
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12099

An Adaptive Discrete Cuckoo Search
Algorithm to Solve Structural Optimization

Problems

Ali Ahmid, Thien-My Dao, and Van Ngan Le
Correspondence Address

Mechanical Engineering Department, École de Technologie Supérieure ÉTS
1100 rue Notre-Dame Ouest

Montréal (Qc) H3C 1K3
Quebec - Canada.

Emails: ali-elmbrok-salem.ahmid.1@ens.etsmtl.ca, thien-my.dao@etsmtl.ca, & vanngan.le@etsmtl.ca

Abstract— The Cuckoo Search optimization
algorithm (CS) continues to grab the attention of
the scientific community due to its simplicity and
robustness. CS applied successfully to solve a
wide range of hard optimization problems, and it
exhibited outstanding performance. The current
study presents an Adapted variant of Discrete CS
Algorithm (ADCSA) that uses the rank-value
approach to turn real values of random Levy
walks (steps/jumps) into the equivalent discrete
values. Besides, the proposed ADCSA
intensification effort was enhanced by adding four
different local search movements of permutation,
swap, insertion and bit flip. The solution accuracy
of ADCSA was validated across a benchmarking
case study of a composite laminated plate.
Moreover, a further structural optimization
problem of customized I-beam gantry crane was
solved using ADCSA. Eventually, the results of
both case studies reveal that the proposed
ADCSA has a considerable performance in
solving discrete structural optimization problems.

Keywords— Cuckoo Search; Discrete
optimization; Composite laminate; Gantry crane;
critical buckling load

I. INTRODUCTION

Cuckoo Search (CS) algorithm is population-based
meta-heuristic inspired by the aggressive reproduction
strategy of some cuckoo bird species enhanced by
Levy flights. It presented by Yang and Deb (2009) to
solve a variety of continuous multimodal optimization
problems. Since then, it attracted the attention due to
the simplicity of implementation and the fast
convergency rate and accuracy of the delivered
solutions. Also, CS has a view number of parameters
(almost one) to be tuned, compared to other meta-
heuristics such as Genetic Algorithm (GA), Ant Colony
Optimization (ACO), Particle Swarm Optimization
(PSO).... etc. The size of CS applications is
fascinatingly growing, where it could be observed
through the number of solved optimization problems
using CS in the last decade (Yang 2014),. Shehab et
al. (2017) tracked the progress of published papers

that uses CS in the literature. Based on different
publisher's metrices, for the CS published articles
between 2009 and 2016, he summarized that there are
three classes of research interest. The dominant class
went to the application, and it represented 67% of
publications, whereas CS hybridization and CS
modifications had respectively 15 % and 18% of the
research interest. The applications of CS involve
several main optimization problems such as Travelling
Salesman Problem (TSP)(Jati and Manurung 2012,
Yang and Deb 2013, Ouaarab, Ahiod et al. 2014,
Zhou, Ouyang et al. 2014), and binary optimization
problems, for instance, Knapsack optimization problem
(Layeb 2011, Gherboudj, Layeb et al. 2012, Xin,
Zhang et al. 2019), Computer vision and image
detection (Agrawal, Panda et al. 2013, Loubna,
Mohamed et al. 2017), Energy sector (Piechocki,
Ambroziak et al. 2014, de Moura Meneses, da Silva et
al. 2020), supply chain (Li, Dey et al. 2018, Li, Liu et al.
2020) and structure optimization problem (Gandomi,
Yang et al. 2013, Kaveh and Bakhshpoori 2013).
However, the size of CS applications is likely to
escalate in the prospective researches where the fast-
growing research areas of Artificial intelligence (AI)
and data mining are seeking more robust optimization
algorithms to build faster response models (Cobos,
Muñoz-Collazos et al. 2014).

Some proposed CS modifications were presented
to improve the basic CS through imposing some
enhancements of step size, such as using generative
scaling factor instead of using constant value (Loubna,
Mohamed et al. 2017). Other proposed modifications,
in the literature, were mainly focused on adjusting CS
to solve discrete optimization problems where the
design space is limited to certain values or options
(Xin, Zhang et al. 2019, Shehab 2020). Some discrete
CS variants were explicitly developed to solve
particular problems, Yang and Deb (2013) used CS to
solve TSP or Xin, Zhang et al. (2019) who developed a
discrete binary CS to address allocation of cognitive
radio network spectrum optimization problem. The
further general approach of handling discreetness
constraint was worked out through rounding the
generated continuous values, by Levy flights, into the

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12100

nearest integer, and it seems to be work for specific
structural optimization problems (Kaveh and
Bakhshpoori 2013). Loubna, Mohamed et al. (2017)
proposed a fascinating approach where he used a
rank-value approach to handle a sizeable discrete
domain of image detection problem, and the results
were impressive, and it deserves attention. Even
though these modifications went so far to benefit from
CS special features, but it still hard to say that there is
one common variant of CS that could solve different
discrete nature problems.

The current work presents an Adapted version of
Discrete Cuckoo Search Algorithm (ADCSA) that uses
a modified rank-value approach to interpret Levy flights
random steps into equivalent discrete steps. In
addition, the intensification capability of ADCSA is
enhanced through introducing four different local
search movements of permutation, swap, insertion and
bit flip. The performance of ADCSA was firstly
investigated through a well-known benchmark problem
of a composite laminated plate. The obtained results of
ADCSA were compared across the previously
published results for other meta-heuristics. Moreover,
ADCSA results also compared with other two different
discrete CS variants, which implemented based on the
rounding and original rank-value approaches (Kaveh
and Bakhshpoori 2013, Loubna, Mohamed et al.
2017). The performance of the proposed ADCSA was
remarkably superior to other metaheuristics, and the
obtained results demonstrated promising performance
of ADCSA in solving discrete structural optimization
problems.

Consequently, ADCSA applied to solve the problem
of optimization of customized I-beam gantry crane,
which started to grab more attention in recent years
(PAVLOVIĆ, SAVKOVIĆ et al. , Ahmid, Le et al. 2017).
The different dimensions of the I- beam section need
to be taken from a discrete range of steel plates,
whereas the span length is fixed. The objective of the
optimization is minimizing the cross-section area to
reduce the crane weight where it is subjected to
different strength constraints. The benefits of using
customized I-beam cranes, rather than using standard
I and H beams, were explained too.

Finally, the rest of this paper is arranged to explain
the original CS in the second section, whereas the
proposed ADCSA conceptual implementation is
presented in the third section. The fourth section
devoted to the validation case study while the
customized crane case study demonstrated in the fifth
section, and the summary of the current work
outcomes and findings, with possible prospective
research studies, were stated in the conclusion
section.

II. CUCKOO SEARCH VIA LEVY FLIGHTS (CS)

The original Cuckoo Search is a population-based
metaheuristic inspired by the reproduction strategy of
Cuckoo Search bird. The bird starts searching for the
surrounding to find a host nest of other birds. In each
candidate nest, Cuckoo bird lay just one egg, and it

flies to find another one to lay the next egg. This
strategy has precisely coincided with the wisdom says,
“Don’t put all eggs in one basket”, which in this
occasion, means that the chance of Cuckoo eggs to
survive is becoming better. The host bird could
discover some of the eggs, and they may discard or
abounded (Yang 2014). Yang and Deb (2009)
introduced the CS algorithm to simulate this natural
phenomenon where the total number of candidate
nests represents the population size (n), and each nest
is a possible solution (Si). A fraction (Pa) of the whole
population with worse fitness is going to be discarded,
and this mimic the discovery of the eggs by the hosting
birds. Next, new randomly generated solutions are
going to substitute the discarded solutions. The top-
ranked nests will remain within the next generations.
The CS searching of the design space goes via a
random walk that taken out from Levy probability
distribution. The original CS pseudo-code is listed in
Algorithm 1.

Levy flight is the strengthening component of CS
where it offers the random walk, though steps/jumps
length is selected from Levy probability distribution.
The jumps (long steps) in the design space are
possible because of the heavily tailed nature of Levy
probability distribution (Yang 2014).

Algorithm 1: Cuckoo Search Algorithm (CS)

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:
Initial and evaluate a random population of 𝑛

host nests (𝑥𝑖, 𝑓𝑖).
𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕) 𝑫𝒐:

- Generate a new Cuckoo (population)
randomly by Levy flights (Eq.1).

- Evaluate the new Cuckoo fitness (𝑓𝑖).

- Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly.
 𝐼𝑓 𝑓𝑖 > 𝑓𝑗
- Replace the j with the new solution.

 𝑒𝑛𝑑
- Rank the solutions and find the current

best.
- Discard Pa fraction of worst solutions.
- Substitute the discarded solutions by new

ones generated by Levy flights.

𝑬𝒏𝒅

In general, the random walk depends on the
previous location, 𝑥𝑖

𝑡 , and the length of the step/jump,
which is the second term of equation (1).

𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝛼⨂𝐿ѐ𝑣𝑦(𝜆, 𝑠) (1)

where α is the step size scale factor and 𝛼 > 0. For
most optimization problems, the unity step scale factor
could work well (Yang and Deb 2009). The term
𝐿𝑒𝑣𝑦(𝜆) represents Levy probability distribution, 𝜆 is
Levy exponent, and s is the step size.

𝐿ѐ𝑣𝑦(𝜆, 𝑠𝑡𝑒𝑝)~ 𝑢 = 𝑡−𝜆,
(1 < 𝜆 ≤ 3)

(2)

The random direction of the step/jump and step
size that follows Levy probability are two essential
elements to generate random numbers via levy flights.
The direction of the step could be randomly drawn

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12101

from the normal distribution, 𝑁(𝜇, 𝜎2) , whereas the
step length needs to be determined through the
Magenta algorithm. According, the step size (s) can be
determined through the following formula:

𝑠 =
𝑢

|𝑣|
1

𝜆⁄
 (3)

where

𝑢 ~ 𝑁(0, 𝜎2), 𝑣 ~ 𝑁(0,1). (4)

𝑢, 𝑣 are Gaussian normal distributions. The
definition of 𝑢 means that the random samples are
drawn from a normal distribution that has 0 mean and
variance of 𝜎2 . The variance value could be obtained
from:

𝜎2 = [
Γ(1 + 𝜆)

𝜆Γ((1 + 𝜆) 2⁄)
.
sin (𝜋𝜆 2⁄)

2(𝜆−1) 2⁄
]

1 𝜆⁄

 (5)

where Γ(n) is nothing more than factorial of 𝑛 or 𝑛!

III. ADAPTED DISCRETE CUCKOO SEARCH ALGORITHM

(ADCSA)

CS Originally presented as population-based
metaheuristic to solve unconstrained continuous
optimization problems (Yang and Deb 2009). However,
several discrete variants were introduced to solve a
particular discrete optimization problem (Ouaarab,
Ahiod et al. 2014). Others were more general, such as
using rounding of the Levy flight step into the nearest
integer (Kaveh and Bakhshpoori 2013). (Loubna,
Mohamed et al. 2017) presented a universal approach
that could generate steps with integer values to obey
Levy flights random walk. A similar approach has used
here, and it is explained in subsection 3.2.

The proposed ADCSA bears three main
modifications to the original CS. First is using Latin
HyperCube (LHC) sampling method to generate the
initial population; the second is presenting discrete
Levy flights representation and finally improve the
neighbourhood search of the best solution through four
different permutation movements. The proposed
ADCSA pseudo-code is listed in Algorithm 2.

Algorithm 2: Adapted Discrete Cuckoo Search
Algorithm (ADCSA)

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏:
- Initial and evaluate a random population of 𝑛

host nests (𝑥𝑖, 𝑓𝑖) using Latin Hypercube
(LHC) random generator.

𝑾𝒉𝒊𝒍𝒆 (𝒄𝒐𝒏𝒗𝒆𝒓𝒈𝒆𝒏𝒄𝒆 𝒏𝒐𝒕 𝒎𝒆𝒕) 𝑫𝒐:
Generate a new Cuckoo (population) randomly

by Levy flights (Eq.8).

Evaluate the new Cuckoo fitness (𝑓𝑖).

Choose a nest among 𝑛 (𝑠𝑎𝑦, 𝑗) randomly.
 𝑰𝒇 𝒇𝒊 > 𝒇𝒋

- Replace the j with the new solution.

 𝒆𝒏𝒅
Rank the solutions and find the current best.
Discard Pa fraction of worst solutions.
Substitute the discarded solutions by new ones

generated by Levy flights.

𝑰𝒇 (𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑠𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙 𝑟𝑢𝑛𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑)
Do permutation, swap, insertion and bit flip for

the current best solution.

 𝑒𝑛𝑑
Update the best solution.

𝑬𝒏𝒅

A. Initial Population

Li, Liu et al. (2020) investigated the impact of

initialization methods on the meta-heuristics searching

performance. They examined eight different ways of

random initialization sampling for five meta-heuristics.

Their work results revealed that CS is sensitive to the

initialization method, where it performed differently in

73.68 % of the tested functions based on the used

method of initialization. Moreover, they suggested that

the hybridization of different sampling methods could

boost the algorithm performance of searching the

design space. However, in the current study, three

different sampling methods, Discrete Uniform

Distribution (DUD), Latin HyperCube (LHC) and hybrid

DUD-LHC, were examined. The numerical experiment

results exhibited a slight improvement in the overall

performance of ADCSA when LHC was used

compared to the other two methods; See Figure (5).

B. Discrete Levy Flights Representation

The proposed approach by Loubna, Mohamed et

al. (2017) defines the design space domain by rank

and value. The “rank” refers to the location of the

variable within the design domain vector, 𝐷 , while

“value” represents the corresponding assigned

variable value/option, 𝑑𝑖. So, the new Cuckoo,𝑥(𝑖+1) is

generated based on the current solution element rank,

integer number, and an integer step size that obeys

Levy flights, see Eq.1. Next, the new cuckoo with rank

form is transformed into the equivalent values form.

Therefore, 𝑋𝑖
𝑡 = [𝑥1, 𝑥2, … . 𝑥𝑛] represents the design

variables vector, and N is the problem size. Whereas,

𝐷 = [𝑑1 𝑑2 … . 𝑑𝑀] indicates the discrete domain of the

optimization problem. So,

 𝑅𝑎𝑛𝑘 (𝐷) = {1,2, … . , 𝑀},

𝑉𝑎𝑙𝑢𝑒(𝑅𝑎𝑛𝑘(𝐷)) = { 𝑑1, 𝑑2, … , 𝑑𝑀}

An improved version of the value-rank approach
was implemented here. The improvements went to the
update strategy of the size scale factor α, and to the
step size determination. Selectin the step size factor α
could influence the performance of the algorithm
significantly, and it linked to the problem nature (Yang
and Deb 2009). Using a constant value for 𝛼, e.g. 0.01
or 1, might work, but it doesn’t consider any problem
characteristics such as the solution fitness/quality. So,
the proposed scale factor here is examining the quality
of the fitness of the individual solution, 𝑓𝑖, to the fitness
of the best solution, 𝑓𝑏𝑒𝑠𝑡 .

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12102

𝛼 =
𝑓𝑖

𝑓𝑏𝑒𝑠𝑡
 (6)

Consequently, the new solution, 𝑥𝑖+1 , will be
updated according to:

𝑥𝑖+1 = 𝑥𝑖 +
𝑓𝑖

𝑓𝑏𝑒𝑠𝑡
. 𝑠𝑡𝑒𝑝⨂(𝑥𝑏𝑒𝑠𝑡 − 𝑥𝑖) (8)

Now, the updated step size, second term in Eq.8,
produces real values, while the current solution 𝑥𝑖 has
an integer representation (rank) of discrete values and
thus the new solution, 𝑥𝑖+1 is going to have real values
which we couldn’t use it directly as ranking values.
Therefore, a transformation function was used to turn
the real values of the step size into their equivalent
integer values. The sigmoid function, Eq. 9, is widely
used in solving classification problems by machine
learning (ML) algorithms (Shalev-Shwartz and Ben-
David 2014); also, it used in the binary variant of CS to
solve the knapsack problem, (Ouaarab, Ahiod et al.
2014).

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑧) =
1

1 + 𝑒−𝑧
 (9)

Sigmoid function, Figure(1), gives a selection
probability between 0 and 1 for any input values, which
is the step size in our case.

𝑝𝑖(𝛼. 𝑠. ∆𝑥𝑥𝑏𝑠𝑒𝑡) =
1

1 + 𝑒−𝛼.𝑠.∆𝑥𝑥𝑏𝑠𝑒𝑡
 (10)

The next step is dividing the interval [0,1] to the desired

number of classes (ranks), 𝐶, and this gives each class

(rank) a range of selection, △ 𝑐.

𝐶 = |𝐷| ⟹ 𝐶 = 𝑀

Then, the obtained selection probability,𝑝𝑖, is compared

across all ranges to determine the class to which this 𝑝𝑖

belongs.

∆𝑐 =
1

𝑀

(𝑘 − 1). ∆𝑐 ≤ 𝑐𝑖 < 𝑘. ∆𝑐 , (𝑖, 𝑘 = 1: 𝑀)

Figure 1: Sigmoid transformation function.

Despite the successful transformation of the
original step size into its equivalent integer size, the
new solution 𝑥𝑖+1 might exceed the domain bounds

when equation (8) applied. However, we experience a
similar situation every day when we use the clock
arithmetic to keep the time; e.g. the clock now is (8:00
am), and we want to know where will the hour hand be

in 5 hours? (8 𝑎𝑚 + 5 ≡ 13) Obviously, it exceeds the
clock bounds, which is 12, but intuitively we say it is
1:00 pm. The mathematical interpretation of this, that
the remainder of dividing 13 by 12, is one, and this is
the typical definition of modulo function that we are
going to use to reflect a meaningful value for out-off
bounds ranks. Therefore,

𝑟𝑎𝑛𝑘(𝑥𝑖+1) = 𝑚𝑜𝑑((𝑥𝑖 + 𝑠), |𝐷|) + 1 (11)

where 𝑠 represents the integer value of the levy
flights steps/jumps, and 1 is the minimum rank value if

𝑚𝑜𝑑((𝑥𝑖 + 𝑠), |𝐷|) = 0 . Eventually, the ranked new

solution, 𝑟𝑎𝑛𝑘(𝑥𝑖+1) , reversed to its assigned rank
values or 𝑣𝑎𝑙𝑢𝑒(𝑟𝑎𝑛𝑘(𝑥𝑖+1)) form that we could use to
determine the objective optimization function directly.

C. Neighbourhood Search

Yang (2013) expect that CS intensification could be
improved by using local search Levy flights or
hybridization CS with other local optimization
algorithms (e.g. Tabu Search). The primary purpose of
enhancing the intensification feature of any meta-
heuristic is to ensure that the obtained solution is not a
local optimum, and there was no possible global
optimal solution left behind the current best solution.
However, the proposed ADCSA turns the optimization
problem into a pure permutation problem, as a result of
using the rank-value approach. The ranked solution
has an integer representation that we could permute to
produce a new ranked solution. Based on this, four
different permutation operators employed in ADCSA to
improve the search of the current best solution
neighborhood.

1) Random permutation

Random permutation operator is selecting
randomly two elements of the solution vector and
reverses the order of the other elements in between.
Let’s that we have a six dimensions solution vector as
follow:

𝑥 = [1 2 3 4 5 6]

So, a possible permutation is:

Before permutation:

𝑥 = [1 𝟐 3 4 𝟓 6]

After permutation:

𝑥 = [1 𝟓 4 3 𝟐 6]

2) Swap(mutation)

Swap operator also knows as mutation, selects
randomly two elements and switch over their positions
in the solution vector.

Before swap:
 𝑥 = [1 2 𝟑 4 5 𝟔]

 After swap:

∆𝑐

𝑐1 𝑐2 𝑐3 𝑐4 𝑐𝑀

0 1

𝑆(𝑧) =
1

1 + 𝑒−𝑧

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12103

𝑥 = [1 2 𝟔 4 5 𝟑]

3) Insertion

The insertion operator is randomly selecting an
element of the solution vector and insert it randomly
between the other two elements.

before insertion:

 𝑥 = [1 2 3 4 𝟓 6]

 after insertion:

 𝑥 = [1 𝟓 2 3 4 6]

4) Bit flip

Bit flip operator selects a random element (bit) of
the solution vector and changes its rank order
randomly.

before bit flip:

 𝑥 = [1 2 3 4 5 6]

after a bit flip:

 𝑥 = [1 2 𝟐 4 5 6]

Random permutation and swap operators were
used in solving a well-known benchmark problem of
structural engineering of composite laminated design
optimization by Genetic Algorithm (GA), (Le Riche and
Haftka 1993). Whereas, insertion and bit flip operators
were used efficiently, as a part of an improved Tabu
search algorithm in searching of the neighbourhood of
large design space optimization problems (He, de
Weerdt et al. 2019). Lastly, these operators were
integrated into ADCSA structure in the way that they
will not be activated until a certain number of
successful runs is reached.

D. Convergence Criteria

ADCSA designed to stop after a certain number of
successful runs without any solution improvement is
reached. Otherwise, it continues searching for the
optimal solution until the predefined maximum number
of iterations is exceeded.

IV. NUMERICAL EXPERIMENTS

In order to examine the performance of the
proposed ADCSA in solving discrete structural
optimization problems, two different case studies were
selected from the literature. The first case study is a
benchmark problem used here as a numerical
experiment to validate the solution accuracy of ADCSA
and to compare its performance with other meta-
heuristics in the literature. Thus, a benchmark problem
of a composite laminated plate subjected to bi-
directional compression loading was used in this
experiment (Le Riche and Haftka 1993). To ensure the
robustness of ADCSA, another discrete structure case
study of customized I-beam gantry crane subjected to
yield criteria (Ahmid, Le et al. 2017).

A. Validation numerical experiment

The benchmark optimization problem of a
composite laminated plate subjected to compression

loading is extensively used in the literature to
investigate the performance of a new or modified
meta-heuristics (Aymerich and Serra 2008, Koide,
França et al. 2013).In a more recent study, the same
benchmark problem used to compare the performance
of five different meta-heuristics (Ahmid, Thien-My et al.
2019). The original optimization problem introduced by
(Le Riche and Haftka 1993)for a laminated rectangular
plate simply supported. The in-plane compression
loading conditions were applied in the direction of both
axes x,y, see Figure (2) . The optimization objective is
maximizing the critical buckling loading capacity of the
plate subjected to design and manufacturing
constraints. Moreover, the number of plies, 𝑁𝑝 , and

thickness of each ply, 𝑡𝑝, are imposed while the fiber

orientation of each plies group, 𝜃𝑝, needs to be chosen

from a discrete domain of available orientations,
𝐷 = [0°; ±45°; 90°]. The design variable vector, 𝑋, is
formed by the number of plies groups that meet the
symmetry and balanced constraints. The symmetrical
laminate means that both sides about the mid-plane
have the same number of the plies and this reduces
the number of plies, to be optimized, into the half of the
total number of plies, Np=2 .Balanced laminate is
symmetrical one where each group of two plies, with
same fiber orientation, on one side has a similar group
on the other side, and this downsize the number of the
optimized plies to another half. Thus, the final number
of design variables (optimized plies) will be equal to
𝑁𝑝 = 4 .The formula of buckling load factor 𝜆𝑏 , which

developed according to Classical Lamination Theory
(CLT), has been used implicitly to determine the
objective function of critical buckling load, 𝜆𝑐𝑏 ,
(Riche,et al. 1993), Therefore,

𝜆𝑏(p, q) = 𝜋2
[𝐷11(

𝑝
𝑎⁄)

4
+ 2(𝐷12 + 2𝐷66)(

𝑝
𝑎⁄)

2
+ 𝐷22(

𝑞
𝑏⁄)

4

]

(
𝑝

𝑎⁄)
2

𝑁𝑥 + (
𝑞

𝑏⁄)
2

𝑁𝑦

 (12)

where 𝐷𝑖𝑗 is the bending stiffness, 𝑁𝑥, 𝑁𝑦 are in-

plane compression loads in 𝑥, 𝑦. The variables 𝑝 , 𝑞
denote the buckling modes in both 𝑥, 𝑦 directions. The
critical buckling load factor 𝜆𝑐𝑏 , is defined as the
minimum obtained value of 𝜆𝑏(p, q), (Rao 2009).

Figure 2: Simply supported plate subjected to
biaxial loading (Ahmid, Thien-My et al. 2019).

The orthotropic material properties, dimensions,
and loading conditions of the composite laminated

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12104

plate used in this experiment are listed in Tables 1 and
2.

1) Experiment Setting

The proposed ADCSA code written in Matlab
2019b programming language. In addition, the other
two discrete variants of presented by Kaveh and
Bakhshpoori (2013) and Loubna, Mohamed et al.
(2017) were implemented and programmed using

===
User: Ali Ahmid …………………………………………………………………..15-Feb-2020 00:24:25
===
Machine Information:
CPU Processor: Intel(R) Core (TM) i7-4790 CPU @ 3.60GHz
CPU clock speed: 3601 MHz
CPU Cache size (L2): 1024 KB
Number of physical CPU cores: 4
Installed physical memory (RAM): 16 GB
operating System Type: Windows
Operating System Version: Microsoft Windows 7 Enterprise
===

Figure 3: The specifications of PC-machine used in the current comparison study.

Matlab 2019b. All implemented variants tested on the
same PC-machine with the listed specifications in
Figure (3). The experiment initialized with the same
number of nests, 𝑛𝑁𝑒𝑠𝑡 = 100 , and same discovery
rate, 𝑃𝑎 = 0.25. For each variant, the experiment has
been repeated 200 times to overcome the stochastic
behaviour of meta-heuristics as recommended in the
original reference, (Le Riche and Haftka 1993).

Furthermore, an assessment of three different random
initialization methods of Discrete Uniform Distribution
(DUD), Latin hypercube (LHC) and hybrid DUD-LHC
were conducted. The results demonstrated slightly
better performance of ADCSA when LHC used to
generate the initial population, see Figure . Thus, it
used to generate the initial population of ADCSA in the
executed validation experiments.

2) ADCSA Performance assessment criteria

In the literature, there were different measures
used to assess meta-heuristics performance. Elapsed
time is not only the measure used to evaluate the
computational solution cost where the success rate (or
reliability) and the average number of runs required to
find the optimal solution (price) were commonly used
too. Furthermore, normalizing the solution price, price/
reliability, could reveal valuable information about the
solution cost (Le Riche and Haftka 1993, Ahmid,

Thien-
My et

al.
2019).
Lastly,
where

such
an

optimiz
ation

proble
m has

multi-
optimal
solutio

ns, the term of practical optima is used. It is devoted to
considering the near-optimal solutions of 0.1% error to
the best-known optimal solution (Aymerich and Serra
2008).

B. Customized I-beam gantry crane problem

The customized I-beam gantry crane design is another
structural design problem that started to attract the
attention, (PAVLOVIĆ, SAVKOVIĆ et al. , Ahmid, Le et
al. 2017, Alhorani 2020). The original problem
statement says that for a welded I-beam profile, gantry
crane built by welding three different steel plates that
have the same length, but they were diverse in their
thickness and width. The live loading condition was
applied to the crane, see Figure. The nomenclature of
different crane dimensions and loads are given as:

 b1, t1 and b2 t2 are lower and upper flanges widths
and thicknesses respectively, while h, t3 are the width

and thickness and width of the web. W1represents the
crane weight and W2 is the live load. Lastly, 𝐿 is the

crane span, and 𝑥 is the distance of W2 measured
from the crane left end. The optimization objective is
reducing the crane weight by minimizing the crane
cross-section area, which is defined by:

𝐴𝑐𝑠 = 𝑏1. 𝑡1 + 𝑏2. 𝑡2 + ℎ. 𝑡3 (13)

The crane design is subjected to
bending and buckling criteria, which result

(14)

Figure 4: The crane beam dimensions and loading conditions, (Ahmid, Le et al. 2017)

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12105

in a set of design constraints. Hence,
g1 = σcomb_max − σTallowed ≤ 0

g2 = 1.9 − fBuckling ≤ 0 (15)

g3 = h t3⁄ − 260 ≤ 0 (16)

g4 = b2 2t2⁄ − 260 √σy⁄ ≤ 0 (17)

g5 = δv − L 600⁄ ≤ 0 (18)

g6 = (Δσ)comb max
− Δσallowed ≤ 0 (19)

These constraints were imposed by using the
exterior penalty function that transforms the objective
function, 𝐴𝑐𝑠, into:

𝐹(𝑋, 𝑟𝑔) = 𝐴𝑐𝑠(𝑋)

+ 𝑟𝑔 [∑(𝑚𝑎𝑥{0, 𝑔𝑗(𝑋)})2

𝑚

𝑗=1

]

(20)

where 𝑋 = [𝑏1 𝑡1 𝑏2 𝑡2 ℎ 𝑡3] and 𝑟𝑔 is penalty

multiplier for inequality constraints 𝑔𝑖.

Eventually, the material used for the crane is 350W
structure steel with yielding strength 𝑆𝑦 =350 MPa,

density ρ=7850 𝑘𝑔/𝑚3, Young’s modulus E=200 GPa,
shear modulus G=77 GPa and Poisson’s ratio ν=0.3.
The dimensions intervals and loads of the crane
optimized here are:

𝑏1𝜖 [150: 10: 490] , (mm)
𝑡1 𝜖 [6: 2: 74] , (mm)
𝑏2 𝜖 [150: 10: 490] , (mm)
𝑡2 𝜖 [6: 2: 74] , (mm)
ℎ 𝜖 [600: 20: 1280] , (mm)
𝑡3 𝜖 [2: 36] , (mm)
 𝐿 = 8 , (m)
𝑊2 = 10,20,40 , (ton)

V. RESULTS AND DISSCUSIONS

The obtained results of the validation experiment
and the case study of customized I-beam gantry crane
are illustrated and discussed in the following
subsections.

A. Validation of experiment results

The results of the three initialization methods, they
mentioned in section 3.1, were statistically compared
and depicted in standard division graph in Figure (5).

 Moreover, the two variants of discrete CS by
Kaveh and Bakhshpoori (2013) and Loubna,
Mohamed et al. (2017) where implemented, as
described, and they were given two abbreviations,
RDCS and ADCS, respectively. Consequently, they
were applied for the same experiment with the same
number of experiments. The number of 30 runs without
improving was used as convergency criteria to break
the variant searching loop. The proposed ADCSA was
also examined with the same experiment setting, and
the obtained results of all discrete CS were illustrated
in Figures 5-8. Finally, the summary of the comparison

of different published results and the proposed
algorithms were listed in Table 3. The results reveal
that the proposed ADCSA outperforms the other
presented DCS algorithms and other meta-heuristics in
literature as solving algorithm for the composite
laminated plate. ADCSA exhibited a fast convergence
rate where it needs around 12 iterations to find the
optimal solution. Moreover, ADCSA delivers an
accurate solution with So, the accuracy of the
proposed ADCSA is examined, and it has shown
significant performance in solving the NP-optimization
problem of structural engineering.98% reliability
(successful rate) at 41 iterations solution cost.

Figure 5 Standard deviation plot for different

initialization methods

Figure 6 Standard deviation plot for different

initialization methods

3970

3971

3972

3973

3974

DUD LHC Hyper DU-LHC

C
ri

ti
ca

l
B

u
ck

li
n

g
 L

o
ad

 F
ac

to
r,

 λ
cr

3965

3968

3971

3974

ADCSA RDCS ADCS

C
ri

ti
ca

l
B

u
ck

li
n

g
 L

o
ad

 F
ac

to
r,

 λ
cr

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12106

The next section is devoted to demonstrating the
results of applying ADCSA to other structural
engineering optimization problems.

A. Customized I-beam Gantry crane Results

The obtained results of discrete crane design
optimization using ADCSA were compared to
previously published one of the continuous
optimization approaches. Furthermore, both results
compared to an equivalent standard I-beam profile for
the same optimization strength constraints (CISA). The
comparison study produced nine different examples of
8 m crane, where the three different types of crane
beams were subjected to three live loads of 10,20 and
40 tons. The results of this comparison listed in
Figures 10-17 and the abbreviations CC, DC and ES

are mentioning the three different types of I-beams
crane: Continues optimized Custom (CC), Discrete
optimized Custom (DC) and Equivalent Standard I-
beam (ES) respectively.The results obtained here
reveal that the crane cross-section profile of the
discrete optimization approach followed the same
configurations pattern achieved using a continues
optimization approach. It always shows narrow and
thick lower flange, wider and thinner upper flange and
tall and very thin web, see Figure 17. Furthermore,
both approaches of optimal custom crane did not
violate any imposed constraints for the three live loads.
At the same time, the equivalent standard I-beam
failed to remain within the strength limits of tension,
and fatigue stresses constraints for the 40-ton case,
see Figure 10-11. The lateral buckling of 10-ton live
load almost reached the limit for the three I-beam
types, see Figure 12. The local buckling of the top
flange became critical for CC I-beam, while it was
never critical for DC or ES I-beam types. On the other
hand, the web slenderness was not critical for any CC
I-beam loading cases while it reaches the limits in the
first loading case (10-ton) for the other two types, see
Figure 13. Finally, the results reveal that the discrete
optimization approach could reduce the weight from 61
- 69 % of the equivalent standard I-beam crane
structure.

Table 1: Comparison of different performance measures for ADCSA and other meta-heuristics

Meta-heuristic Price
Reliability,

%
Normalized

Price
Elapsed Time,

sec

(a) ADCS

(b) RDCS

(C)ADCSA

Figure 7 The number of experiments vs. critical
buckling load for ADCSA, RDCS, ADCS.

Figure 8. ADCSA meta-heuristic Convergence in
the first successful run.

Figure 9 Distance to global optimal for ADCSA meta-

heuristic first successful run

3966

3969

3972

3975

0 20 40 60 80 100 120 140 160 180 200

λ c
r

Experiement Number

3955

3960

3965

3970

3975

0 20 40 60 80 100 120 140 160 180 200

λ c
r

Experiement Number

3955

3960

3965

3970

3975

0 20 40 60 80 100 120 140 160 180 200
λ c

r

Experiement Number

3910

3925

3940

3955

3970

3985

4000

0 5 10 15 20 25 30 35 40

C
ri

ti
ca

l
B

u
ck

li
n

g
 L

o
ad

 F
ac

to
r,

 λ
cr

Number of Generation, ige

3900

3920

3940

3960

3980

0 1 2 3

C
ri
ti
c
a
l
B

u
c
k
lin

g
 L

o
a
d
 F

a
c
to

r,
 λ

c
r

Distance to Global Optimal Solution,xopt

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12107

ADCSA 41 98% 42 6

ADCS (Luboan2017) 71 56.5% 126 18

RDCS (Kaveh2013) 243 93.5% 259 118

GA (LeRiche1993) 371 98.9% 375 NA

GA (Ahmid 2019) 252 88% 286 16

ACO (Ahmid2019) 88 76.5% 115 4

Figure 10: The tension stresses vs. live loads for different types of I-beam
crane

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

0 10 20 30 40 50

T
e

n
s
io

n
 s

tr
e

s
s
 ,
 P

a

Live load,ton

CC
DC
ES
Sy

σ
a
=0.75 x Sy

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12108

Figure 11: The fatigue stresses vs. live loads for different types of I-beam
crane

Figure 12: The critical buckling load factor vs. live loads for different types of I-
beam crane

0.E+00

5.E+07

1.E+08

2.E+08

2.E+08

3.E+08

0 10 20 30 40 50

F
a
ti
g

u
e
 s

tr
e
s
s
 ,
 P

a

Live load, ton

CC
DC
ES
Sy

σ
af

=166MPa

1

5

9

13

0 10 20 30 40 50

C
ri

ti
ca

l
b

u
ck

li
n

g
 l

o
ad

 f
ac

to
r,

 λ
cr

Live load (ton)

CC

DC

ES

cr

λ
cr
=1.9

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12109

Figure 13: The web slenderness vs. live loads for different types of I-beam
crane

Figure 10: The flange ratio vs. live loads for different types of I-beam crane.

15

55

95

135

175

215

255

295

0 10 20 30 40 50

W
eb

 s
le

n
d

er
n
es

s,
 h

/t
3

Live load (ton)

CC
DC
ES
cr

h/t
3
=260

1

4

7

10

13

0 10 20 30 40 50

F
la

n
g
e

ra
ti

o
,

b
2
/2

t 2

Live load (ton)

CC

DC

ES

cr

b
2
/2t

2
=260/Sy

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12110

Figure 15: The deflection vs. live loads for different types of I-beam crane

Table 4: Different optimal solution configuration of customized I-beam gantry crane

Figure 16: The crane weight vs. live loads for different types of I-beam crane

0

0.0025

0.005

0.0075

0.01

0.0125

0.015

0 10 20 30 40 50

D
e

fl
e

c
ti
o

n
,
δ

Live load

CC

DC

ES

0

1000

2000

3000

4000

10 ton 20 ton 40 ton

C
ra

n
e

w
ei

g
th

,
K

g

CC DC ES

Design Approach t1 (𝑚𝑚) b1 (𝑚𝑚) t2 (𝑚𝑚) b2 (𝑚𝑚) t3 (𝑚𝑚) h (𝑚𝑚) Area (𝑚2)

CC

10 tons 27.82 150.01 6.99 194.2 3 608.64 .00736

20 tons 37.88 150.16 8.38 220.18 3.19 826.46 .0102

40 tons 52.62 150.04 9.08 252.14 4.38 1137.03 .0152

ES

10 tons 56.9 270.3 56.9 270.3 31.5 826.46 .0513

20 tons 54.1 305.2 54.1 305.2 30 796.8 .0572

40 tons 40 550 40 550 16 1120 .0621

DC

10 tons 54 150 34 170 3 620 .01574

20 tons 46 170 10 200 14 760 .0177

40 tons 46 190 16 290 10 1080 0.02418

δ
cr
=L/600

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12111

Figure 11: The three different types of I-beam crane
for the case of 8 m x10 ton.

VI. CONCLUSION

A new variant of the Adapted Discrete Cuckoo
Search Algorithm (ADCSA) presented and examined
for two different case studies of maximizing the critical
buckling load of composite laminated plate and a
customized I-beam gantry crane design optimization.
The validation results demonstrated a high accuracy of
the ADCSA solution at a reasonable cost.
Furthermore, the initialization methods experiment
conducted here illustrated a slight effect of the initial
population generation on the performance ADCSA.
The use of the LHC sampling approach improved the
reliability slightly compared to ADCSA initialized using
DUD or Hybrid DUD-LHC. The results obtained for the
customized I-beam gantry crane shown that the crane
cross-section profile of the discrete optimization
approach followed the same configurations pattern
obtained using a continues optimization approach. It
always shows narrow and thick lower flange, wider and
thinner upper flange and tall and very thin web.
Additionally, the saving in the cross-section area is
noticeable compared to the equivalent standard I-
beams. Eventually, the proposed ADCSA has been
applied for two different structural optimization
problems so far and examining it for other engineering
problems could be prospective work. Furthermore,
investigating the different initialization methods on the
proposed algorithm to find better performance
deserves a try.

REFERENCES

Agrawal, S., et al. (2013). "Tsallis entropy based
optimal multilevel thresholding using cuckoo search
algorithm." Swarm and Evolutionary Computation 11:
16-30.

Ahmid, A., et al. (2017). "An optimization procedure
for overhead gantry crane exposed to buckling and
yield criteria." International Journal of Technology and
Engineering 8(2): 11.

Ahmid, A., et al. (2019). "Comparison Study of
Discrete Optimization Problem Using Meta-Heuristic
Approaches: A Case Study." International Journal of
Industrial Engineering 1(2): 97-109.

Alhorani, R. A. (2020). "Mathematical models for the
optimal design of I-and H-shaped crane bridge
girders." Asian Journal of Civil Engineering 21(4): 707-
722.

Aymerich, F. and M. Serra (2008). "Optimization of
laminate stacking sequence for maximum buckling
load using the ant colony optimization (ACO)
metaheuristic." Composites Part A: Applied Science
and Manufacturing 39(2): 262-272.

Cobos, C., et al. (2014). "Clustering of web search
results based on the cuckoo search algorithm and
Balanced Bayesian Information Criterion." Information
Sciences 281: 248-264.

de Moura Meneses, A. A., et al. (2020). "Application of
Cuckoo Search algorithm to Loading Pattern
Optimization problems." Annals of Nuclear Energy
139: 107214.

Gandomi, A. H., et al. (2013). "Cuckoo search
algorithm: a metaheuristic approach to solve structural
optimization problems." Engineering with computers
29(1): 17-35.

Gherboudj, A., et al. (2012). "Solving 0-1 knapsack
problems by a discrete binary version of cuckoo
search algorithm." International Journal of Bio-Inspired
Computation 4(4): 229-236.

He, L., et al. (2019). "Time/sequence-dependent
scheduling: the design and evaluation of a general
purpose tabu-based adaptive large neighbourhood
search algorithm." Journal of Intelligent
Manufacturing: 1-28.

Jati, G. K. and H. M. Manurung (2012). Discrete
cuckoo search for traveling salesman problem. 2012
7th International Conference on Computing and
Convergence Technology (ICCCT), IEEE.

Kaveh, A. and T. Bakhshpoori (2013). "Optimum
design of steel frames using Cuckoo Search algorithm
with Lévy flights." The Structural Design of Tall and
Special Buildings 22(13): 1023-1036.

Koide, R. M., et al. (2013). "An ant colony algorithm
applied to lay-up optimization of laminated composite
plates." Latin American Journal of Solids and
Structures 10(3): 491-504.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 7 Issue 6, June - 2020

www.jmest.org

JMESTN42353416 12112

Layeb, A. (2011). "A novel quantum inspired cuckoo
search for knapsack problems." International Journal
of Bio-Inspired Computation 3(5): 297-305.

Le Riche, R. and R. T. Haftka (1993). "Optimization of
laminate stacking sequence for buckling load
maximization by genetic algorithm." AIAA journal
31(5): 951-956.

Li, Q., et al. (2020). "Influence of initialization on the
performance of metaheuristic optimizers." Applied Soft
Computing: 106193.

Li, Z., et al. (2018). "Discrete cuckoo search
algorithms for two-sided robotic assembly line
balancing problem." Neural Computing and
Applications 30(9): 2685-2696.

Loubna, B., et al. (2017). "A Novel adaptive Discrete
Cuckoo Search Algorithm for parameter optimization
in computer vision." Inteligencia Artificial. Revista
Iberoamericana de Inteligencia Artificial 20(60): 51-71.

Ouaarab, A., et al. (2014). "Discrete cuckoo search
algorithm for the travelling salesman problem." Neural
Computing and Applications 24(7-8): 1659-1669.

PAVLOVIĆ, G., et al. "Analysis and Optimization
Design of Welded I-girder of the Single-beam Bridge
Crane."

Piechocki, J., et al. (2014). "Use of Modified Cuckoo
Search algorithm in the design process of integrated
power systems for modern and energy self-sufficient
farms." Applied Energy 114: 901-908.

Rao, S. S. (2009). Engineering optimization: theory
and practice, John Wiley & Sons.

Shalev-Shwartz, S. and S. Ben-David (2014).
Understanding machine learning: From theory to
algorithms, Cambridge university press.

Shehab, M. (2020). Introduction of Diffusion MRI and
Cuckoo Search Algorithm. Artificial Intelligence in
Diffusion MRI, Springer: 1-12.

Shehab, M., et al. (2017). "A survey on applications
and variants of the cuckoo search algorithm." Applied
Soft Computing 61: 1041-1059.

Xin, Z., et al. (2019). Spectrum Allocation of Cognitive
Radio Network Based on Improved Cuckoo Search
Algorithm. Proceedings of the 2nd International
Conference on Computer Science and Software
Engineering.

Yang, X.-S. (2013). Cuckoo search and firefly
algorithm: Theory and applications, Springer.

Yang, X.-S. (2014). Nature-inspired optimization
algorithms, Elsevier.

Yang, X.-S. and S. Deb (2009). Cuckoo search via
Lévy flights. 2009 World congress on nature &
biologically inspired computing (NaBIC), IEEE.

Yang, X.-S. and S. Deb (2013). "Multiobjective cuckoo
search for design optimization." Computers &
Operations Research 40(6): 1616-1624.

Zhou, Y., et al. (2014). "A discrete cuckoo search
algorithm for travelling salesman problem."
International Journal of Collaborative Intelligence 1(1):
68-84.

http://www.jmest.org/

