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Abstract—This paper provides additional insight 
into Canadian Power Engineer’s advancement 
intention through the mechanism of 
complementary artificial neural network (ANN) 
analysis. An original 2018 dissertation 
investigated the knowledge gap concerning 
factors influencing Canadian power engineers’ 
decision to pursue advanced certification in the 
Canadian provinces of British Columbia and 
Alberta. The dissertation employed correlational, 
multiple linear regression (MLR), and ordinal 
logistic regression (OLR) analysis. The focus of 
the current paper is to compare the 2018 MLR and 
OLR methods and results, with artificial neural 
network (ANN) analysis using the same 2018 
power engineering dissertation dataset. Moving 
forward the original dataset used for the 2018 
dissertation study is referenced as the ‘power 
engineering dataset.’ The original 2018 analytical 
results obtained through MLR and OLR analyses 
are compared with the results of the 2020 ANN 
applications of multiplayer perceptron (MLP) and 
radial basis function (RBF). Specifically, standard 
regression is evaluated against ANN regression 
methods. The original dissertation found that the 
independent variables (IVs) of time commitment, 
responsibility, and elapsed time significantly 
influenced the dependent variable (DV) of 
advancement intention. The three remaining IVs 
that did not exhibit significant relationships with 
the DV were educational support, peer appraisal, 
and locus of control (LOC). ANN analysis 
generated comparable results to those obtained in 
the original dissertation study. The multilayer 
perceptron (MLP) and radial basis function (RBF) 
applications denoted that time commitment (TIME) 
had the greatest importance concerning outcome 
prediction, followed by responsibility (RESP), 
elapsed time (ELAPSED), education (EDUC), peer 
appraisal (PEER), and locus of control (LOC). The 
comparative quantitative analysis provided 
objective empiricism regarding factors influencing 
certification advancement, while implicitly 
recognizing the human-based qualitative roots of 
decision-making.  

Keywords—Canadian power engineering, 
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I. INTRODUCTION 

Complementary ANN analysis was conducted in 
2020 on the power engineering dataset generated for 
the original 2018 dissertation titled: Factors Influencing 
Canadian Power Engineers’ Decision to Pursue 
Advanced Certification [1]. ANN analytical results were 
compared with the original 2018 dissertation 
regression results. The studys’ dual purpose was to: 
(a) compare standard regression and ANN methods; 
and (b) to retest the original data.   

Power engineering certification in Canada 
comprises a hierarchical, graduated system available 
to candidates of all ages. The 2018 dissertation offered 
insight into the knowledge gap related to factors 
influencing Canadian power engineers’ decision to 
pursue advanced certification. The purpose of the 
study was to investigate potential variable relationships 
between power engineers’ intent to upgrade to 
advanced certification levels (DV), and factors 
influencing the advancement decision (IVs). The 
original research methodology comprised a 
quantitative correlational design, in which linear and 
logistic regressions employing a modified Bonferroni 
equivalent alpha were utilized. This quantitative 
approach was chosen to provide a broader view of the 
phenomena under investigation [2,3]. The results 
revealed positive, statistically significant relationships 
between the DV of advancement intention and three of 
the six IVs. The variables of time commitment, 
responsibility, and elapsed time exerted statistically 
significant effects on advancement intention (DV). The 
three remaining IVs that did not exhibit significant 
relationships with the DV were educational support, 
LOC, and peer appraisal. This indicated that the IVs of 
educational support, LOC, and peer appraisal did not 
significantly influence the DV when compared to the 
significant influences of time commitment, 
responsibility, and elapsed time on the DV. 
Comprehension of the influential factors on the 
intention of Canadian power engineers to pursue 
advanced certification furnishes industry and academia 
with insight into the barriers and enablers and the 
correlation of decision factors, with advancement 
intention. Comparative analyses employing ANN 
methods provide additional insight and greater 
comprehensive assessment. 
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A. Study Population (Original Study) 

The population comprising the power engineering 
dataset consisted of Canadian certified power 
engineers working primarily in registered First-Class 
facilities in British Columbia and Alberta [4]. The study 
population of First, Second, and Third-Class engineers 
[5] was estimated at 4,700 at the time of data 
collection. The total population figure was difficult to 
confirm since once an individual attained certification, 
this certification was seldom re-registered. Since the 
original study, a formalized re-registration process 
initiated in 2019 is currently operating [4]. 

B. Sample (Original Study) 

Initially, a target sample size of a minimum of 150 
participants was approximated for the main study. The 
figure was established through a priori power 
analyses. A priori power analyses were conducted in 
G*Power 3.1.9.2 specifying a correlation and assuming 
a bivariate normal model was used. A priori analyses 
are performed before a study is conducted to 
determine sample size and to control statistical power 
[6,7]. Additional specifications consisted of a one-tailed 
test, an alpha of 0.05, a minimum statistical power of 
0.80, a weak correlation of 0.2, along with a null 
hypothesis of zero correlation [8]. The a priori analysis 
specified a minimum sample size of 153 to achieve a 
minimum statistical power of 0.80. The initial estimated 
attainable sample was approximately 440. The survey 
generated 338 responses from the sample of 440, 
resulting in a 77% response rate. The 338 initial survey 
responses were then reduced to 298 due to missing or 
incomplete information. 

C. Original Survey  

An existing, adaptable survey could not be located 
for use in the original power engineering study. 
Consequently, an original five-point Likert-type ordinal-
level survey was developed to collect and analyze 
numerical data. A survey instrument was deemed as 
the most appropriate data collection tool for the 
quantification of subjective variables for correlational 
analysis [9]. Likert-type questions provide specific 
information, with the scale being insensitive to linear 
transformation. The survey was implemented using 
Survey Monkey™, which is a commercially available 
site. The survey contained original questions coupled 
with several peer-reviewed locus of control survey 
questions extracted with permissions from an existing 
validated survey [10]. Locus of control questions were 
integrated with the original survey questions to form a 
single survey. The original survey questions were 
conceptualized in accordance with the research 
questions and hypotheses. The 23-question original 
survey contained one question for the DV of 
advancement intention. The IVs were represented by 
the following number of survey questions: (a) time 
commitment (4 questions); (b) educational support (4 
questions); (c) locus of control (3 questions); (d) 
elapsed time (4 questions); (e) responsibility (3 
questions); and (f) peer appraisal (4 questions). Note 
that responses to the individual questions for each IV 

were to reduce the overall number of tests required in 
the analysis.  

The survey instrument was pilot-tested antecedent 
to data collection for the main study. Pilot testing 
consisted of three elements: (a) construct validity 
testing via factor analysis; (b) reliability testing (internal 
consistency) using Cronbach’s alpha; (c) and content 
validity testing using Lawshe’s CVR [11,12,13]. 
G*Power, as in the main study, was employed to 
determine the appropriate pilot study sample size for 
pilot testing the data collection instrument (survey). 
The a priori power analysis indicated a sample size of 
approximately 30 for the pilot study. The results of the 
pilot study revealed an acceptable factor structure for 
construct validity, as per the rotated component matrix 
of 0.803 to 0.913 [14]. In terms of reliability, 
Cronbach’s alpha values exceeded 0.7 and were 
deemed acceptable [13]. The computed Lawshe’s 
CVR for the pilot study was 0.92, which exceeded the 
acceptable threshold value of 0.56 [12]. Pilot study 
data was downloaded directly from the Survey 
Monkey™ database into a Statistical Product and 
Service Solutions (SPSS v24) data file and analyzed 
using SPSS software. The results of pilot testing 
confirmed that the survey instrument was appropriate 
for use in the main study. The data for the pilot study 
were not included in the data used for the main study. 

Individual participant protections were observed, 
with collected data treated as undifferentiated to 
protect the organizations identity and to avoid 
unsolicited exposure. Data collection was conducted in 
a non-interventional manner without manipulating the 
IVs or disturbing the power engineering population. 
The Informed Consent form was embedded in the 
electronic survey. Data was collected electronically via 
a survey link emailed to each contact agent at each 
participating facility. The contact agent then emailed 
the link to all First, Second, and Third-Class Power 
Engineers at their facility for collection of electronic 
responses. 

D. Correlational and Regression Analysis 
(Original Study) 

The objective of the original analysis was to 
determine the existence of statistically significant 
relationships between advancement intention (DV) and 
factors influencing advancement intention (IVs). 
Statistical analysis in the original dissertation [1] 
utilized correlational analysis employing Spearman’s 
rho and MLR to generate multiple correlational values, 
and ordinal (ordered) logistic regression (OLR) using a 
modified Bonferroni equivalent alpha. Spearman’s rho 
tested the null hypotheses to determine if specific 
decision factors corresponded with advancement 
intention (DV). The Spearman’s rho correlative 
measure was suitable for analyzing data that are not 
interval-level to assesses covariance between two 
variables [2,3]. Correlation and MLR were followed 
with OLR to generate odds ratios and to identify if 
advancement intention fluctuated with decision factors. 
OLR is appropriate in cases where the DV is an ordinal 
variable, and when the research objective is to 
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determine the extent to which one or more predictors 
affect this ordinal DV [15,16,17]. The research design 
aligned with the study objectives of determining the 
presence or absence of correlations between 
advancement intention and decision factors influencing 
advancement intention. Study weaknesses were 
potentially related to the less robust nonprobability 
(non-random) convenience sampling method [18], and 
a smaller sample size limiting the potential to detect 
true relationships among the study variables [19]. 

E. Correlational and Regression Analysis 
Results (Original Study) 

Likert-type scale responses were coded from 
(strongly agree = 1) to (strongly disagree = 5) before 
uploading the response data to the SPSS data file. 
The data was coded in this manner so that SPSS 
comparisons could be made with ‘strongly disagree’ as 
the base category. OLR allows SPSS to make 
comparisons with the highest coded (numbered) 
category as the base category. In the data analysis 
stage, Spearman’s rho evaluated the degree to which 
the relationship between two variables can be 
explained via a monotonic function. OLR was selected 
to follow Spearman’s rho to add methodological 
strength to the analysis. Spearman’s rho tested for the 
existence, magnitude, and direction of the relationship 
between two non-normally distributed measures 
making this test an appropriate choice for the current 
study [2]. Ordinal-level measurement aligns with Likert-
type scales, Spearman’s rho, and OLR analysis. The 
summative benefit of following Spearman’s rho with 
OLR methodology is that the impact of each IV on the 
DV is determined through OLR while controlling for all 
other IVs included in the analysis [15,16,17].  
Following Spearman’s rho and MLR with OLR 
provided the researcher with correlation values and 
odds ratios as composite tools for the evaluation of the 
research hypotheses.  

In conjunction with OLR, a modified Bonferroni 
equivalent -α of 0.0083 was calculated to manage 
Type-1 error in the original study. The objective of the 
modified Bonferroni adjustment was to make it difficult 
for a single test to be more statistically significant than 
another test [20,21,22]. Consequently, the modified 
Bonferroni equivalent alpha was generated to account 
for cumulative error resulting from myriad statistical 
tests in the study. These numerous tests used the 
same database with the Bonferroni equivalent -α 
calculated at 0.0083. To obtain statistical significance 
for any one test, the Bonferroni adjusted level of 
significance had to be less than or equal to 0.0083. A 
probability value of less than 0.0083 for a single test 
would be deemed statistically significant. Conversely, 
a test statistic would be deemed non-significant if it 
resulted in a probability value greater than 0.0083. 

TABLE I.  SUMMARY – MLR AND OLR   

 

R-squared (r2) values for time commitment (TIME), 
responsibility (RESP), and elapsed time (ELAPSED) 
were .49, .27, and .25 respectively (Table I). 
Statistically significant results for time-based variables 
(time commitment and time elapsed) were anticipated 
and intuitive. Statistically significant results for 
responsibility, while intuitive, were less predictable as 
personal predispositions toward responsibility vary. 
The lack of a statistically significant effect for the locus 
of control construct on the DV was surprising given 
presumed behavioral (introversion/extroversion) 
influences on decision-making. 

II. ANN (COMPLEMENTARY STUDY) 

Artificial neural networks (ANNs) are designed in 
alignment with the process architecture of the 
biological brain and nervous system. The constructed 
network is essentially a mathematical abstraction of 
the organic neural system arrangement. ANNs may be 
utilized in situations involving relationships between 
IVs (explanatory input variables) and DVs (response 
output variables), and where objectives involving 
modeling, prediction, classification, and pattern 
recognition are desired (23,24,25,26]. ANN and 
standard regression analysis share similarities in their 
approach to testing variable relationships. 
Consequently, ANN was chosen to analyze the power 
engineering dataset, previously analyzed using MLR 
and OLR. Conceptual relationships to white-box and 
black-box models [27,28,29] were contemplated in 
accordance with ANN and standard regression, 
respectively.  

A. MLR 

Petek Šter, Švab, and Šter (2015) [26] found that 
ANNs may possess a greater capacity to detect 
complex input-output relationships between IVs and 
DVs than their standard regression equivalents. 
However, the performance of an ANN model is 
contingent upon network configuration, researcher 
experience, and choice of variables [30,31]. 
Relationships between variables exist in linear or 
nonlinear formats. Consequently, ANNs are useful for 
extracting the authentic nature of these relationships 
[23,26]. MLR is utilized to investigate the relative effect 
of multiple IVs on a specific DV with minimization of 
differences between observed and predicted values 
[32,33,34,35]. MLR is popular as a standard 
regression statistical approach but often characterized 
as less robust as it can be biased by influential 
outliers. Trade-offs among standard regression 
methods and ANNs are often subject to re-evaluation 
when considering methodological limitations and 
forecasting accuracy [30,36]. Accordingly, researchers 

 Multiple Linear 
Regression (MLR) 

Ordinal Logistic Regression (OLR) 

 95% confidence 
interval1 

 95% confidence 
interval2 

 

Variable r r2 Sig (p-
value) 

Lower 
Bound 

Upper 
Bound 

Exp_B Wald 
χ2(1) 

Lower 
Bound 

Upper 
Bound 

Sig (p-
value) 

Time 
commitment

0.70 0.49  .001 1.141 1.878 4.524 64.357 3.129 6.542  .001 

Responsibility 0.52 0.27  .001 0.383 1.426 2.471 11.554 1.467 4.163 0.001 
Time Elapsed 0.50 0.25  .001 -1.489 -0.652 0.343 25.178 0.226 0.521  .001
Educational 

support
0.41 0.17  .001 -0.62 0.298 0.851 0.473 0.538 1.347 0.492 

Locus of 
control

0.18 0.03 0.054 -0.686 0.062 0.732 2.675 0.503 1.064 0.102 

Peer appraisal 0.34 0.12  .001 -0.19 0.826 1.374 1.503 0.827 2.284 0.22 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 2458-9403 

Vol. 7 Issue 10, October - 2020  

www.jmest.org 
JMESTN42353555 12829 

must be judicious when endeavoring to draw 
comparisons between analytical methods. 

B. OLR 

OLR, as a comparator to ANN, provides concurrent 
analysis of multiple IVs, while moderating the influence 
of confounding or intervening variables. Logistic 
regression methods are efficient and powerful 
mechanisms for evaluating IV influences or 
contributions to a binary outcome. OLR is well suited 
for assessing relationships among one or more IVs 
and a dichotomous outcome [37]. OLR benefits are 
contingent upon adopting an appropriate strategy for 
model development, the precise selection of variables, 
ensuring OLR assumptions are met, and performing 
an accurate validation of model outputs [38,26].  

ANNs can enhance the predictive capacities of 
conventional statistical methods such as MLR and 
OLR. This complementary capacity is rooted in the 
ANN structure consisting of myriad interconnected 
neurons (units). This neuronal network forms an 
intricate input-output relationship where network 
complexity is proportional to the size of the network, 
and relative to the number of internal or hidden 
neurons comprising the network. ANNs consist 
fundamentally of one input layer, one or more hidden 
layers, and one output layer. A training process 
underscores ANNs’ ability to adapt free parameters for 
input-output mapping [23,25,26]. The power 
engineering dataset variables are the Likert-type scale 
survey response values for the IVs and the DV of 
advancement intention. The multilayer perceptron 
(MLP) network was chosen for training of the model 
utilizing the backpropagation algorithm in SPSSv25. 
The radial basis function (RBF) network was also 
employed in the secondary analysis of the power 
engineering dataset. Both the MLP and RBF 
applications were used as comparators to the original 
dissertation results.   

C. Complementary ANN Analysis  

The primary focus of comparative analysis between 
standard regression and ANN regression was to 
determine the relative ranking of the predictors’ 
influence on the response variable. Supplemental 
analysis was further employed to illustrate 
differentiating and complementary elements among 
standard regression methods and ANN regression. 
Creating an ANN predictive model served to 
investigate the comparative accuracy between the 
predictive capacities of standard regression and ANN 
[23,34]. As indicated supra, preparatory evaluations, 
including assumption checks for distribution normality 
were performed prior to testing the original power 
engineering dataset with correlation, regression and 
OLR. The assumption evaluations were not repeated 
prior to ANN modeling to preserve consistency for 
direct comparison of ANN with regression results 
derived from the same dataset. ANNs will 
accommodate a great number of variables without the 
rigid requirement for specific assumptions such as 
normality [38]. OLR and ANN are comparable for 
determining relationships between variables but are 
differentiated by factors such as ANN’s learning and 
training functions.  

A network that is trained comprises pooled 
regulations. These pooled features are represented by 
allocated weights between the neurons [39]. This 
distinguishing aspect provides ANNs with the ability to 
forecast cases not yet submitted to the network 
through the process of generalization. ANNs can 
model complex variable relationships in the absence of 
a priori knowledge of a model [30,31,38,35]. The ANN 
applications utilized for complementary analysis were: 
(a) multilayer perceptron (MLP); and (b) radial basis 
function (RBF). 

D. Multilayer Perceptron (MLP) 

MLP is used pervasively for generating ANN 
models. Akin to general ANN structure, MLP 
comprises one or more hidden layers between the 
input and output layers. Neurons are structurally 
arranged in layers with direct interlinked connections 
extending from the lower to the upper layers. Neurons 
existing in the same layer, or plane, are not 
interconnected [39,31,40,25,35]. The MLP application 
is the most extensively used ANN application utilizing 
the backpropagation algorithm [41,26]. Applications 
such as MLP and RBF comprise a single DV with two 
or more IVs, notwithstanding the magnitude or 
dimension of the research problem. Results provided 
from these types of ANN applications are differentiable 
and exist in a closed analytic form [42]. RBF differs 
from MLP in aspects such as the requirement for 
additional training vectors, the number of artificial 
neurons in the hidden layer, and in the production of 
bias values.   

E. Radial Basis Function (RBF) 

RBF is a feedforward neural network, as opposed 
to the MLP backpropagation algorithm described 
supra. The RBF arrangement comprises an input 
layer, a hidden layer, and an output layer. Calculation 
does not occur within the input layer nodes. Input layer 
data is forwarded only to the hidden layer. 
Functionally, the input layer corresponds to network 
inputs, the hidden layer contains several non-linear 
activation units, and the output layer corresponds to 
final network outputs. RBF training processes are 
termed clustering or competitive learning. As input 
enters the network, generation of a vector commences 
with calculation of distances between input and weight 
vectors. A final vector product is achieved through 
multiplication of these calculated values by bias 
values. Subsequently, these values proportionally 
generate as many neurons as there are inputs related 
to their corresponding functions. The output layer 
provides the output values [31,40]. Both MLP and RBF 
were included in secondary analysis of the power 
engineering dataset for fulsome comparison of results.   

III. RESULTS (ANN COMPLEMENTARY ANALYSIS) 

A. MLP Network 

The Case Processing Summary table (Table II) 
depicts sample sizes and response percentages 
associated with training and testing samples. The 
SPSS syntax specified a 70/30 split between training 
and testing. The actual split comprised 208 cases 
(69.8%) for the training sample and 90 cases (30.2%) 
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perspective and insight, but also introduced 
uncertainty regarding analytical processes and 
selection of methods. Specifically, ANN was chosen as 
a follow-up analysis to MLR and OLR. Eromietse and 
Joseph (2019) [31] noted that ANN may perform better 
or worse than standard regression applications, such 
as logit models, for predictive functions. The level of 
predictive performance and accuracy is related to 
aspects such as researcher experience and 
knowledge, as well as network configuration. The key 
goal of the power engineering study was to identify 
factors influencing decision-making through statistical 
analysis. Mathematical modeling techniques for 
enhancing decision-making is pervasive in business, 
economics, and research, which as integral to the 
energy sector. A neural network model was an obvious 
choice to complement standard regression analyses 
using the same power engineering dataset. 

 

VII. RECOMMENDATIONS FOR FUTURE RESEARCH   

Research into factors influencing advancement 
intention in Canadian power engineering explores 
decision processes and the construct of ‘intention’. 
Indicated in the abstract was the requirement for both 
quantitative and qualitative perspectives when 
endeavoring to understand behaviour. The qualitative 
humanistic element in this paper represented structural 
(external to the individual) and humanistic (internal to 
the individual) IV influences on the DV of advancement 
intention. The structural influences were presented 
through the variables of time (committed and elapsed) 
and educational support. The humanistic influences 
presented as responsibility, locus of control orientation, 
and peer appraisal. The quantitative portion of the 
paper involved the analysis of survey question 
responses operationalized as numerical surrogates. 
ANNs represent endeavours to replicate organic brain 
architecture and processes through digital means. 
Parallels may be drawn between organic neural 
behavioural drivers and mathematical models for 
describing or predicting behaviour.  

Decision-making embraces the praxeological 
perspective comprising interplay between cognitive 
(brain-based) reasoning and digital (algorithm-based) 
applications. Garibaldo and Rebecchi (2018) [47] cited 
praxeology in this context as, “a perspective for 
analyzing the complex interplay of algorithmically 
determined physical data processing with the social 
process of signifying or interpreting the data in the 
context of an organization’s social practices” (p. 301). 
Decision processes within the framework of the power 
engineering study involved factors influencing the 
intention of the power engineer. Futerman and Block 
(2017) [48] emphasized the relationship between 
‘intentional action’ and praxeology through Ludwig von 
Mises’s ‘action axiom’. This axiom contends that all 
humans strive to exchange a less desirable situation, 
for one that is more desirable. This aspiration appears 
obvious and straightforward until the process and effort 
required to change conditions is contemplated. The 
power engineer introspectively calculates the 
requirements for advancement, and determines the 
effort required for advancement. This calculus includes 

those structural and humanistic elements investigated 
through the analytical mediums of MLR, OLR, and 
ANN. 
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