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Abstract—This paper provides additional insight
into Canadian Power Engineer’'s advancement
intention through the mechanism of
complementary artificial neural network (ANN)
analysis. An original 2018 dissertation
investigated the knowledge gap concerning
factors influencing Canadian power engineers’
decision to pursue advanced certification in the
Canadian provinces of British Columbia and
Alberta. The dissertation employed correlational,
multiple linear regression (MLR), and ordinal
logistic regression (OLR) analysis. The focus of
the current paper is to compare the 2018 MLR and
OLR methods and results, with artificial neural
network (ANN) analysis using the same 2018
power engineering dissertation dataset. Moving
forward the original dataset used for the 2018
dissertation study is referenced as the ‘power
engineering dataset.” The original 2018 analytical
results obtained through MLR and OLR analyses
are compared with the results of the 2020 ANN
applications of multiplayer perceptron (MLP) and
radial basis function (RBF). Specifically, standard
regression is evaluated against ANN regression
methods. The original dissertation found that the
independent variables (IVs) of time commitment,
responsibility, and elapsed time significantly
influenced the dependent variable (DV) of
advancement intention. The three remaining Vs
that did not exhibit significant relationships with
the DV were educational support, peer appraisal,
and locus of control (LOC). ANN analysis
generated comparable results to those obtained in
the original dissertation study. The multilayer
perceptron (MLP) and radial basis function (RBF)
applications denoted that time commitment (TIME)
had the greatest importance concerning outcome
prediction, followed by responsibility (RESP),
elapsed time (ELAPSED), education (EDUC), peer
appraisal (PEER), and locus of control (LOC). The
comparative quantitative analysis provided
objective empiricism regarding factors influencing
certification = advancement, while implicitly
recognizing the human-based qualitative roots of
decision-making.
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. INTRODUCTION

Complementary ANN analysis was conducted in
2020 on the power engineering dataset generated for
the original 2018 dissertation titled: Factors Influencing
Canadian Power Engineers’ Decision to Pursue
Advanced Certification [1]. ANN analytical results were
compared with the original 2018 dissertation
regression results. The studys’ dual purpose was to:
(a) compare standard regression and ANN methods;
and (b) to retest the original data.

Power engineering certification in Canada
comprises a hierarchical, graduated system available
to candidates of all ages. The 2018 dissertation offered
insight into the knowledge gap related to factors
influencing Canadian power engineers’ decision to
pursue advanced certification. The purpose of the
study was to investigate potential variable relationships
between power engineers’ intent to upgrade to
advanced certification levels (DV), and factors
influencing the advancement decision (IVs). The
original research  methodology = comprised a
quantitative correlational design, in which linear and
logistic regressions employing a modified Bonferroni
equivalent alpha were utilized. This quantitative
approach was chosen to provide a broader view of the
phenomena under investigation [2,3]. The results
revealed positive, statistically significant relationships
between the DV of advancement intention and three of
the six IVs. The variables of time commitment,
responsibility, and elapsed time exerted statistically
significant effects on advancement intention (DV). The
three remaining Vs that did not exhibit significant
relationships with the DV were educational support,
LOC, and peer appraisal. This indicated that the Vs of
educational support, LOC, and peer appraisal did not
significantly influence the DV when compared to the
significant influences of time commitment,
responsibility, and elapsed time on the DV.
Comprehension of the influential factors on the
intention of Canadian power engineers to pursue
advanced certification furnishes industry and academia
with insight into the barriers and enablers and the
correlation of decision factors, with advancement
intention. Comparative analyses employing ANN
methods provide additional insight and greater
comprehensive assessment.
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A. Study Population (Original Study)

The population comprising the power engineering
dataset consisted of Canadian certified power
engineers working primarily in registered First-Class
facilities in British Columbia and Alberta [4]. The study
population of First, Second, and Third-Class engineers
[5] was estimated at 4,700 at the time of data
collection. The total population figure was difficult to
confirm since once an individual attained certification,
this certification was seldom re-registered. Since the
original study, a formalized re-registration process
initiated in 2019 is currently operating [4].

B. Sample (Original Study)

Initially, a target sample size of a minimum of 150
participants was approximated for the main study. The
figure was established through a priori power
analyses. A priori power analyses were conducted in
G*Power 3.1.9.2 specifying a correlation and assuming
a bivariate normal model was used. A priori analyses
are performed before a study is conducted to
determine sample size and to control statistical power
[6,7]. Additional specifications consisted of a one-tailed
test, an alpha of 0.05, a minimum statistical power of
0.80, a weak correlation of 0.2, along with a null
hypothesis of zero correlation [8]. The a priori analysis
specified a minimum sample size of 153 to achieve a
minimum statistical power of 0.80. The initial estimated
attainable sample was approximately 440. The survey
generated 338 responses from the sample of 440,
resulting in a 77% response rate. The 338 initial survey
responses were then reduced to 298 due to missing or
incomplete information.

C. Original Survey

An existing, adaptable survey could not be located
for use in the original power engineering study.
Consequently, an original five-point Likert-type ordinal-
level survey was developed to collect and analyze
numerical data. A survey instrument was deemed as
the most appropriate data collection tool for the
quantification of subjective variables for correlational
analysis [9]. Likert-type questions provide specific
information, with the scale being insensitive to linear
transformation. The survey was implemented using
Survey Monkey™, which is a commercially available
site. The survey contained original questions coupled
with several peer-reviewed locus of control survey
questions extracted with permissions from an existing
validated survey [10]. Locus of control questions were
integrated with the original survey questions to form a
single survey. The original survey questions were
conceptualized in accordance with the research
questions and hypotheses. The 23-question original
survey contained one question for the DV of
advancement intention. The IVs were represented by
the following number of survey questions: (a) time
commitment (4 questions); (b) educational support (4
questions); (c) locus of control (3 questions); (d)
elapsed time (4 questions); (e) responsibility (3
questions); and (f) peer appraisal (4 questions). Note
that responses to the individual questions for each IV

were to reduce the overall number of tests required in
the analysis.

The survey instrument was pilot-tested antecedent
to data collection for the main study. Pilot testing
consisted of three elements: (a) construct validity
testing via factor analysis; (b) reliability testing (internal
consistency) using Cronbach’s alpha; (c) and content
validity testing using Lawshe’s CVR [11,12,13].
G*Power, as in the main study, was employed to
determine the appropriate pilot study sample size for
pilot testing the data collection instrument (survey).
The a priori power analysis indicated a sample size of
approximately 30 for the pilot study. The results of the
pilot study revealed an acceptable factor structure for
construct validity, as per the rotated component matrix
of 0.803 to 0.913 [14]. In terms of reliability,
Cronbach’s alpha values exceeded 0.7 and were
deemed acceptable [13]. The computed Lawshe’s
CVR for the pilot study was 0.92, which exceeded the
acceptable threshold value of 0.56 [12]. Pilot study
data was downloaded directly from the Survey
Monkey™ database into a Statistical Product and
Service Solutions (SPSS v24) data file and analyzed
using SPSS software. The results of pilot testing
confirmed that the survey instrument was appropriate
for use in the main study. The data for the pilot study
were not included in the data used for the main study.

Individual participant protections were observed,
with collected data treated as undifferentiated to
protect the organizations identity and to avoid
unsolicited exposure. Data collection was conducted in
a non-interventional manner without manipulating the
IVs or disturbing the power engineering population.
The Informed Consent form was embedded in the
electronic survey. Data was collected electronically via
a survey link emailed to each contact agent at each
participating facility. The contact agent then emailed
the link to all First, Second, and Third-Class Power
Engineers at their facility for collection of electronic
responses.

D. Correlational and Regression Analysis
(Original Study)

The objective of the original analysis was to
determine the existence of statistically significant
relationships between advancement intention (DV) and
factors influencing advancement intention (IVs).
Statistical analysis in the original dissertation [1]
utilized correlational analysis employing Spearman’s
rho and MLR to generate multiple correlational values,
and ordinal (ordered) logistic regression (OLR) using a
modified Bonferroni equivalent alpha. Spearman’s rho
tested the null hypotheses to determine if specific
decision factors corresponded with advancement
intention (DV). The Spearman’s rho correlative
measure was suitable for analyzing data that are not
interval-level to assesses covariance between two
variables [2,3]. Correlation and MLR were followed
with OLR to generate odds ratios and to identify if
advancement intention fluctuated with decision factors.
OLR is appropriate in cases where the DV is an ordinal
variable, and when the research objective is to
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determine the extent to which one or more predictors
affect this ordinal DV [15,16,17]. The research design
aligned with the study objectives of determining the
presence or absence of correlations between
advancement intention and decision factors influencing
advancement intention. Study weaknesses were
potentially related to the less robust nonprobability
(non-random) convenience sampling method [18], and
a smaller sample size limiting the potential to detect
true relationships among the study variables [19].

E. Correlational and Regression Analysis
Results (Original Study)

Likert-type scale responses were coded from
(strongly agree = 1) to (strongly disagree = 5) before
uploading the response data to the SPSS data file.
The data was coded in this manner so that SPSS
comparisons could be made with ‘strongly disagree’ as
the base category. OLR allows SPSS to make
comparisons with the highest coded (numbered)
category as the base category. In the data analysis
stage, Spearman’s rho evaluated the degree to which
the relationship between two variables can be
explained via a monotonic function. OLR was selected
to follow Spearman’s rho to add methodological
strength to the analysis. Spearman’s rho tested for the
existence, magnitude, and direction of the relationship
between two non-normally distributed measures
making this test an appropriate choice for the current
study [2]. Ordinal-level measurement aligns with Likert-
type scales, Spearman’s rho, and OLR analysis. The
summative benefit of following Spearman’s rho with
OLR methodology is that the impact of each IV on the
DV is determined through OLR while controlling for all
other IVs included in the analysis [15,16,17].
Following Spearman’s rho and MLR with OLR
provided the researcher with correlation values and
odds ratios as composite tools for the evaluation of the
research hypotheses.

In conjunction with OLR, a modified Bonferroni
equivalent -a of 0.0083 was calculated to manage
Type-1 error in the original study. The objective of the
modified Bonferroni adjustment was to make it difficult
for a single test to be more statistically significant than
another test [20,21,22]. Consequently, the modified
Bonferroni equivalent alpha was generated to account
for cumulative error resulting from myriad statistical
tests in the study. These numerous tests used the
same database with the Bonferroni equivalent -a
calculated at 0.0083. To obtain statistical significance
for any one test, the Bonferroni adjusted level of
significance had to be less than or equal to 0.0083. A
probability value of less than 0.0083 for a single test
would be deemed statistically significant. Conversely,
a test statistic would be deemed non-significant if it
resulted in a probability value greater than 0.0083.

TABLEI. SUMMARY —MLR AND OLR

Multiple Linear
Regression (MLR)

Ordinal Logistic Regression (OLR)

95% confidence 95% confidence
interval' interval®
Variable r P Sig(p- | Lower Upper Exp B Wald Lower Upper Sig(p-
value) | Bound Bound 7(1)  Bound Bound value)
Time 0.70 049  <.001 1.141 1.878 4.524 64357 3.129 6.542 <.001
commitment
Responsibility ~ 0.52  0.27 < .001 0.383 1.426 2471 11.554  1.467 4.163 0.001
Time Elapsed  0.50 0.25 < .001 -1.489 -0.652  0.343 25.178  0.226 0.521 <.001
Educational 0.41 0.17 <.001 -0.62 0.298 0.851 0.473 0.538 1.347 0.492
support
Locus of 0.18 0.03 0.054 -0.686  0.062 0.732 2.675 0.503 1.064 0.102
control
Peer appraisal  0.34 0.12  <.001 -0.19 0.826 1.374 1.503 0.827 2.284 0.22

R-squared (r2) values for time commitment (TIME),
responsibility (RESP), and elapsed time (ELAPSED)
were .49, .27, and .25 respectively (Table I).
Statistically significant results for time-based variables
(time commitment and time elapsed) were anticipated
and intuitive. Statistically significant results for
responsibility, while intuitive, were less predictable as
personal predispositions toward responsibility vary.
The lack of a statistically significant effect for the locus
of control construct on the DV was surprising given
presumed behavioral (introversion/extroversion)
influences on decision-making.

II. ANN (COMPLEMENTARY STUDY)

Artificial neural networks (ANNs) are designed in
alignment with the process architecture of the
biological brain and nervous system. The constructed
network is essentially a mathematical abstraction of
the organic neural system arrangement. ANNs may be
utilized in situations involving relationships between
IVs (explanatory input variables) and DVs (response
output variables), and where objectives involving
modeling, prediction, classification, and pattern
recognition are desired (23,24,25,26]. ANN and
standard regression analysis share similarities in their
approach  to testing variable relationships.
Consequently, ANN was chosen to analyze the power
engineering dataset, previously analyzed using MLR
and OLR. Conceptual relationships to white-box and
black-box models [27,28,29] were contemplated in
accordance with ANN and standard regression,
respectively.

A. MLR

Petek Ster, Svab, and Ster (2015) [26] found that
ANNs may possess a greater capacity to detect
complex input-output relationships between Vs and
DVs than their standard regression equivalents.
However, the performance of an ANN model is
contingent upon network configuration, researcher
experience, and choice of variables [30,31].
Relationships between variables exist in linear or
nonlinear formats. Consequently, ANNs are useful for
extracting the authentic nature of these relationships
[23,26]. MLR is utilized to investigate the relative effect
of multiple Vs on a specific DV with minimization of
differences between observed and predicted values
[32,33,34,35]. MLR is popular as a standard
regression statistical approach but often characterized
as less robust as it can be biased by influential
outliers. Trade-offs among standard regression
methods and ANNs are often subject to re-evaluation
when considering methodological limitations and
forecasting accuracy [30,36]. Accordingly, researchers
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must be judicious when endeavoring to draw
comparisons between analytical methods.

B. OLR

OLR, as a comparator to ANN, provides concurrent
analysis of multiple 1Vs, while moderating the influence
of confounding or intervening variables. Logistic
regression methods are efficient and powerful
mechanisms for evaluating IV influences or
contributions to a binary outcome. OLR is well suited
for assessing relationships among one or more Vs
and a dichotomous outcome [37]. OLR benefits are
contingent upon adopting an appropriate strategy for
model development, the precise selection of variables,
ensuring OLR assumptions are met, and performing
an accurate validation of model outputs [38,26].

ANNs can enhance the predictive capacities of
conventional statistical methods such as MLR and
OLR. This complementary capacity is rooted in the
ANN structure consisting of myriad interconnected
neurons (units). This neuronal network forms an
intricate  input-output relationship where network
complexity is proportional to the size of the network,
and relative to the number of internal or hidden
neurons comprising the network. ANNs consist
fundamentally of one input layer, one or more hidden
layers, and one output layer. A training process
underscores ANNs’ ability to adapt free parameters for
input-output  mapping  [23,25,26]. The power
engineering dataset variables are the Likert-type scale
survey response values for the IVs and the DV of
advancement intention. The multilayer perceptron
(MLP) network was chosen for training of the model
utilizing the backpropagation algorithm in SPSSv25.
The radial basis function (RBF) network was also
employed in the secondary analysis of the power
engineering dataset. Both the MLP and RBF
applications were used as comparators to the original
dissertation results.

C. Complementary ANN Analysis

The primary focus of comparative analysis between
standard regression and ANN regression was to
determine the relative ranking of the predictors’
influence on the response variable. Supplemental
analysis was further employed to illustrate
differentiating and complementary elements among
standard regression methods and ANN regression.
Creating an ANN predictive model served to
investigate the comparative accuracy between the
predictive capacities of standard regression and ANN
[23,34]. As indicated supra, preparatory evaluations,
including assumption checks for distribution normality
were performed prior to testing the original power
engineering dataset with correlation, regression and
OLR. The assumption evaluations were not repeated
prior to ANN modeling to preserve consistency for
direct comparison of ANN with regression results
derived from the same dataset. ANNs will
accommodate a great number of variables without the
rigid requirement for specific assumptions such as
normality [38]. OLR and ANN are comparable for
determining relationships between variables but are
differentiated by factors such as ANN’s learning and
training functions.

A network that is trained comprises pooled
regulations. These pooled features are represented by
allocated weights between the neurons [39]. This
distinguishing aspect provides ANNs with the ability to
forecast cases not yet submitted to the network
through the process of generalization. ANNs can
model complex variable relationships in the absence of
a priori knowledge of a model [30,31,38,35]. The ANN
applications utilized for complementary analysis were:
(a) multilayer perceptron (MLP); and (b) radial basis
function (RBF).

D. Multilayer Perceptron (MLP)

MLP is used pervasively for generating ANN
models. Akin to general ANN structure, MLP
comprises one or more hidden layers between the
input and output layers. Neurons are structurally
arranged in layers with direct interlinked connections
extending from the lower to the upper layers. Neurons
existing in the same layer, or plane, are not
interconnected [39,31,40,25,35]. The MLP application
is the most extensively used ANN application utilizing
the backpropagation algorithm [41,26]. Applications
such as MLP and RBF comprise a single DV with two
or more |Vs, notwithstanding the magnitude or
dimension of the research problem. Results provided
from these types of ANN applications are differentiable
and exist in a closed analytic form [42]. RBF differs
from MLP in aspects such as the requirement for
additional training vectors, the number of artificial
neurons in the hidden layer, and in the production of
bias values.

E. Radial Basis Function (RBF)

RBF is a feedforward neural network, as opposed
to the MLP backpropagation algorithm described
supra. The RBF arrangement comprises an input
layer, a hidden layer, and an output layer. Calculation
does not occur within the input layer nodes. Input layer
data is forwarded only to the hidden layer.
Functionally, the input layer corresponds to network
inputs, the hidden layer contains several non-linear
activation units, and the output layer corresponds to
final network outputs. RBF training processes are
termed clustering or competitive learning. As input
enters the network, generation of a vector commences
with calculation of distances between input and weight
vectors. A final vector product is achieved through
multiplication of these calculated values by bias
values. Subsequently, these values proportionally
generate as many neurons as there are inputs related
to their corresponding functions. The output layer
provides the output values [31,40]. Both MLP and RBF
were included in secondary analysis of the power
engineering dataset for fulsome comparison of results.

II. RESULTS (ANN COMPLEMENTARY ANALYSIS)
A.  MLP Network

The Case Processing Summary table (Table II)
depicts sample sizes and response percentages
associated with training and testing samples. The
SPSS syntax specified a 70/30 split between training
and testing. The actual split comprised 208 cases
(69.8%) for the training sample and 90 cases (30.2%)
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for the testing sample. The neural model is trained
using the training sample and tested on the remaining
~30% as a method of validating and testing the
predictive accuracy of the neural network.

TABLE II. MLP CASE PROCESSING SUMMARY

Case Processing Summary

N Percent
Sample Training 208 69.8%
Testing 90 30.2%
Valid 298 100.0%
Excluded 0
Total 298

The Network Information output (Table Ill) and
Layer Activation graphic (Fig. 1) data provide
information concerning neural layer relationships.
Graphically, the layer activation function
diagrammatically represents the neural network paths
and synaptic weights. The interconnecting lines (Fig.
1) identify linkages between the predictors (6) in the
input layer, the neurons (3) in the hidden layer, and the
outcome layer consisting of Likert-type response
categories (5) for certification upgrade. Neural
pathways (blue lines) represent negative synaptic
weights. Conversely, gray lines represent positive
synaptic weights. Synaptic weight pathways are
conceptually analogous to positive and negative
regression coefficients, albeit with greater complexity
given the middle layer of artificial neurons. The
thickness of the pathway is proportional to the
magnitude of the synaptic weights. Thicker lines
represent larger magnitudes.

TABLE III. MLP NETWORK INFORMATION

Network Information

1 Time
Commitment
2 Elapsed Time
. 3 Peer Appraisal
Covariates
4 Locus of Control
Input Layer L
5 Responsibility
6 Educational
Support
Number of Units® 6
Rescaling Method for Covariates Standardized
Number of Hidden Layers 1
g a
Hidden Layer(s) Number of Units in Hidden Layer 1 " e3rbo|ic
Activation Function P
tangent
Certification
Dependent Variables 1 Advancement
Intention
Output Layer Number of Units 5
Activation Function Softmax
Error Function Cross-entropy

a. Excluding the bias unit

Synaptic Weight > 0
—— Synaptic Weight < 0

\ADE~

Hidden layer activation function: Hyperbolic 1angent

Cutput layer activation function: Sofimax
Fig. 1. MLP Layer Activation

The Model Summary output (Table IV) presents
statistics related to the performance of this neural
network. In the training sample, 49.0% of predictions
were characterized as incorrect predictions. The
testing sample comprised a higher proportion of
incorrect predictions at 66.7%.

TABLE IV. MLP MODEL SUMMARY

Model Summary

Cross Entropy Error 257.739
Percent Incorrect Predictions 49.0%
Training _ 1 consec_utive
Stopping Rule Used step(s) with no
decrease in error®
Training Time 0:00:00.05
Testi Cross Entropy Error 124.977
estin
9 Percent Incorrect Predictions 66.7%

Dependent Variable: Certification Advancement Intention
a. Error computations are based on the testing sample.

The Parameter Estimates output (Table V) present
the synaptic weights associated with the neural
network. The synaptic weights are a reference point in
relation to the ANN diagram. The positive and negative
synaptic weights correspond, respectively, to the gray
and blue pathway lines in the layer activation graphic
(Fig. 1). Synaptic weights may be used to calculate
predicted values for the five outcomes in the output
layer. Synaptic weights are associated with each of the
artificial neurons. Consequently, these values must be
incorporated into the equation for the predicted values
associated with each of the five outcomes.
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TABLE V. MLP PARAMETER ESTIMATES

Parameter Estimates
Predicted
Hidden Layer | Output Layer

[UPGRADE=1 [UPGRADE=2 [UPGRADE=3 [UPGRADE=4 [UPGRADE=5
00] 00] 00] 0]

Input Layer (Bias) -0%0 -156 166
TIME 999 10390 13
ELAPSED 161 080 634

Loc
RESP -a87 433 a8
EDUC -482 -ot16 382

Hidden Layer 1 (Bias) -0%0 620 -080 258 -6%0
H(1:1) 1157 224 210 -250 -646
H(1:2) -
H(1:3) 1083 -as7 078 285 396

The Classification output (Table VI) depicts the
number of cases associated with each combination of
actual and predicted values for the outcomes of
certification upgrade. Predicted values lie upon the x-
axis, with actual values depicted the y-axis. All sample
sizes presented on the diagonals of the training and
testing portions of the table correspond with cases in
which the predicted and actual values on the outcome
were identical. The further one deviates from this
diagonal, the less accurate the predictions. In the
training sample, 106 (208*0.51) cases were predicted
perfectly out of a total of 208 cases, while in the testing
sample, 30 (90*0.33) cases were predicted perfectly
out of a total of 90 cases. Additionally, several
predicted values have small deviations (1), which
substantially increase these counts.

TABLE VL. MLP CLASSIFICATION
Classification
Predicted
Sample Observed 1.00 2.00 3.00 4.00 5.00 Percent Correct
Training 1.00 50 12 0 1 0 79.4%
2.00 18 29 1 0 6 53.7%
3.00 4 19 0 0 7 0.0%
4.00 3 10 0 0 15 0.0%
5.00 2 4 0 0 27 81.8%
Overall Percent 37.0% 35.6% 0.5% 0.5% 26.4% 51.0%
Testing 1.00 12 6 0 0 1 63.2%
2.00 13 1 0 0 2 42.3%
3.00 1 9 0 0 2 0.0%
4.00 1 12 0 2 8 8.7%
5.00 1 3 0 1 5 50.0%
Overall Percent 31.1% 45.6% 0.0% 3.3% 20.0% 33.3%

Dependent Variable: Certification Advancement Intention

Fig. 2 plots the predicted pseudo-probabilities
associated with each outcome. Actual outcomes are
plotted on the x-axis. The predicted values of ‘1’ and
‘5’ are good exemplars of information depicted in Fig.
2. Moving from left to right on the graphic, the
predicted pseudo-probabilities associated with the
outcome of ‘1’ begin in the 0.55 range and decline to a
value approaching zero. The reduction in predicted
values indicates that the model is likely to predict a ‘1.
This occurs more than half the time when the actual
outcome is equal to ‘1’ with the probability approaching
zero when the actual outcome is equal to ‘5’. Similarly,
among actual outcomes of ‘5’, the predicted pseudo-
probability approaches zero when the actual outcome
is “1". Moving again from left to right, the values grow
steadily to a position where the actual outcome is ‘5.
At this point the predicted pseudo-probability is
approximately 0.35.

Predicted Pseudo-probability
-

ik

Certification Advancement Intention

Fig. 2. MLP Predicted Pseudo-Probability

Fig. 3 llustrates sensitiviies and specificities
associated with this MLP network using a ROC
(receiver operating characteristic) curve. A ROC curve
graphically illustrates the performance of a classifier
system where the discrimination threshold is varied
[38,25]. Plotted lines exhibiting greater area under the
curve are associated with increased probability that a
classifier will rank a randomly chosen positive case
higher than a randomly chosen negative case. This
ranking presumes that 'positive' cases rank higher than
'negative’ cases. Fig. 3 indicates that probability was
highest for the actual outcomes of ‘1’ and ‘5’, with
moderate an outcome for ‘4’, and lowest outcomes for
‘2" and ‘3. Interpreting these results in conjunction with
the Classification output (Table VI), the values of ‘1’
have a percentage correctly predicted of 79.4% and
63.2% for the training and testing samples,
respectively. Corresponding values for the outcome of
‘5" were 81.8% and 50.0%, respectively. For outcome
‘2", values were 53.7% and 42.3%. Outcome ‘3
predicted 0.0% for both samples, with 0.0% and 8.7%
for outcome ‘4’

Sensitivity

8

1 - Specificity
Dependeet Variath: Coniication Adeancamant Intantion

Fig. 3. MLP Receiver Operating Characteristic (ROC) Curve

The Area Under the Curve (Table VII) presents
actual probabilities, which are associated with the
calculated area under the curve.
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TABLE VII. MLP AREA UNDER THE CURVE TABLE IX. RBF CASE PROCESSING SUMMARY
Area Under the Curve Case Processing Summary
Area N Percent

1.00 .859 Samole Training 213 71.5%
2.00 661 P Testing 85 28.5%

Certification Advancement Valid 298 100.0%

Intention 3.00 640 Excluded 0

4.00 725 Total 208
5.00 .855

The Independent Variable Importance output
(Table VIII) presents the importance and normalized
importance associated with each of the IVs.
Normalized importance measures consist simply of
each importance measure, divided by the largest
importance measure, and expressed as a percentage.
The IV of greatest importance depicts a normalized
importance of 100%. These results indicate that time
commitment (TIME) had the greatest importance with
respect to predicted outcomes, followed by
responsibility (RESP), elapsed time (ELAPSED),
educational support (EDUC), peer appraisal (PEER),

and locus of control (LOC).
TABLE VIII. MLP INDEPENDENT VARIABLE IMPORTANCE

Independent Variable Importance

Normalized
Importance |

mportance
Time Commitment .331 100.0%
Elapsed Time 182 54.9%
Peer Appraisal .071 21.3%
Locus of Control .041 12.4%
Responsibility .300 90.8%
Educational Support .075 22.8%

Normalized Importance (Fig. 4) simply plots
importance and normalized importance measures in
graphical format.

Normalized Importance

3 - At o o 100%

ELAPSED

EDUC

PEER

Loc

o0 o 02 03

Importance

Figure 4. MLP Normalized Importance

IV. RBF NETWORK

The RBF Case Processing Summary output (Table
IX) is akin to the MLP output, which depicts sample
sizes and response percentages associated with
training and testing samples. The specified 70/30 split
between training and testing reflected 213 cases
(71.5%) for the training sample and 85 cases (28.5%)
for the testing sample. For reference, the MLP
allocation was 208 cases (69.8%) for the training
sample and 90 cases (30.2%) for the testing sample.

The Network Information output (Table X) and
Layer Activation graphic (Fig. 5) present a neural
network diagram comparable to the MLP analysis
supra. Two important differences are the existence of
five artificial neurons in the hidden layer, and that RBF
does not produce bias values.

TABLE X. RBF NETWORK INFORMATION

Network Information

Input Layer Covariates 1

- IS I N R

Number of Units

Time
Commitment
Elapsed Time
Peer Appraisal
Locus of Control
Responsibility
Educational
Support

g Method for C iat
Hidden Layer Number of Units
Activation Function
Output Layer Dependent Variables 1

Number of Units
Activation Function

Error Function

Softmax
Certification
Advancement
Intention

5
Identity

Sum of Squares

a. Determined by the testing data criterion: The "best" number of hidden units is
the one that yields the smallest error in the testing data.

Synaptic Weight > 0
— Synagtic Weight < 0

Hidden layer activation function: Softmax

Output layer activation function: ldentity
Figure 5. RBF Layer Activation

The Model Summary output (Table Xl) presents
statistics related to the performance of this neural
network. In the training sample, 56.8% of predictions
were characterized as incorrect predictions. The
testing sample comprised a lesser proportion of
incorrect predictions at 55.3%. The sum of squares
error is 68.18 in the training sample and 27.51 in the
testing sample.
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TABLE XL RBF MODEL SUMMARY
Model Summary
Sum of Squares Error 68.176
Training Percent Incorrect Predictions 56.8%
Training Time 0:00:00.15
. Sum of Squares Error 27.511°
Testing -
Percent Incorrect Predictions 55.3%

Dependent Variable: Certification Advancement Intention
a. The number of hidden units is determined by the testing
data criterion: The "best" number of hidden units is the one

that yields the smallest error in the testing data.

The Parameter Estimates output (Table XII) is
interpreted in a similar manner to the MLP output
except for the exclusion of bias values. Predicted
values for certification upgrade outcomes, again, are
calculated with reference to the layer activation graphic
(Fig. 5).

TABLE XII. RBF PARAMETER ESTIMATES

Parameter Estimates

put Layer
UPGRADE=1  [UPGRADE=2 [UPGRADE=3 [UPGRADE=4 [UPGRADE=S
Pt Hon HE) HE) O HE 00) 001 00) 00) 00

2. Displays the center vector for each hidden unit

The Classification Table output (Table XIil),
comparable fashion to the MLP output, depicts the
number of cases associated with each combination of
actual and predicted values for the outcomes of
certification upgrade. In the training sample, 192
(213*0.432) cases were predicted perfectly out of a
total of 192 cases. In the testing sample, 38 (85*0.447)
cases were predicted perfectly out of a total of 85
cases. Several predicted values have small deviations

(1) that substantially increase these counts.
TABLE XIII. RBF CLASSIFICATION

Classification

Predicted

Sample _ Observed 1.00 2.00 3.00 4.00 5.00 Percent Correct
Training 1.00 45 " 2 3 0 73.8%
2.00 19 15 4 9 7 27.8%
3.00 6 10 4 9 1 13.3%
4.00 5 8 3 14 9 35.9%
5.00 1 4 2 8 14 48.3%
Overall Percent 35.7% 22.5% 7.0% 20.2% 14.6% 43.2%
Testing 1.00 17 2 0 0 2 81.0%
2.00 10 8 1 4 3 30.8%
3.00 0 9 2 0 1 16.7%
4.00 0 4 3 2 3 16.7%
5.00 1 1 0 3 9 64.3%
Overall Percent 32.9% 28.2% 71% 10.6% 21.2% 44.7%

Dependent Variable: Certification Advancement Intention

Fig. 6 plots the predicted pseudo-probabilities
associated with each outcome in a comparable
manner to the MLP analysis supra. Actual outcomes
are plotted on the x-axis. The predicted values of ‘1’
and ‘5’ are good exemplars of information depicted in
Fig. 6. Moving from left to right on the graphic, the
predicted pseudo-probabilities associated with the

outcome of ‘1’ begin in the 0.62 range and decline to a
value approaching zero. The reduction in predicted
values indicates that the model is likely to predict a ‘1’.
This occurs over 50 percent of the time when the
actual outcome is equal to ‘1’ with the probability
approaching zero when the actual outcome is equal to
‘5. Among actual outcomes of ‘5, the predicted
pseudo-probability approaches zero when the actual
outcome is ‘“1’. Moving from left to right the values
grow steadily to a position where the actual outcome is
‘5’. At this point the predicted pseudo-probability is 0.4.

10

Predicted Pseudo-probability

—
—r—@a
— omeo @
0
P S
—_— -
—— e @
. ——

Certification Advancement Intention

Figure 6. RBF Predicted Pseudo-Probability

Fig. 7 illustrates sensitiviies and specificities
associated with this MLP network using a ROC curve.
The information in Fig. 7 indicates that probability was
highest for the actual outcomes of ‘1’ and ‘5’, with
moderate outcomes for ‘3° and ‘4’, and the lowest
outcome for ‘2. |Interpreting these results in
conjunction with the Classification Table (Table XIII),
the values of ‘1’ have a percentage correctly predicted
of 73.8% and 81.0% for the training and testing
samples, respectively. Corresponding values for the
outcome of ‘5’ were 48.3% and 64.3%, respectively.
Regarding outcome ‘2’, values were 27.8% and 30.8%.
Outcome ‘3’ predicted 13.3% and 16.7, with 35.9%
and 16.7% for outcome of ‘4’.

Sensitivity

1 - Specificity

Dupandent Variabls: Cenibcation Advancement lntentisn

Figure 7. RBF Receiver Operating Characteristic (ROC)
Curve

The Area Under the Curve (Table XIV) presents
actual probabilities associated with the calculated
areas under the curve.
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TABLE XIV. RBF AREA UNDER THE CURVE

Area Under the Curve

Area

1.00 .856

- 2.00 .641

Certification Aqvancement 3.00 743
Intention

4.00 733

5.00 .866

The Independent Variable Importance (Table XV),
which is akin to the MLR output, presents the
importance and normalized importance associated
with each of the IVs. The IV of greatest importance
depicts a normalized importance of 100%. These
results indicate that time commitment (TIME) had the
greatest importance with respect to predicted
outcomes, followed by responsibility (RESP), elapsed
time (ELAPSED), educational support (EDUC), peer
appraisal (PEER), and locus of control (LOC). The
ranked order of importance for the six IVs is the same
for both MLP and RBB methods.

TABLE XV. RBF INDEPENDENT VARIABLE IMPORTANCE

Independent Variable Importance

Normalized
Importance |

mportance
Time Commitment .248 100.0%
Elapsed Time .183 73.9%
Peer Appraisal 127 51.3%
Locus of Control 17 47.2%
Responsibility .186 74.9%
Educational Support .139 56.3%

Normalized Importance (Fig. 8) simply plots
importance and normalized importance measures in
graphical form to reflect the numerical rankings in the
Independent Variable Importance graphic (Table XV).

Normalized Importance

Importance

Figure 8. RBF Normalized Importance

Table XVI depicts comparative results for MLR,
OLR, MLP, and RBF analyses. The overall priority
ranking of the IVs is time commitment (TIME),
responsibility (RESP), elapsed time (ELAPSED),
educational support (EDUC), peer appraisal (PEER),
and locus of control (LOC) with the exception of the
Wald x2(1) value, which ranks elapsed time
(ELAPSED) ahead of responsibility (RESP). The
results of ANN analysis may be considered consistent
with the MLR and OLR results generated in the 2018
dissertation.

V. LIMITATIONS

Research limitations existing in the 2018
dissertation research attach to this study. Potential
limitations related to the validity and reliability of the
pilot study generated from the original survey.
Employing ‘combined’ measures with OLR, rather than
‘individual’ measures, reduced the overall number of
tests required in the analysis. Fewer tests assisted to
manage Type 1 error. However, when combining
measures into a single measure for the purposes of
analysis, reliability needs to be sufficiently high [43].
Study results were limited by the number of
respondents available to participate in the survey.
Wildfires in the Fort McMurray region [44], and the
lower commodity price for oil [45,46] adversely
affected the faciliies and the sample responses.
Convenience sampling was a further study limitation
as results generated may only be applied to the
sample analyzed. To the extent that the
characteristics of the convenience sample resembled
or could be used to represent certified power
engineers in other provinces, the results of the study
are important to the interprovincial-certified power
engineering community. The generalization of results
from the population from which the sample was
derived, or any other population, would need to be
tentative at best. The sample was limited to two
Canadian provinces with the results being less
generalizable to other geographical areas. This paper
provides a foundational quantitative platform for further
power engineering research.

VI. DISCUSSION

The objective of this paper was to compare
standard regression results generated from a 2018
dissertation  power engineering dataset with
complementary ANN analysis of the same dataset.
Regression analysis is a parametric method for
investigating relationships between several Vs and a
DV. Specification of the analytical expression of the
functional form connecting both inputs and outputs is
necessary under regression methodology. Conversely,
neural networking is a non-parametric method without
requirement for analytical expressions linking inputs
and outputs [34]. Comparative analysis between
standard regression and ANN regression permitted
determination of the relative ranking of decision factors
that influence advancement intention. The purpose of
the complementary ANN analysis was to further
investigate factors influencing Canadian power
engineers’ decision or intention to pursue advanced
certification in a comparative manner. Performing
complementary analysis provided additional

wWww.jmest.org

TABLE XVI. MLR, MLP AND RBF COMPARISON
Variable MLR OLR OLR Wald MLP RBF
() (Exp_B) 2(1) (Importance) (Importance)
Time Commitment 0.49%* 4.524%* 64.357*+* 0.331 0.248
(TIME)
Responsibility (RESP) 0.27%% 2.471%% 11.554%* 0.300 0.186
Elapsed Time 0.25%% 0.343%% 25.178** 0.182 0.183
(ELAPSED)
Educational Support 0.17%% 0.851 0.473 0.075 0.139
(EDUC)
Peer Appraisal (PEER) 0.12%* 1374 1.503 0.071 0.127
Locus of Control (LOC) 0.03 0.732 2.675 0.041 0.117
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perspective and insight, but also introduced
uncertainty regarding analytical processes and
selection of methods. Specifically, ANN was chosen as
a follow-up analysis to MLR and OLR. Eromietse and
Joseph (2019) [31] noted that ANN may perform better
or worse than standard regression applications, such
as logit models, for predictive functions. The level of
predictive performance and accuracy is related to
aspects such as researcher experience and
knowledge, as well as network configuration. The key
goal of the power engineering study was to identify
factors influencing decision-making through statistical
analysis. Mathematical modeling techniques for
enhancing decision-making is pervasive in business,
economics, and research, which as integral to the
energy sector. A neural network model was an obvious
choice to complement standard regression analyses
using the same power engineering dataset.

VII. RECOMMENDATIONS FOR FUTURE RESEARCH

Research into factors influencing advancement
intention in Canadian power engineering explores
decision processes and the construct of ‘intention’.
Indicated in the abstract was the requirement for both
quantitative and qualitative perspectives when
endeavoring to understand behaviour. The qualitative
humanistic element in this paper represented structural
(external to the individual) and humanistic (internal to
the individual) IV influences on the DV of advancement
intention. The structural influences were presented
through the variables of time (committed and elapsed)
and educational support. The humanistic influences
presented as responsibility, locus of control orientation,
and peer appraisal. The quantitative portion of the
paper involved the analysis of survey question
responses operationalized as numerical surrogates.
ANNSs represent endeavours to replicate organic brain
architecture and processes through digital means.
Parallels may be drawn between organic neural
behavioural drivers and mathematical models for
describing or predicting behaviour.

Decision-making embraces the praxeological
perspective comprising interplay between cognitive
(brain-based) reasoning and digital (algorithm-based)
applications. Garibaldo and Rebecchi (2018) [47] cited
praxeology in this context as, “a perspective for
analyzing the complex interplay of algorithmically
determined physical data processing with the social
process of signifying or interpreting the data in the
context of an organization’s social practices” (p. 301).
Decision processes within the framework of the power
engineering study involved factors influencing the
intention of the power engineer. Futerman and Block
(2017) [48] emphasized the relationship between
‘intentional action’ and praxeology through Ludwig von
Mises’s ‘action axiom’. This axiom contends that all
humans strive to exchange a less desirable situation,
for one that is more desirable. This aspiration appears
obvious and straightforward until the process and effort
required to change conditions is contemplated. The
power engineer introspectively calculates the
requirements for advancement, and determines the
effort required for advancement. This calculus includes

those structural and humanistic elements investigated
through the analytical mediums of MLR, OLR, and
ANN.
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