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Abstract— The Cuckoo Search optimization 
algorithm (CS) continues to grab the attention of 
the scientific community due to its simplicity and 
robustness. CS applied successfully to solve a 
wide range of hard optimization problems, and it 
exhibited outstanding performance. The current 
study presents an Adapted variant of Discrete CS 
Algorithm (ADCSA) that uses the rank-value 
approach to turn real values of random Levy 
walks (steps/jumps) into the equivalent discrete 
values. Besides, the proposed ADCSA 
intensification effort was enhanced by adding four 
different local search movements of permutation, 
swap, insertion and bit flip. The solution accuracy 
of ADCSA was validated across a benchmarking 
case study of a composite laminated plate. 
Moreover, a further structural optimization 
problem of customized I-beam gantry crane was 
solved using ADCSA. Eventually, the results of 
both case studies reveal that the proposed 
ADCSA has a considerable performance in 
solving discrete structural optimization problems.  

Keywords— Cuckoo Search; Discrete 
optimization; Composite laminate; Gantry crane; 
critical buckling load 

I.  INTRODUCTION  

Cuckoo Search (CS) algorithm is population-based 
meta-heuristic inspired by the aggressive reproduction 
strategy of some cuckoo bird species enhanced by 
Levy flights. It presented by Yang and Deb (2009) to 
solve a variety of continuous multimodal optimization 
problems. Since then, it attracted the attention due to 
the simplicity of implementation and the fast 
convergency rate and accuracy of the delivered 
solutions. Also, CS has a view number of parameters 
(almost one) to be tuned, compared to other meta-
heuristics such as Genetic Algorithm (GA), Ant Colony 
Optimization (ACO), Particle Swarm Optimization 
(PSO).... etc. The size of CS applications is 
fascinatingly growing, where it could be observed 
through the number of solved optimization problems 
using CS in the last decade (Yang 2014),. Shehab et 
al. (2017) tracked the progress of published papers 

that uses CS in the literature. Based on different 
publisher's metrices, for the CS published articles 
between 2009 and 2016, he summarized that there are 
three classes of research interest. The dominant class 
went to the application, and it represented 67% of 
publications, whereas CS hybridization and CS 
modifications had respectively 15 % and 18% of the 
research interest. The applications of CS involve 
several main optimization problems such as Travelling 
Salesman Problem (TSP)(Jati and Manurung 2012, 
Yang and Deb 2013, Ouaarab, Ahiod et al. 2014, 
Zhou, Ouyang et al. 2014), and binary optimization 
problems, for instance, Knapsack optimization problem 
(Layeb 2011, Gherboudj, Layeb et al. 2012, Xin, 
Zhang et al. 2019), Computer vision and image 
detection (Agrawal, Panda et al. 2013, Loubna, 
Mohamed et al. 2017), Energy sector (Piechocki, 
Ambroziak et al. 2014, de Moura Meneses, da Silva et 
al. 2020), supply chain (Li, Dey et al. 2018, Li, Liu et al. 
2020) and structure optimization problem (Gandomi, 
Yang et al. 2013, Kaveh and Bakhshpoori 2013). 
However, the size of CS applications is likely to 
escalate in the prospective researches where the fast-
growing research areas of Artificial intelligence (AI) 
and data mining are seeking more robust optimization 
algorithms to build faster response models (Cobos, 
Muñoz-Collazos et al. 2014).  

Some proposed CS modifications were presented 
to improve the basic CS through imposing some 
enhancements of step size, such as using generative 
scaling factor instead of using constant value (Loubna, 
Mohamed et al. 2017). Other proposed modifications, 
in the literature, were mainly focused on adjusting CS 
to solve discrete optimization problems where the 
design space is limited to certain values or options 
(Xin, Zhang et al. 2019, Shehab 2020). Some discrete 
CS variants were explicitly developed to solve 
particular problems, Yang and Deb (2013) used CS to 
solve TSP or Xin, Zhang et al. (2019) who developed a 
discrete binary CS to address allocation of cognitive 
radio network spectrum optimization problem. The 
further general approach of handling discreetness 
constraint was worked out through rounding the 
generated continuous values, by Levy flights, into the 
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nearest integer, and it seems to be work for specific 
structural optimization problems (Kaveh and 
Bakhshpoori 2013). Loubna, Mohamed et al. (2017) 
proposed a fascinating approach where he used a 
rank-value approach to handle a sizeable discrete 
domain of image detection problem, and the results 
were impressive, and it deserves attention. Even 
though these modifications went so far to benefit from 
CS special features, but it still hard to say that there is 
one common variant of CS that could solve different 
discrete nature problems. 

The current work presents an Adapted version of 
Discrete Cuckoo Search Algorithm (ADCSA) that uses 
a modified rank-value approach to interpret Levy flights 
random steps into equivalent discrete steps. In 
addition, the intensification capability of ADCSA is 
enhanced through introducing four different local 
search movements of permutation, swap, insertion and 
bit flip. The performance of ADCSA was firstly 
investigated through a well-known benchmark problem 
of a composite laminated plate. The obtained results of 
ADCSA were compared across the previously 
published results for other meta-heuristics. Moreover, 
ADCSA results also compared with other two different 
discrete CS variants, which implemented based on the 
rounding and original rank-value approaches (Kaveh 
and Bakhshpoori 2013, Loubna, Mohamed et al. 
2017). The performance of the proposed ADCSA was 
remarkably superior to other metaheuristics, and the 
obtained results demonstrated promising performance 
of ADCSA in solving discrete structural optimization 
problems. 

Consequently, ADCSA applied to solve the problem 
of optimization of customized I-beam gantry crane, 
which started to grab more attention in recent years 
(PAVLOVIĆ, SAVKOVIĆ et al. , Ahmid, Le et al. 2017). 
The different dimensions of the I- beam section need 
to be taken from a discrete range of steel plates, 
whereas the span length is fixed. The objective of the 
optimization is minimizing the cross-section area to 
reduce the crane weight where it is subjected to 
different strength constraints.  The benefits of using 
customized I-beam cranes, rather than using standard 
I and H beams, were explained too.  

Finally, the rest of this paper is arranged to explain 
the original CS in the second section, whereas the 
proposed ADCSA conceptual implementation is 
presented in the third section. The fourth section 
devoted to the validation case study while the 
customized crane case study demonstrated in the fifth 
section, and the summary of the current work 
outcomes and findings, with possible prospective 
research studies, were stated in the conclusion 
section. 

II. CUCKOO SEARCH VIA LEVY FLIGHTS (CS) 

The original Cuckoo Search is a population-based 
metaheuristic inspired by the reproduction strategy of 
Cuckoo Search bird. The bird starts searching for the 
surrounding to find a host nest of other birds. In each 
candidate nest, Cuckoo bird lay just one egg, and it 

flies to find another one to lay the next egg. This 
strategy has precisely coincided with the wisdom says, 
“Don’t put all eggs in one basket”, which in this 
occasion, means that the chance of Cuckoo eggs to 
survive is becoming better. The host bird could 
discover some of the eggs, and they may discard or 
abounded (Yang 2014). Yang and Deb (2009) 
introduced the CS algorithm to simulate this natural 
phenomenon where the total number of candidate 
nests represents the population size (n), and each nest 
is a possible solution (Si). A fraction (Pa) of the whole 
population with worse fitness is going to be discarded, 
and this mimic the discovery of the eggs by the hosting 
birds. Next, new randomly generated solutions are 
going to substitute the discarded solutions. The top-
ranked nests will remain within the next generations. 
The CS searching of the design space goes via a 
random walk that taken out from Levy probability 
distribution. The original CS pseudo-code is listed in 
Algorithm 1. 

Levy flight is the strengthening component of CS 
where it offers the random walk, though steps/jumps 
length is selected from Levy probability distribution. 
The jumps (long steps) in the design space are 
possible because of the heavily tailed nature of Levy 
probability distribution (Yang 2014). 

Algorithm 1: Cuckoo Search Algorithm (CS) 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:  
Initial and evaluate a random population of 𝑛 

host nests (𝑥𝑖, 𝑓𝑖).  
𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕) 𝑫𝒐: 

- Generate a new Cuckoo (population) 
randomly by Levy flights (Eq.1). 

- Evaluate the new Cuckoo fitness (𝑓𝑖). 

- Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly. 
       𝐼𝑓 𝑓𝑖 >  𝑓𝑗           
- Replace the j with the new solution. 

       𝑒𝑛𝑑          
- Rank the solutions and find the current 

best.  
- Discard Pa fraction of worst solutions. 
- Substitute the discarded solutions by new 

ones generated by Levy flights. 

𝑬𝒏𝒅  

In general, the random walk depends on the 
previous location, 𝑥𝑖

𝑡 , and the length of the step/jump, 
which is the second term of equation (1).    

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼⨂𝐿ѐ𝑣𝑦(𝜆, 𝑠) (1) 

where α is the step size scale factor and 𝛼 > 0. For 
most optimization problems, the unity step scale factor 
could work well (Yang and Deb 2009). The term 
𝐿𝑒𝑣𝑦(𝜆) represents Levy probability distribution,  𝜆   is 
Levy exponent, and s is the step size. 

𝐿ѐ𝑣𝑦(𝜆, 𝑠𝑡𝑒𝑝)~ 𝑢 = 𝑡−𝜆,                            
(1 < 𝜆 ≤ 3) 

(2) 

The random direction of the step/jump and step 
size that follows Levy probability are two essential 
elements to generate random numbers via levy flights. 
The direction of the step could be randomly drawn 
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from the normal distribution, 𝑁(𝜇, 𝜎2) , whereas the 
step length needs to be determined through the 
Magenta algorithm. According, the step size (s) can be 
determined through the following formula: 

𝑠 =
𝑢

|𝑣|
1

𝜆⁄
  (3) 

where 

𝑢 ~ 𝑁(0, 𝜎2),  𝑣 ~ 𝑁(0,1). (4) 

𝑢, 𝑣  are Gaussian normal distributions. The 
definition of 𝑢   means that the random samples are 
drawn from a normal distribution that has 0 mean and 
variance of 𝜎2 . The variance value could be obtained 
from: 

𝜎2 = [
Γ(1 + 𝜆)

𝜆Γ((1 + 𝜆) 2⁄ )
.
sin (𝜋𝜆 2⁄ )

2(𝜆−1) 2⁄
]

1 𝜆⁄

 (5) 

where Γ(n) is nothing more than factorial of 𝑛 or 𝑛! 

III. ADAPTED DISCRETE CUCKOO SEARCH ALGORITHM 

(ADCSA)  

CS Originally presented as population-based 
metaheuristic to solve unconstrained continuous 
optimization problems (Yang and Deb 2009). However, 
several discrete variants were introduced to solve a 
particular discrete optimization problem (Ouaarab, 
Ahiod et al. 2014). Others were more general, such as 
using rounding of the Levy flight step into the nearest 
integer (Kaveh and Bakhshpoori 2013). (Loubna, 
Mohamed et al. 2017) presented a universal approach 
that could generate steps with integer values to obey 
Levy flights random walk. A similar approach has used 
here, and it is explained in subsection 3.2. 

The proposed ADCSA bears three main 
modifications to the original CS.  First is using Latin 
HyperCube (LHC) sampling method to generate the 
initial population; the second is presenting discrete 
Levy flights representation and finally improve the 
neighbourhood search of the best solution through four 
different permutation movements. The proposed 
ADCSA pseudo-code is listed in Algorithm 2. 

Algorithm 2: Adapted Discrete Cuckoo Search 
Algorithm (ADCSA) 

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:  
- Initial and evaluate a random population of 𝑛 

host nests (𝑥𝑖, 𝑓𝑖)  using Latin Hypercube 
(LHC) random generator. 

𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕) 𝑫𝒐: 
Generate a new Cuckoo (population) randomly 

by Levy flights (Eq.8). 

Evaluate the new Cuckoo fitness (𝑓𝑖). 

Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly. 
 𝑰𝒇 𝒇𝒊 >  𝒇𝒋  

- Replace the j with the new solution. 

 𝒆𝒏𝒅 
Rank the solutions and find the current best.  
Discard Pa fraction of worst solutions. 
Substitute the discarded solutions by new ones 

generated by Levy flights. 
             

𝑰𝒇 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑) 
Do permutation, swap, insertion and bit flip for 

the current best solution. 

                  𝑒𝑛𝑑  
Update the best solution.   

𝑬𝒏𝒅  

A. Initial Population 

Li, Liu et al. (2020) investigated the impact of 

initialization methods on the meta-heuristics searching 

performance. They examined eight different ways of 

random initialization sampling for five meta-heuristics. 

Their work results revealed that CS is sensitive to the 

initialization method, where it performed differently in 

73.68 % of the tested functions based on the used 

method of initialization. Moreover, they suggested that 

the hybridization of different sampling methods could 

boost the algorithm performance of searching the 

design space. However, in the current study, three 

different sampling methods, Discrete Uniform 

Distribution (DUD), Latin HyperCube (LHC) and hybrid 

DUD-LHC, were examined. The numerical experiment 

results exhibited a slight improvement in the overall 

performance of ADCSA when LHC was used 

compared to the other two methods; See Figure (5). 

B. Discrete Levy Flights Representation 

The proposed approach by Loubna, Mohamed et 

al. (2017) defines the design space domain by rank 

and value. The “rank” refers to the location of the 

variable within the design domain vector, 𝐷 , while 

“value” represents the corresponding assigned 

variable value/option, 𝑑𝑖. So, the new Cuckoo,𝑥(𝑖+1) is 

generated based on the current solution element rank, 

integer number, and an integer step size that obeys 

Levy flights, see Eq.1. Next, the new cuckoo with rank 

form is transformed into the equivalent values form. 

Therefore, 𝑋𝑖
𝑡 = [𝑥1, 𝑥2, … . 𝑥𝑛]  represents the design 

variables vector, and N is the problem size. Whereas, 

𝐷 = [𝑑1 𝑑2 … . 𝑑𝑀] indicates the discrete domain of the 

optimization problem. So, 

                      𝑅𝑎𝑛𝑘 (𝐷) = {1,2, … . , 𝑀},  

𝑉𝑎𝑙𝑢𝑒(𝑅𝑎𝑛𝑘(𝐷)) = { 𝑑1, 𝑑2, … , 𝑑𝑀} 

An improved version of the value-rank approach 
was implemented here. The improvements went to the 
update strategy of the size scale factor α, and to the 
step size determination. Selectin the step size factor α 
could influence the performance of the algorithm 
significantly, and it linked to the problem nature (Yang 
and Deb 2009). Using a constant value for 𝛼, e.g. 0.01 
or 1, might work, but it doesn’t consider any problem 
characteristics such as the solution fitness/quality. So, 
the proposed scale factor here is examining the quality 
of the fitness of the individual solution, 𝑓𝑖, to the fitness 
of the best solution, 𝑓𝑏𝑒𝑠𝑡 .  
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𝛼 =
𝑓𝑖

𝑓𝑏𝑒𝑠𝑡 
 (6) 

Consequently, the new solution, 𝑥𝑖+1 , will be 
updated according to:      

𝑥𝑖+1 = 𝑥𝑖 +
𝑓𝑖

𝑓𝑏𝑒𝑠𝑡 
. 𝑠𝑡𝑒𝑝⨂(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) (8) 

Now, the updated step size, second term in Eq.8, 
produces real values, while the current solution 𝑥𝑖 has 
an integer representation (rank) of discrete values and 
thus the new solution, 𝑥𝑖+1 is going to have real values 
which we couldn’t use it directly as ranking values. 
Therefore, a transformation function was used to turn 
the real values of the step size into their equivalent 
integer values. The sigmoid function, Eq. 9, is widely 
used in solving classification problems by machine 
learning (ML) algorithms (Shalev-Shwartz and Ben-
David 2014); also, it used in the binary variant of CS to 
solve the knapsack problem, (Ouaarab, Ahiod et al. 
2014).  

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
1

1 + 𝑒−𝑧
 (9) 

Sigmoid function, Figure(1), gives a selection 
probability between 0 and 1 for any input values, which 
is the step size in our case. 

𝑝𝑖(𝛼. 𝑠. ∆𝑥𝑥𝑏𝑠𝑒𝑡) =
1

1 + 𝑒−𝛼.𝑠.∆𝑥𝑥𝑏𝑠𝑒𝑡
 (10) 

 

The next step is dividing the interval [0,1] to the desired 

number of classes (ranks), 𝐶, and this gives each class 

(rank) a range of selection, △ 𝑐. 

𝐶 = |𝐷|  ⟹ 𝐶 = 𝑀 

Then, the obtained selection probability,𝑝𝑖, is compared 

across all ranges to determine the class to which this 𝑝𝑖 

belongs.     

 

∆𝑐 =
1

𝑀
 

(𝑘 − 1). ∆𝑐 ≤ 𝑐𝑖 < 𝑘. ∆𝑐 , (𝑖, 𝑘 = 1: 𝑀)    

  
 

Figure 1: Sigmoid transformation function. 

 

Despite the successful transformation of the 
original step size into its equivalent integer size, the 
new solution 𝑥𝑖+1  might exceed the domain bounds 

when equation (8) applied. However, we experience a 
similar situation every day when we use the clock 
arithmetic to keep the time; e.g. the clock now is (8:00 
am), and we want to know where will the hour hand be 

in 5 hours? (8 𝑎𝑚 +  5 ≡ 13) Obviously, it exceeds the 
clock bounds, which is 12, but intuitively we say it is 
1:00 pm. The mathematical interpretation of this, that 
the remainder of dividing 13 by 12, is one, and this is 
the typical definition of modulo function that we are 
going to use to reflect a meaningful value for out-off 
bounds ranks. Therefore, 

𝑟𝑎𝑛𝑘(𝑥𝑖+1) = 𝑚𝑜𝑑((𝑥𝑖 + 𝑠), |𝐷|) + 1 (11) 

where 𝑠  represents the integer value of the levy 
flights steps/jumps, and 1 is the minimum rank value if 

𝑚𝑜𝑑((𝑥𝑖 + 𝑠), |𝐷|) = 0 . Eventually, the ranked new 

solution, 𝑟𝑎𝑛𝑘(𝑥𝑖+1) , reversed to its assigned rank 
values or 𝑣𝑎𝑙𝑢𝑒(𝑟𝑎𝑛𝑘(𝑥𝑖+1))  form that we could use to 
determine the objective optimization function directly. 

C. Neighbourhood Search 

Yang (2013) expect that CS intensification could be 
improved by using local search Levy flights or 
hybridization CS with other local optimization 
algorithms (e.g. Tabu Search). The primary purpose of 
enhancing the intensification feature of any meta-
heuristic is to ensure that the obtained solution is not a 
local optimum, and there was no possible global 
optimal solution left behind the current best solution. 
However, the proposed ADCSA turns the optimization 
problem into a pure permutation problem, as a result of 
using the rank-value approach. The ranked solution 
has an integer representation that we could permute to 
produce a new ranked solution. Based on this, four 
different permutation operators employed in ADCSA to 
improve the search of the current best solution 
neighborhood. 

1) Random permutation 

Random permutation operator is selecting 
randomly two elements of the solution vector and 
reverses the order of the other elements in between. 
Let’s that we have a six dimensions solution vector as 
follow: 

𝑥 = [1 2 3 4 5 6] 

So, a possible permutation is: 

Before permutation: 

𝑥 = [1 𝟐 3 4 𝟓 6] 

After permutation: 

𝑥 = [1 𝟓 4 3 𝟐 6] 

2) Swap(mutation) 

Swap operator also knows as mutation, selects 
randomly two elements and switch over their positions 
in the solution vector. 

Before swap: 
 𝑥 = [1 2 𝟑 4 5 𝟔] 

 After swap: 

∆𝑐 

𝑐1 𝑐2 𝑐3 𝑐4 𝑐𝑀 

0 1 

𝑆(𝑧) =
1

1 + 𝑒−𝑧
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𝑥 = [1 2 𝟔 4 5 𝟑] 

3) Insertion  

The insertion operator is randomly selecting an 
element of the solution vector and insert it randomly 
between the other two elements. 

before insertion: 

 𝑥 = [1 2 3 4 𝟓 6] 

   after insertion: 

  𝑥 = [1 𝟓 2 3 4  6] 

4) Bit flip 

Bit flip operator selects a random element (bit) of 
the solution vector and changes its rank order 
randomly.   

before bit flip: 

 𝑥 = [1 2 3 4 5 6] 

after a bit flip: 

 𝑥 = [1 2 𝟐 4 5 6] 

Random permutation and swap operators were 
used in solving a well-known benchmark problem of 
structural engineering of composite laminated design 
optimization by Genetic Algorithm (GA), (Le Riche and 
Haftka 1993). Whereas, insertion and bit flip operators 
were used efficiently, as a part of an improved Tabu 
search algorithm in searching of the neighbourhood of 
large design space optimization problems (He, de 
Weerdt et al. 2019). Lastly, these operators were 
integrated into ADCSA structure in the way that they 
will not be activated until a certain number of 
successful runs is reached. 

D. Convergence Criteria 

ADCSA designed to stop after a certain number of 
successful runs without any solution improvement is 
reached. Otherwise, it continues searching for the 
optimal solution until the predefined maximum number 
of iterations is exceeded. 

IV. NUMERICAL EXPERIMENTS 

In order to examine the performance of the 
proposed ADCSA in solving discrete structural 
optimization problems, two different case studies were 
selected from the literature. The first case study is a 
benchmark problem used here as a numerical 
experiment to validate the solution accuracy of ADCSA 
and to compare its performance with other meta-
heuristics in the literature. Thus, a benchmark problem 
of a composite laminated plate subjected to bi-
directional compression loading was used in this 
experiment (Le Riche and Haftka 1993). To ensure the 
robustness of ADCSA, another discrete structure case 
study of customized I-beam gantry crane subjected to 
yield criteria (Ahmid, Le et al. 2017). 

A. Validation numerical experiment  

The benchmark optimization problem of a 
composite laminated plate subjected to compression 

loading is extensively used in the literature to 
investigate the performance of a new or modified 
meta-heuristics (Aymerich and Serra 2008, Koide, 
França et al. 2013).In a more recent study, the same 
benchmark problem used to compare the performance 
of five different meta-heuristics (Ahmid, Thien-My et al. 
2019). The original optimization problem introduced by 
(Le Riche and Haftka 1993)for a laminated rectangular 
plate simply supported. The in-plane compression 
loading conditions were applied in the direction of both 
axes x,y, see Figure (2) . The optimization objective is 
maximizing the critical buckling loading capacity of the 
plate subjected to design and manufacturing 
constraints. Moreover, the number of plies, 𝑁𝑝 , and 

thickness of each ply, 𝑡𝑝, are imposed while the fiber 

orientation of each plies group, 𝜃𝑝, needs to be chosen 

from a discrete domain of available orientations, 
𝐷 =  [0°; ±45°;  90°]. The design variable vector, 𝑋, is 
formed by the number of plies groups that meet the 
symmetry and balanced constraints. The symmetrical 
laminate means that both sides about the mid-plane 
have the same number of the plies and this reduces 
the number of plies, to be optimized, into the half of the 
total number of plies, Np=2 .Balanced laminate is 
symmetrical one where each group of two plies, with 
same fiber orientation, on one side has a similar group 
on the other side, and this downsize the number of the 
optimized plies to another half. Thus, the final number 
of design variables (optimized plies) will be equal to 
𝑁𝑝 = 4 .The formula of buckling load factor 𝜆𝑏 , which 

developed according to Classical Lamination Theory 
(CLT), has been used implicitly to determine the 
objective function of critical buckling load, 𝜆𝑐𝑏  , 
(Riche,et al. 1993), Therefore, 

𝜆𝑏(p, q) = 𝜋2
[𝐷11(

𝑝
𝑎⁄ )

4
+ 2(𝐷12 + 2𝐷66)(

𝑝
𝑎⁄ )

2
+ 𝐷22(

𝑞
𝑏⁄ )

4

]

(
𝑝

𝑎⁄ )
2

𝑁𝑥 + (
𝑞

𝑏⁄ )
2

𝑁𝑦

 

       (12) 

where 𝐷𝑖𝑗  is the bending stiffness, 𝑁𝑥, 𝑁𝑦  are in-

plane compression loads in 𝑥, 𝑦. The variables   𝑝 , 𝑞  
denote the buckling modes in both 𝑥, 𝑦 directions. The 
critical buckling load factor 𝜆𝑐𝑏 , is defined as the 
minimum obtained value of 𝜆𝑏(p, q), (Rao 2009).  

 

Figure 2: Simply supported plate subjected to 
biaxial loading (Ahmid, Thien-My et al. 2019). 

The orthotropic material properties, dimensions, 
and loading conditions of the composite laminated 
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plate used in this experiment are listed in Tables 1 and 
2. 

1) Experiment Setting 

The proposed ADCSA code written in Matlab 
2019b programming language. In addition, the other 
two discrete variants of presented by Kaveh and 
Bakhshpoori (2013) and Loubna, Mohamed et al. 
(2017) were implemented and programmed using  

========================================================================= 
User: Ali Ahmid …………………………………………………………………..15-Feb-2020 00:24:25 
========================================================================= 
Machine Information: 
CPU Processor: Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz 
CPU clock speed: 3601 MHz 
CPU Cache size (L2): 1024 KB 
Number of physical CPU cores: 4 
Installed physical memory (RAM): 16 GB 
operating System Type: Windows 
Operating System Version: Microsoft Windows 7 Enterprise 
========================================================================= 

Figure 3: The specifications of PC-machine used in the current comparison study. 

Matlab 2019b. All implemented variants tested on the 
same PC-machine with the listed specifications in 
Figure (3). The experiment initialized with the same 
number of nests, 𝑛𝑁𝑒𝑠𝑡 = 100 , and same discovery 
rate, 𝑃𝑎 = 0.25. For each variant, the experiment has 
been repeated 200 times to overcome the stochastic 
behaviour of meta-heuristics as recommended in the 
original reference, (Le Riche and Haftka 1993). 

Furthermore, an assessment of three different random 
initialization methods of Discrete Uniform Distribution 
(DUD), Latin hypercube (LHC) and hybrid DUD-LHC 
were conducted. The results demonstrated slightly 
better performance of ADCSA when LHC used to 
generate the initial population, see Figure . Thus, it 
used to generate the initial population of ADCSA in the 
executed validation experiments. 

2) ADCSA Performance assessment criteria  

 

In the literature, there were different measures 
used to assess meta-heuristics performance. Elapsed 
time is not only the measure used to evaluate the 
computational solution cost where the success rate (or 
reliability) and the average number of runs required to 
find the optimal solution (price) were commonly used 
too. Furthermore, normalizing the solution price, price/ 
reliability, could reveal valuable information about the 
solution cost (Le Riche and Haftka 1993, Ahmid, 

Thien-
My et 

al. 
2019). 
Lastly, 
where 

such 
an 

optimiz
ation 

proble
m has 

multi-
optimal 
solutio

ns, the term of practical optima is used. It is devoted to 
considering the near-optimal solutions of 0.1% error to 
the best-known optimal solution (Aymerich and Serra 
2008). 

B. Customized I-beam gantry crane problem 

The customized I-beam gantry crane design is another 
structural design problem that started to attract the 
attention, (PAVLOVIĆ, SAVKOVIĆ et al. , Ahmid, Le et 
al. 2017, Alhorani 2020). The original problem 
statement says that for a welded I-beam profile, gantry 
crane built by welding three different steel plates that 
have the same length, but they were diverse in their 
thickness and width. The live loading condition was 
applied to the crane, see Figure. The nomenclature of 
different crane dimensions and loads are given as: 

 b1, t1  and b2 t2  are lower and upper flanges widths 
and thicknesses respectively, while h, t3 are the width 

and thickness and width of the web. W1represents the 
crane weight and W2 is the live load. Lastly, 𝐿 is the 

crane span, and 𝑥  is the distance of W2  measured 
from the crane left end. The optimization objective is 
reducing the crane weight by minimizing the crane 
cross-section area, which is defined by: 
 

𝐴𝑐𝑠 = 𝑏1. 𝑡1 + 𝑏2. 𝑡2 + ℎ. 𝑡3 (13) 

The crane design is subjected to 
bending and buckling criteria, which result 

(14) 

 

Figure 4: The crane beam dimensions and loading conditions, (Ahmid, Le et al. 2017) 
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in a set of design constraints. Hence, 
g1 = σcomb_max − σTallowed ≤ 0 

g2 = 1.9 − fBuckling ≤ 0 (15) 

g3 = h t3⁄ − 260 ≤ 0 (16) 

g4 = b2 2t2⁄ − 260 √σy⁄ ≤ 0 (17) 

g5 = δv − L 600⁄ ≤ 0 (18) 

g6 = (Δσ)comb max
− Δσallowed  ≤ 0 (19) 

These constraints were imposed by using the 
exterior penalty function that transforms the objective 
function, 𝐴𝑐𝑠, into: 

𝐹(𝑋, 𝑟𝑔) = 𝐴𝑐𝑠(𝑋)

+ 𝑟𝑔 [∑(𝑚𝑎𝑥{0, 𝑔𝑗(𝑋)})2

𝑚

𝑗=1

] 

(20) 

where 𝑋 = [𝑏1 𝑡1 𝑏2 𝑡2 ℎ 𝑡3]  and 𝑟𝑔  is penalty 

multiplier for inequality constraints 𝑔𝑖.  

Eventually, the material used for the crane is 350W 
structure steel with yielding strength 𝑆𝑦 =350 MPa, 

density ρ=7850 𝑘𝑔/𝑚3, Young’s modulus E=200 GPa, 
shear modulus G=77 GPa and Poisson’s ratio ν=0.3. 
The dimensions intervals and loads of the crane 
optimized here are: 

𝑏1𝜖 [150: 10: 490]          , (mm) 
𝑡1 𝜖 [6: 2: 74]                   , (mm) 
𝑏2 𝜖 [150: 10: 490]         , (mm) 
𝑡2  𝜖 [6: 2: 74]                  , (mm) 
ℎ  𝜖 [600: 20: 1280]         , (mm) 
𝑡3  𝜖 [2: 36]                 , (mm) 
 𝐿 = 8                               , (m) 
𝑊2 = 10,20,40                 , (ton) 

V. RESULTS AND DISSCUSIONS 

The obtained results of the validation experiment 
and the case study of customized I-beam gantry crane 
are illustrated and discussed in the following 
subsections. 

A. Validation of experiment results 

The results of the three initialization methods, they 
mentioned in section 3.1, were statistically compared 
and depicted in standard division graph in Figure (5).  

 Moreover, the two variants of discrete CS by 
Kaveh and Bakhshpoori (2013) and Loubna, 
Mohamed et al. (2017) where implemented, as 
described, and they were given two abbreviations, 
RDCS and ADCS, respectively. Consequently, they 
were applied for the same experiment with the same 
number of experiments. The number of 30 runs without 
improving was used as convergency criteria to break 
the variant searching loop. The proposed ADCSA was 
also examined with the same experiment setting, and 
the obtained results of all discrete CS were illustrated 
in Figures 5-8. Finally, the summary of the comparison 

of different published results and the proposed 
algorithms were listed in Table 3. The results reveal 
that the proposed ADCSA outperforms the other 
presented DCS algorithms and other meta-heuristics in 
literature as solving algorithm for the composite 
laminated plate. ADCSA exhibited a fast convergence 
rate where it needs around 12 iterations to find the 
optimal solution. Moreover, ADCSA delivers an 
accurate solution with So, the accuracy of the 
proposed ADCSA is examined, and it has shown 
significant performance in solving the NP-optimization 
problem of structural engineering.98% reliability 
(successful rate) at 41 iterations solution cost. 

 

 
Figure 5 Standard deviation plot for different 

initialization methods 

 
Figure 6 Standard deviation plot for different 

initialization methods 
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The next section is devoted to demonstrating the 
results of applying ADCSA to other structural 
engineering optimization problems.  

A. Customized I-beam Gantry crane Results 

The obtained results of discrete crane design 
optimization using ADCSA were compared to 
previously published one of the continuous 
optimization approaches. Furthermore, both results 
compared to an equivalent standard I-beam profile for 
the same optimization strength constraints (CISA). The 
comparison study produced nine different examples of 
8 m crane, where the three different types of crane 
beams were subjected to three live loads of 10,20 and 
40 tons. The results of this comparison listed in 
Figures 10-17 and the abbreviations CC, DC and ES 

are mentioning the three different types of I-beams 
crane: Continues optimized Custom (CC), Discrete 
optimized Custom (DC) and Equivalent Standard I-
beam (ES) respectively.The results obtained here 
reveal that the crane cross-section profile of the 
discrete optimization approach followed the same 
configurations pattern achieved using a continues 
optimization approach. It always shows narrow and 
thick lower flange, wider and thinner upper flange and 
tall and very thin web, see Figure 17. Furthermore, 
both approaches of optimal custom crane did not 
violate any imposed constraints for the three live loads. 
At the same time, the equivalent standard I-beam 
failed to remain within the strength limits of tension, 
and fatigue stresses constraints for the 40-ton case, 
see Figure 10-11. The lateral buckling of 10-ton live 
load almost reached the limit for the three I-beam 
types, see Figure 12. The local buckling of the top 
flange became critical for CC I-beam, while it was 
never critical for DC or ES I-beam types. On the other 
hand, the web slenderness was not critical for any CC 
I-beam loading cases while it reaches the limits in the 
first loading case (10-ton) for the other two types, see 
Figure 13. Finally, the results reveal that the discrete 
optimization approach could reduce the weight from 61 
- 69 % of the equivalent standard I-beam crane 
structure. 

 

 

Table 1: Comparison of different performance measures for ADCSA and other meta-heuristics 

Meta-heuristic Price 
Reliability, 

% 
Normalized 

Price 
Elapsed Time, 

sec 

 
(a) ADCS 

 

(b) RDCS 

 
(C)ADCSA 

Figure 7 The number of experiments vs. critical 
buckling load for ADCSA, RDCS, ADCS. 

 

Figure 8. ADCSA meta-heuristic Convergence in 
the first successful run. 

 

 
Figure 9 Distance to global optimal for ADCSA meta-

heuristic first successful run 
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ADCSA 41 98% 42 6 

ADCS (Luboan2017) 71 56.5% 126 18 

RDCS (Kaveh2013) 243 93.5% 259 118 

GA (LeRiche1993) 371 98.9% 375 NA 

GA (Ahmid 2019) 252 88% 286 16 

ACO (Ahmid2019) 88 76.5% 115 4 

  

 

 

 

 

Figure 10: The tension stresses vs. live loads for different types of I-beam 
crane 
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Figure 11: The fatigue stresses vs. live loads for different types of I-beam 
crane 

 

 

 

 

 

 

 

 
 

Figure 12: The critical buckling load factor vs. live loads for different types of I-
beam crane 
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Figure 13: The web slenderness vs. live loads for different types of I-beam 
crane 

 

 

 

 

 

 

Figure 10: The flange ratio vs. live loads for different types of I-beam crane. 
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Figure 15: The deflection vs. live loads for different types of I-beam crane 

 

Table 4: Different optimal solution configuration of customized I-beam gantry crane 

 

  

 

 

 

Figure 16: The crane weight vs. live loads for different types of I-beam crane 
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Design Approach t1 (𝑚𝑚) b1 (𝑚𝑚) t2 (𝑚𝑚) b2 (𝑚𝑚) t3 (𝑚𝑚) h (𝑚𝑚) Area (𝑚2) 

CC 

10 tons 27.82 150.01 6.99 194.2 3 608.64 .00736 

20 tons 37.88 150.16 8.38 220.18 3.19 826.46 .0102 

40 tons 52.62 150.04 9.08 252.14 4.38 1137.03 .0152 

ES 

10 tons 56.9 270.3 56.9 270.3 31.5 826.46 .0513 

20 tons 54.1 305.2 54.1 305.2 30 796.8 .0572 

40 tons 40 550 40 550 16 1120 .0621 

DC 

10 tons 54 150 34 170 3 620 .01574 

20 tons 46 170 10 200 14 760 .0177 

40 tons 46 190 16 290 10 1080 0.02418 

δ
cr
=L/600 
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Figure 11: The three different types of I-beam crane 
for the case of 8 m x10 ton. 

 

VI. CONCLUSION 

A new variant of the Adapted Discrete Cuckoo 
Search Algorithm (ADCSA) presented and examined 
for two different case studies of maximizing the critical 
buckling load of composite laminated plate and a 
customized I-beam gantry crane design optimization. 
The validation results demonstrated a high accuracy of 
the ADCSA solution at a reasonable cost. 
Furthermore, the initialization methods experiment 
conducted here illustrated a slight effect of the initial 
population generation on the performance ADCSA. 
The use of the LHC sampling approach improved the 
reliability slightly compared to ADCSA initialized using 
DUD or Hybrid DUD-LHC. The results obtained for the 
customized I-beam gantry crane shown that the crane 
cross-section profile of the discrete optimization 
approach followed the same configurations pattern 
obtained using a continues optimization approach. It 
always shows narrow and thick lower flange, wider and 
thinner upper flange and tall and very thin web. 
Additionally, the saving in the cross-section area is 
noticeable compared to the equivalent standard I-
beams. Eventually, the proposed ADCSA has been 
applied for two different structural optimization 
problems so far and examining it for other engineering 
problems could be prospective work. Furthermore, 
investigating the different initialization methods on the 
proposed algorithm to find better performance 
deserves a try. 
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