are the 

uncertain parameters with  

 ,06.0,2.0,2.0 321  bbb   (6a) 

 ,1.0,06.0,2.0 654  bbb   (6b) 

Comparison of (5) with (1) and (A1), one has 

05.04 a , 06.03 a , 1.02 a , and 2.01 a . By (3), 

we obtain 

  8.01.006.005.0 23  xxxxg . 

Meanwhile, the unique positive solution of   0xg  is 

given by 9567.1*  . Consequently, by Theorem 1 

with the choice 0567.0 , the uncertain system (5) 

with (6) is locally exponentially stable with the 

guaranteed DOA of  9.1: *1   xx n
. 

Besides, the guaranteed exponential decay rate is 

given by   9495.019.1  g . Some state trajectories 

of the uncertain system (5) are depicted in Figures 1-3. 
It is known from the aforementioned simulation figures 
that when the initial values are within DOA, the 
uncertain system (5) with (6) is indeed an 
exponentially stable system. 

 

CONCLUSIONS 

In this paper, the exponential stability for a class of 
uncertain nonlinear discrete-time systems has been 
explored. Based on the time-domain approach, a 
simple criterion has been developed to ensure the 
exponential stability of such systems. An estimate of 
the exponential decay rate of such stable systems has 
also been derived. Meanwhile, the DOA of such stable 
systems can be accurately calculated. Finally, several 
numerical simulations have been presented to verify 
the feasibility and correctness of the obtained results. 
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Figure 1: Typical state trajectories of system (5)-(6) 

with  Tx 3.13.1)0(  . 

 

 
Figure 2: Typical state trajectories of system (5)-(6) 

with  Tx 6.08.1)0(  . 

 

 
Figure 3: Typical state trajectories of system (5)-(6) 

with  Tx 58.143.0)0(  . 
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