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Abstract—This paper describes the impacts of 
pressure gradient in a fluid flow through a straight 
square duct under the magnetic field and the duct 
is rotated counterclockwise about the 𝒚 − axis. It 
is an extended work of [10,11], which mainly aims 
at investigating pressure gradient effects with 
fixed magnetic (𝑴𝒈) and rotation (𝑻𝒓)  parameter. 

Following two cases have been considered to 
analyze the flow behaviors at aspect ratio 𝜸 = 𝟏. 𝟎 
when pressure gradient (𝑫𝒏)  varied from 5 to 
4000; 

Case 1:  𝑻𝒓 = 𝟏𝟎𝟎 and 𝟏𝟎𝟎 ≤ 𝑴𝒈 ≤ 𝟐𝟎𝟎𝟎. 

Case 2:  𝑻𝒓 = 𝟓𝟎𝟎 and 𝟏𝟎𝟎 ≤ 𝑴𝒈 ≤ 𝟐𝟎𝟎𝟎. 

Steady solutions have been obtained by using 
spectral method. It has been observed that the 
fluid density increases throughout the duct with 
the increment of pressure gradient and magnetic 
field while this effect is reduced significantly by 
enhanced rotation. At high pressure the 
streamlines of secondary flow become too 
compact to locate vortices in that flow due to 
increased fluid strength. Also, Centre of axial flow 
distribution gets shifted towards the right wall of 
the duct as strong pressure gradient is noticed on 
the left one 

Keywords—Dean number (Dn); Rotation 
parameter (Tr); Magnetic parameter (Mg); Spectral 
method. 

I.  INTRODUCTION

Flow through a rotating square duct in the presence of 

Magnetic field has magnificent usages in chemical, 

mechanical engineering and medical science. Fluid 

flow in a rotating straight duct is of interest because 

the secondary flows, in this case, are qualitatively 

similar to those in the stationary curved system (e.g. 

[1]). From the beginning of 20th century, many 

researchers have been studying the geostrophic 

vortexes and ocean currents generated by the earth 

rotations [17]. Introduction of rotary machines into 

various engineering and industrial applications such 

as cooling systems, electric generators, gas turbines, 

MHD (Magneto Hydro Dynamics) pumps and flow 

meter, MHD steam plants, MHD separation process in 

metal casting etc. have drawn the concentration of 

researchers around the globe to look into the flow 

structures within these rotating system with a view to 

derive the corresponding characteristics [2,17]. Both 

coriolis and centrifugal force, resulted from the 

rotation of straight duct have significant impact on the 

flow inside it [18].  

[4] found the presence of counter rotating double 

vortex in the secondary flow of the straight pipe while 

the revolution was weak. [5] studied secondary flow 

and showed how earth’s rotation distorts the axial 

velocity distribution. [9] established the longitudinal roll 

cells as a proof to the existence of instability. Later, 

[13] observed the flow through a rotating straight pipe 

and identified the four types of flow regime in the pipe. 

[12, 16] conducted numerical study to identify the 

features of laminar flow in a rotating rectangular and 

square duct.  Flow through a rotating square straight 

duct and curved duct were also analyzed numerically 

for both weak and strong convective inertia by [3]. 

Besides, [1] described the flow through a rotating 

straight pipe by using the Spectral method and 

observed the effects of rotation parameter on the 

square duct at different aspect ratio. [6] has simulated 

and studied the flow of an electricity conducting fluid 
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through a duct under the influence of an external 

magnetic field, where he placed three different 

obstacles (such as a circular and a square cylinder 

spanning over the full height of the duct and a square 

cylinder spanning over the half height of the duct) 

inside the duct. In an insulated and non-uniformly 

magnetized rectangular duct [15] performed 

computational and analytical investigations for the 

inertia less and inertial flows. [10] have created a 

numerical solution for the flow through a rotating 

rectangular straight duct in the presence of magnetic 

field and they found that flow strength weakens at 

high magnetic field where the center of the flow is 

displaced. In addition, [11] found that most axial flow 

moves to the centre from the wall and creates ring 

shape because of high magnetic parameter and large 

Taylor number in a rotating straight duct with large 

aspect ratio. [7] developed a physical mechanism 

regarding the formation of the secondary flow in a 

square duct and analyzed the momentum balance. 

[14] discussed the fluid flow through a rotating system 

under the presence of magnetic field and hall current 

but specified role of pressure gradient and rotation on 

the entire system was not clarified.  

 

Therefore, the main aim of this study is to investigate 

the effects of low to moderate pressure gradient on 

the fluid flow in a straight square duct in the presence 

of Magnetic field and two different Taylor numbers.  

 

II. GOVERNING EQUATION [11] 

Let’s consider laminar fluid flow of an incompressible 

viscous fluid through a straight duct with the steady 

rotation (Ω) in the presence of magnetic field. Also, 

assume that the length of the duct cross-section is 2a 

where a is half of the width of the duct. A Cartesian 

co-ordinate system (x′, y′, z′)  is considered to trace 

the movement of fluid particles in the duct. A constant 

angular velocity 𝛀 = (0, −Ω, 0)  revolves the duct 

around y′ - axis and the pressure gradient −
∂p′

∂z′ = G 

guides fluid flow through the centerline of it. Let 

dimensional velocity components along 

x′, y′, z′ directions are represented by 𝐮′, 𝐯′, 𝐰′ 

respectively where 𝐮, 𝐯, 𝐰  are used as the 

dimensionless ones along x, y, z direction respectively. 

Now the modified pressure which is a combination of 

gravitational and centrifugal force potentials is 

denoted by p′. If the fluid velocity 𝐪 solves the Navier-

Stokes equation, the continuity equation can be 

written as follows: 

                                𝛻 ⋅ 𝒒 = 0                                         (1) 

𝜕𝐪

𝜕𝑡
+ 𝐪(𝐪 ⋅ 𝛻) = 𝑭 −

1

𝜌
(𝛻 ⋅ 𝐩) + 𝜐𝛻𝟐𝒒 

                                                             +2(𝜴 ∧ 𝒒′) (2) 

 

 

As fluid travels through the electric and magnetic field 

in the rotating straight square duct the equation (2) 

becomes, 

𝜕𝐪

𝜕𝑡
+ 𝐪(𝐪 ⋅ 𝛻) = −

1

𝜌
(𝛻 ⋅ 𝐩) + 𝜐𝛻𝟐𝒒 + 2(𝜴 ∧ 𝒒′) 

                                                           +
1

𝜌
(𝐉 ∧ 𝐁)                   (3) 

where 𝐉  = electric current density, B = magnetic 

induction, 𝜴  = angular velocity and 𝜐  = kinematic 

viscosity, 𝒒′ = velocity vector, 𝐩 = fluid pressure. 

Without the presence of electric field, the generalized 

Ohm’s law takes the following form: 

𝑱 +
𝜔𝒆𝜏𝑒

𝑯0
𝑱 ∧ 𝑩 = 𝝈′(𝜇𝑒𝐪 ∧ 𝑯 +

𝟏

𝒆𝒏𝒆
𝛻𝒑𝑒)        (4) 

where 𝜔𝑒= cyclotron frequency, 𝜏𝑒= electron collision, 

𝒆 = electric charge, 𝒏𝒆= number of density electron, 

𝑯 = Magnetic field strength, 𝜇𝑒 = magnetic 

permeability, 𝜎′ = electrical conductivity. 

Ignoring hall current in the equation (4) we get, 

𝑱 = 𝜎 ′(𝜇𝑒𝐪 ∧ 𝑯)[∴ 𝜔𝑒𝜏𝑒 = 0 and 𝐩𝑒 = 0]    (5) 

 

For boundary conditions we set 𝑢′ = 𝑣′ = 𝑤′ = 0and 

fully developed flow imposes all 𝑧′derivatives to zero 

except the pressure derivative. The duct inside is free 

from body force and the steady flow implies 
𝜕𝑢′

𝜕𝑡
=

𝜕𝑣′

𝜕𝑡
=

𝜕𝑤′

𝜕𝑡
= 0. Here the axis of rotation and span of the 

square duct are normal to each other.  

Now equations (1), (2), (3), (4) imply, 

𝑢′
𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
= −

1

𝜌

𝜕𝑝′

𝜕𝑥′
+ 𝜐 (

𝜕2𝑢′

𝜕𝑥′2
+

𝜕2𝑢′

𝜕𝑦′2
) 

                                              −2𝛺𝑤′ −
𝜎′𝐵0

2

𝜌
𝑢′                  (6) 

 

𝑢′
𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
= −

1

𝜌

𝜕𝑝′

𝜕𝑦′
+ 𝜐 (

𝜕2𝑣′

𝜕𝑥′2
+

𝜕2𝑣′

𝜕𝑦′2
) 

                                   −
𝜎′𝐵0

2

𝜌
𝑣′                             (7) 

 

𝑢′
𝜕𝑢′

𝜕𝑥′
+ 𝑣′

𝜕𝑢′

𝜕𝑦′
= −

1

𝜌

𝜕𝑝′

𝜕𝑧′
+ 𝜐 (

𝜕2𝑤′

𝜕𝑥′2
+

𝜕2𝑤′

𝜕𝑦′2
) 

                                              +2𝛺𝑢′                              (8) 
 

                                 
𝜕𝑢′

𝜕𝑥′ +
𝜕𝑣′

𝜕𝑦′ = 0                 (9) 

 

Now, using the following normalized variables, 

𝑢′ =
𝜐

𝑎
𝑢;   𝑥′ = 𝑥𝑎;   𝑝′ =

𝜐2

𝑎2 𝜌𝑝 ;  𝑣′ =
𝜐

𝑎
𝑣;   𝑦′ = 𝑦𝑎;    

𝑤′ =
𝜐

𝑎
𝑤;  𝑧′ = 0 

where dimensional quantities are represented by the 

variables with prime, we obtain, 
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𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
) 

                                                 −𝑇𝑟𝑤 − 𝑀𝑔𝑢    (10) 

               𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2) − 𝑀𝑔𝑣      

(11) 

                𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
= 𝐷𝑛 + (

𝜕2𝑤

𝜕𝑥2 +
𝜕2𝑤

𝜕𝑦2) + 𝑇𝑟𝑢        

(12) 
 

Here magnetic force number 𝑀𝑔 = 𝜎′𝜇𝑒𝑎2𝐻0
2 , rotation 

parameter 𝑇𝑟 = 2 (
𝑎2𝛺

𝜐
) , pressure driven parameter 

𝐷𝑛 =
𝐺𝑎3

𝜌𝜐2  and  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0  is the continuity equation. 

The boundary condition deduces 𝑥 = ±1, 𝑦 = ± (
𝑎

𝑎
) =

±1 and aspect ratio 𝛾 = 1 since square cross- section 

is under consideration. Note that the following 

equations will be derived as generalized ones in terms 

of 𝛾 and during simulation this 𝛾 will be replaced by 

the value 1.   Let’s introduce a new variable �̄� = (
𝑦

𝛾
) 

and assume that 𝑢 = − (
𝜕𝜓

𝜕𝑦
) and 𝑣 = (

𝜕𝜓

𝜕𝑥
) satisfy the 

continuity equation (9). 

 

Therefore, the basic equation for 𝜓  and 𝑤  can be 
written as: 

𝜕4𝜓

𝜕𝑥4
+

2

𝛾2

𝜕4𝜓

𝜕�̄�2𝜕𝑥2
+

1

𝛾4

𝜕4𝜓

𝜕�̄�4
= −

1

𝛾3

𝜕𝜓

𝜕�̄�

𝜕3𝜓

𝜕�̄�2𝜕𝑥
 

−
1

𝛾

𝜕𝜓

𝜕�̄�

𝜕3𝜓

𝜕𝑥3
+

1

𝛾3

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕�̄�3
+

1

𝛾

𝜕𝜓

𝜕𝑥

𝜕3𝜓

𝜕𝑥2𝜕�̄�
 

                 −
1

𝛾

𝜕𝑤

𝜕�̄�
𝑇𝑟 + (

1

𝛾2

𝜕2𝜓

𝜕�̄�2 +
𝜕2𝜓

𝜕𝑥2 ) 𝑀𝑔                 (13) 

and  

𝜕2𝑤

𝜕𝑥2
+

1

𝛾2

𝜕2𝑤

𝜕�̄�2
= −

1

𝛾

𝜕𝜓

𝜕�̄�

𝜕𝑤

𝜕𝑥
+

1

𝛾

𝜕𝜓

𝜕𝑥

𝜕𝜓

𝜕�̄�
 

                                                   −𝐷𝑛 +
1

𝛾

𝜕𝜓

𝜕�̄�
𝑇𝑟                        (14) 

For 𝜓 and 𝑤 the boundary conditions are given by the 

following two equations, 

𝑤(±1, �̄�) = 𝑤(𝑥, ±1) = 𝜓(±1, �̄�) = 0 

(
𝜕𝜓

𝜕𝑥
) (±1, �̄�) = 𝜓(𝑥, ±1) = (

𝜕𝜓

𝜕�̄�
) (𝑥, ±1) = 0 

𝑄′ = ∫ ∫ 𝑤𝑑𝑥′𝑑𝑦′ = 𝜐
𝑎

−𝑎

𝑎

−𝑎
𝑎𝑄  is the dimensional total 

flux through the straight duct where the non- 

dimensional flux 𝑄 = ∫ ∫ 𝑤𝑑𝑥𝑑�̄�
1

−1

1

−1
. 

 

III. SOLUTION METHEDOLOGY  [11] 

Numerical methods back up the foundation of this 

work. The Spectral method produces the solution and 

polynomial functions generated expansion creates a 

steady or un-steady solution. Assuming the flow along 

axial direction as symmetric one and using series of 

Chebyshev polynomial in the 𝑥 and �̄�  directions 

expansion functions  𝜑𝑛(𝑥) and 𝜓𝑛(𝑥) are expressed 

as  

 

𝜑𝑛(𝑥) = (1 − 𝑥2)𝑇𝑛(𝑥)        (15) 
 

𝜓𝑛(𝑥) = (1 − 𝑥2)2𝑇𝑛(𝑥)        (16) 
 

where n-th order first kind Chebyshev polynomial 

𝑇𝑛(𝑥) = 𝑐𝑜𝑠( 𝑛 𝑐𝑜𝑠−1( 𝑥)). 

Now using 𝜑𝑛(𝑥) and 𝜓𝑛(𝑥), the expansions of 𝑤(𝑥, �̄�) 

and 𝜓(𝑥, �̄�) take the following forms: 

𝑤(𝑥, �̄�) = ∑ ∑ 𝑤𝑚𝑛𝜑𝑚(𝑥)𝑁
𝑛=0 𝜑𝑛(�̄�)𝑀

𝑚=0      (17) 
 

𝜓(𝑥, �̄�) = ∑ ∑ 𝜓𝑚𝑛𝜓𝑚(𝑥)𝑁
𝑛=0 𝜓𝑛(�̄�)𝑀

𝑚=0      (18) 
 

where truncation numbers along 𝑥  and �̄�  directions 

are denoted by  𝑀 and 𝑁 respectively. The application 

of the Collocation method [8] in 𝑥  and �̄�  directions 

produce a set of nonlinear differential equations 

involving 𝑤𝑚𝑛  and 𝜓𝑚𝑛 . Let’s take (𝑥𝑖 , �̄�𝑗)  as 

collocation points where, 

𝑥𝑖 = 𝑐𝑜𝑠 [𝜋 (1 −
𝑖

𝑀+2
)], (𝑖 = 1,2. . . 𝑀 + 1)  (19) 

 

�̄�𝑗 = 𝑐𝑜𝑠 [𝜋 (1 −
𝑗

𝑁+2
)], (𝑗 = 1,2. . . 𝑁 + 1)  (20) 

 
and the extended non-linear differential equations are, 

(𝐴1 + 𝐵1 + 𝐶1)𝑤 = 𝑁1(𝑤𝑚𝑛, 𝜓𝑚𝑛)               (21) 
 

(𝐴2 + 𝐵2 + 𝐶2)𝜓 = 𝑁2(𝑤𝑚𝑛, 𝜓𝑚𝑛)              (22) 
 

In the above two equations (21) and (22); 𝐴1, 𝐵1, 𝐶1 

and 𝐴2, 𝐵2, 𝐶2  are (𝑀 + 1)(𝑁 + 1) dimensional square 

matrices,  𝑤 = (𝑊00. . . . 𝑊𝑀0. . . . 𝑊0𝑁. . . . 𝑊𝑀𝑁) ,  𝜓 =

(𝜓00. . . . 𝜓𝑀0. . . . 𝜓0𝑁. . . . 𝜓𝑀𝑁)  and 𝑁1, 𝑁2  are the non-

linear operators. Now the following non-linear 

algebraic equations are solved by the Newton-

Raphson method. 

 
 

𝑤(𝑝+1) = 𝐶1
−1𝑁1(𝑤𝑚𝑛

(𝑝)
, 𝜓𝑚𝑛

(𝑝)
)         (23) 

 

𝜓(𝑝+1) = 𝐶2
−1𝑁2(𝑤𝑚𝑛

(𝑝)
, 𝜓𝑚𝑛

(𝑝)
)        (24) 

 

where 𝑝  has been used for iteration number. The 

usage of arc-length method eliminates the complexity 

near the inflection points of steady solution. Using ‘𝑆’ 

as a symbol of arc-length the arc-length equation 

becomes, 

 

∑ ∑ [(
𝑑𝑤𝑚𝑛

𝑑𝑠
)

2

+ (
𝑑𝜓𝑚𝑛

𝑑𝑠
)

2

] = 1𝑁
𝑛=0

𝑀
𝑚=0         (25) 

The Newton-Raphson method uses equations (23) 

and (24) to solve the above equation. Beginning with 
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𝑠, an initial guess is made at 𝑠 + 𝛥𝑠 by dint of following 

two equations. 

𝑤𝑚𝑛(𝑠 + 𝛥𝑠) = 𝑤𝑚𝑛(𝑠) +
𝑑𝑤𝑚𝑛(𝑠)

𝑑𝑠
𝛥𝑠        (26) 

 

𝜓𝑚𝑛(𝑠 + 𝛥𝑠) = 𝜓𝑚𝑛(𝑠) +
𝑑𝜓𝑚𝑛(𝑠)

𝑑𝑠
𝛥𝑠        (27) 

An iteration is performed to generate a correct 

solution at 𝑠 + 𝛥𝑠. Now for the convergence let’s take 

sufficiently small ∈𝑝 (∈𝑝< 10−8) where, 

∈𝑝= ∑ ∑ [(𝑤𝑚𝑛
(𝑝+1)

− 𝑤𝑚𝑛
(𝑝)

)2 + (𝜓𝑚𝑛
(𝑝+1)

− 𝜓𝑚𝑛
(𝑝)

)
2

]𝑁
𝑛=0

𝑀
𝑚=0  

                               (28) 
 

IV. RESULT AND DISCUSSIONS 

In this study our considerable situation includes the 

observation of flow structures of the laminar flow of a 

pressurized incompressible viscous fluid through a 

magnetized straight square duct which is rotating at a 

constant angular velocity 𝜴 . Without rotation, there 

would have been a unidirectional velocity field. To 

explore the impact of pressure gradient on the flow, 

we have the pressure parameter 𝐷𝑛 (Dean Number) 

changed continuously while magnetic field parameter 

𝑀𝑔, rotation parameter 𝑇𝑟 (Taylor Number) and aspect 

ratio remained constant. That’s why the following two 

cases are taken into account where both had an 

aspect ratio 𝛾 = 1.  

Case 1: 𝑇𝑟 = 100 and 𝑀𝑔 = 100, 500, 1000, 2000. 

Case 2: 𝑇𝑟 = 500 and 𝑀𝑔 = 100, 500, 1000, 2000. 

Coriolis force, a resultant of duct rotation is the 

generator of secondary flow for both the cases [3]. 

Two types of secondary flow are expected, one is in 

the anti-clockwise direction (𝜓 ≥ 0) and the other is 

following the clockwise direction (𝜓 < 0 ). Also, the 

contour plotting of axial flow distribution through the 

square duct under the accounted cases need to be 

visualized for better anatomy. 

 

Case 1  

Firstly, we investigate the streamlines of secondary 

flow and contour plotting of axial flow.  For the 

following four figures at 𝑇𝑟 = 100 and streamlines of 

the secondary flow is at the top and contour plot of 

axial flow is at the bottom. At the top part, solid lines 

represent the anti-clockwise secondary flow whereas 

the dotted ones are for the clockwise streamlines.  

 

 

Figure 𝟏 . Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 100 

and 𝑇𝑟 = 100  under the specified 𝐷𝑛 (Placed at the 

very bottom). 

 

 
 

 

Figure 𝟐 . Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 500 

and 𝑇𝑟 = 100  under the specified 𝐷𝑛 (Placed at the 

very bottom). 

 

 
 

 

Figure 𝟑 . Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 1000 

and 𝑇𝑟 = 100  under the specified 𝐷𝑛 (Placed at the 

very bottom) 

 

Figure  𝟒 . Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 2000 

and 𝑇𝑟 = 100  under the specified 𝐷𝑛 (Placed at the 

very bottom). 

 

𝐷𝑛=14         𝐷𝑛=24          𝐷𝑛=100           𝐷𝑛=400      𝐷𝑛=700          
𝐷𝑛=1000 

𝐷𝑛=14         𝐷𝑛=24            𝐷𝑛=100            𝐷𝑛=400       𝐷𝑛=700      
𝐷𝑛=1000 

𝐷𝑛=14               𝐷𝑛=24          𝐷𝑛=100          𝐷𝑛=400          𝐷𝑛=700       
𝐷𝑛=1000 

𝐷𝑛=14               𝐷𝑛=24          𝐷𝑛=100          𝐷𝑛=400          𝐷𝑛=700       
𝐷𝑛=1000 
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From each of the above figures (Figure 1 - Figure 4) 

we notice the existence of two counter rotating 

vortices in the secondary flow at lower pressure and 

they start disappearing at higher pressure (𝐷𝑛 > 100). 

Also, the center of axial flow distribution is forced 

towards the right wall of the duct and it doesn’t get 

distorted from its circular ring shape. Gradual 

increment of darkness with pressure in each figure 

bears a sign of enhanced fluid density i.e. flow 

strength. To justify this, allow us to investigate the flux 

variations as the pressure changes. 

 
Figure 5. Steady solution curve for 𝛾 = 1, 𝑇𝑟 =

100, 𝑀𝑔 = 100, 500, 1000, 1500 and 0 ≤ 𝐷𝑛 ≤ 4500. 

Case 2 

Also, for this case the following four graphs have 

same pattern as in Case 1 i.e. streamlines of 

secondary flow is at the top and contour plot of axial 

flow is at the bottom. For this case rotation parameter 

𝑇𝑟 = 500 has been used. 

 

 
 

 
Figure 6. Streamlines of secondary flow (top) and 
Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 100 

and 𝑇𝑟 = 500  with specified 𝐷𝑛 (Placed at the very 
bottom). 
 

 

 
 
 

Figure 7. Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 500 

and 𝑇𝑟 = 500  with specified 𝐷𝑛 (Placed at the very 
bottom). 
 

 
 

 

Figure 8. Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 1000 

and 𝑇𝑟 = 500  under with specified 𝐷𝑛 (Placed at the 

very bottom). 

 

 
 

 

Figure 9. Streamlines of secondary flow (top) and 

Contour plotting of Axial flow (bottom) for 𝑀𝑔 = 2000 

and 𝑇𝑟 = 500  with specified 𝐷𝑛 (Placed at the very 

bottom). 

 

The four figures (Figure 6 - Figure 9) also have shown 

that for lower pressure in the plane which is normal to 

the axis of rotation, the stream lines of the secondary 

flow contain two counter rotating vortices and the 

increased pressure moves the center of these vortices 

in the vicinity of the upper and lower wall. When the 

pressure increases significantly ( 𝐷𝑛 > 100 ) 

streamlines of secondary flow become too dense to 

locate any flow pattern. From the contour plots 

generated for 𝑀𝑔 = 100 and 500,  distorted center of 

axial flow distribution is noticed as the pressure 

increases whereas other two cases (for 𝑀𝑔 =

1000 and 2000 ) maintain circular ring shape at the 

center. Besides, in the above four figures (Figure 6 - 

Figure 9) center of axial flow is shifted towards the 

right wall of the duct as strong pressure gradient is 

dominant on the left wall. For  𝑇𝑟 = 500 , in all the 

graphs darkness in the streamlines plotting and 

contour plotting increases but at a lower rate than the 

Case 1. This result indicates lower fluid strength than 

the previous case as pressure changes. And this 

𝐷𝑛=14         𝐷𝑛=24        𝐷𝑛=100         𝐷𝑛=400      𝐷𝑛=700      𝐷𝑛=1000 

𝐷𝑛=14         𝐷𝑛=24        𝐷𝑛=100         𝐷𝑛=400      𝐷𝑛=700      𝐷𝑛=1000 

𝐷𝑛=14           𝐷𝑛=24        𝐷𝑛Dn=100         𝐷𝑛=400      𝐷𝑛=700      
𝐷𝑛=1000 

𝐷𝑛=14          𝐷𝑛=24        𝐷𝑛=100            𝐷𝑛=400         𝐷𝑛=700        
𝐷𝑛=1000 
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statement is backed by the following graph of Dean 

Number versus flux when rotation parameter is 500. 

 

 
Figure 10. Steady solution curve for 𝛾 = 1, 𝑇𝑟 =

500, 𝑀𝑔 = 100, 500, 1000, 1500 and 0 ≤ 𝐷𝑛 ≤ 4500. 

 

Figure 10 explains that the flux is increasing with 
pressure but if we compare Figure 5 and Figure 10 we 
see that fluid strength is lower in the second case. To 
find the reason behind this change we need to identify 
the role of rotation and magnetic field. In order to 
know the influence of magnetic field the following 
graph is drawn by keeping rotation and pressure fixed 
allowing magnetic parameter to change. 
 

 
Figure 11. Change of Flux with 𝑀𝑔 where 𝐷𝑛 = 500. 

 

The Figure 11 shows that for the same rotation, as the 

magnetic parameter increases so does the flux. Now 

to know the impact of rotation, analyzing Figure 11 it 

becomes vivid that flux gets reduced by the increment 

of rotation. For instance, let 𝑀𝑔 = 100, and pressure 

𝐷𝑛 = 500 then for 𝑇𝑟 = 100 the flux value is 1.7845 ×

102 whereas for 𝑇𝑟 = 500 it becomes 94.13 . So, it can 

be concluded that enhancement of rotation is 

responsible for the reduction of streamline density in 

the second case. With a specific magnetic field and a 

significantly large pressure, if we increase the number 

of rotations in the square duct the flux will decrease, 

the darkness in the figures (Figure 1- Figure 4, Figure 

6- Figure 9) of stream lines will get lesser and the 

vortices will be more traceable. This above statement 

can be supported by the data and figures in [10,11] 

Furthermore, to verify, whether the obtained 

characteristics remain same for higher pressure we 

have generated more contour plot of axial flow profile 

only because the streamlines get too dense to identify 

any flow pattern for the secondary flow. The axial 

velocity distribution analysis has been done for the 

previous two cases with higher pressure  𝐷𝑛 =

1500, 2000, 2500, 3000, 3500, 4000. 

First take higher pressure added Case 1 into 

consideration. 

 
 

 

Figure 12. Axial flow distribution from the top for 

𝑀𝑔 = 100, 500, 1000, 2000  respectively with  𝑇𝑟 = 100 

and specified 𝐷𝑛(Placed at the very bottom). 

 

As in Case 1 the center here is still in extant with 

circular ring shape and moved in the direction of the 

right wall by these extreme pressures. And also, the 

fluid strength is increasing gradually with pressure. 

Now for the Case 2 with higher pressure let’s observe 

the following figure 

 
 

 

𝐷𝑛=1500     𝐷𝑛=2000     𝐷𝑛=2500    𝐷𝑛=3000    𝐷𝑛=3500      𝐷𝑛=4000 

𝐷𝑛=1500     𝐷𝑛=2000     𝐷𝑛=2500    𝐷𝑛=3000    𝐷𝑛=3500      𝐷𝑛=4000 
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Figure 13. Axial flow distribution from the top for 

𝑀𝑔 = 100, 500, 1000, 2000  respectively with  𝑇𝑟 = 500 

and specified 𝐷𝑛(Placed at the very bottom). 

 
At these immense pressures the distorted center is 

yet visible for 𝑀𝑔 = 100, 500  as similar happened in 

Case 2 analysis and it gets closed to the right wall by 

the pressure. Fluid density also increases. 

 

V.  CONCLUSION  

A numerical study about the impact of pressure 

gradient on the incompressible fluid flow passing 

through a magnetized rotating straight square duct 

has been conducted. The steady solution was 

obtained for every considered case. At the straight 

square duct two counter rotating vortices exists in the 

secondary flow when the pressure is low. The flow 

strength through the duct increases with pressure 

enhancement. With significant increment in pressure 

streamlines become so integrated that vortices in the 

secondary flow remain unidentified. Also, Magnetic 

field stimulates the flux in the duct. The center of axial 

flow distribution is moved near the right wall of the 

duct as the pressure gradient increases. The impact 

of pressure gradient on the flow can be reduced by 

increasing the rotation. 
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