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Abstract—China officially launched the nation-
wide carbon emission trading scheme at the end 
of 2017 on the experiences of its regional carbon 
trading pilot. The national scheme will still be on 
the initiation stage in the near future. Researches 
on the spillover effect across the pilot carbon 
markets help find the leading market in price 
discovery and provide references for the design of 
market mechanisms and related policy 
formulation in the national carbon market. The 
time-varying parameter state space model was 
used to analyze the trend of mean spillover effects 
across the seven pilot carbon markets in China. 
Results show that there is network of mean 
spillover across China’s seven pilot carbon 
markets, among which the Shenzhen, Guangdong, 
and the Shanghai pilot have spillover effects to 
and from other pilots, which the Beijing, Hubei, 

and Tianjin pilot are all receiver of spillover effects. 
But the Chongqing pilot is isolated from the 
network. The spillover effects all are one-way. 
Their values are significant at the early time 
period of the markets and tend to zero in the late 
period. Results reflect a certain correlation 
between China’s pilot carbon market, a sound 
basis of market integration and a gradual 
improvement of market mechanism in those pilots. 
Investors are suggested to consider the spillover 
effects between markets, and managers to 
strengthen the carbon market mechanism.  

Keywords—carbon market; mean spillover 
effects; state space model; time-varying 
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I.  INTRODUCTION  

The carbon emission trading market is a primary 
innovative practice of using markets mechanisms to 
control and reduce greenhouse gas emissions and 
promote green and low-carbon development. China 
took the initiative to assume the responsibility of great 
power. Starting in June 2013, China has established 
carbon trading pilot markets in five cities (Shenzhen, 
Beijing, Shanghai, Tianjin and Chongqing), and three 
provinces (Guangdong, Hubei and Fujian). At the end 
of 2017, the Nation Development and Reform 
Commission (NDRC) released its Guidelines of 
National Carbon Emissions Trading Market 

Construction Plan (Power Generation Industry), which 
indicate that the official start of China’s establishment 
of a national carbon trading market. It is currently only 
included in the power industry, but it has surpassed 
the European Union Emission Trading Scheme (EU 
ETS) and become the world’s largest carbon trading 
system[1]. During the new period of China’s carbon 
markets exploration, the discrepancy in system design 
and the independent operation of each carbon market 
have made the pilot carbon markets significantly 
different after more than four years of pilot work. 
However, there are many realistic factors in one 
market make fluctuations tend to be transmitted to 
other markets through market participants [2]. Is there 
a spillover effect between China’s pilot markets? How 
does this spillover effect change? How integrated is 
China’s carbon market? Can it be the basis for a 
unified national carbon market? These issues are 
urgent concerns for the establishment of a national 
carbon market. Under this background, we can grasp 
the influencing factors and mechanisms between 
carbon pilots by studying the spillover effects of 
fluctuations in pilot markets and provide empirical 
support for the construction of national carbon market. 
There are two types of spillover effects in the financial 
market: mean spillover effects and volatility spillover 
effects. The mean spillover effect refers to the impact 
of changes in one market price or return on other 
carbon markets, and this impact has a positive or 
negative effect.  The volatility spillover effect refers to 
the impact of changes in a carbon market on other 
carbon markets with no plus or minus, but only size. 
Vector autoregressive model (VAR) [3] and vector 
error correction model (VEC) [4] are commonly used 
methods to study the mean spillover effect. Most of 
the volatility spillover effects are based on one or 
more GRACH models.  

Carbon market presents environmental, market 
and financial, and policy-based attributes [5]. 
Empirical studies on spillover effects of the carbon 
market are mostly focused on volatility spillover 
effects between the EU carbon market and other 
markets. Reboredo [6] used a multivariate conditional 
autoregressive model with a binary logarithmic normal 
distribution to study the volatility spillover effect 
between the EU carbon market and the oil market and 
found that there is a spillover effect between the two 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 2, February - 2020  

www.jmest.org 

JMESTN42353277 11495 

markets. Liu and Xie [7] studied the mean spillover 
effect between the EUA and CER markets applied the 
VAR model. The results show that a unidirectional 
mean spillover effect from the EUA market to the CER 
market, and the spillover effect is negative. Wang and 
Guo [8] constructed a spillover index through the 
variance decomposition of prediction errors and 
studied the dynamic spillover effects between the EU 
carbon market and energy markets (West Texas 
Intermediate crude oil, Brent crude oil, and natural gas 
markets). Natural gas market has significant volatility 
spillover effects to the carbon market. Zhang and Sun 
[9] used the DCC-GRACH-BEEK model to explore the 
dynamic fluctuation spillover effect between the EU 
carbon market and the fossil energy market (coal, 
natural gas, Brent crude oil market). There are also 
significant spillover effects from the carbon market to 
the natural gas market.  

The Chinese carbon trading market is confronted 
with challenges such as inefficiency of carbon price, 
trading volume, market liquidity, and information 
transparency due to the short establishment time of 
China’s carbon market [10–12], but the carbon trading 
market in China from the state of inefficiency to weak 
form efficiency gradually [13]. The comprehensive 
evaluation of the pilot markets shows that the three 
markets in Hubei, Beijing, and Shenzhen have 
matured well [14–16]. Studies on the spillover effects 
of the Chinese carbon market are rather sparse. Sun 
[17] uses the DCC-MGARCH (1, 1) model to analyze 
the price volatility spillover effect between the EU 
emissions carbon market and China’s carbon trading 
market. The results show that there are a long-term 
equilibrium and mutual leading relationship between 
the two markets. The spillover effect from the EU 
market to the China’s carbon market is being more 
obvious. Wang and Gao [2] calculated the spillover 
effects among the China’s carbon trading markets by 
sextuple VAR-GARCH-BEKK model with asymmetric t 
distribution and analyzed the structure characteristics 
and spatial correlation of the carbon markets by social 
network analysis. Wang et al. [18] employs the 
multivariate GARCH(1,1)- BEKK model to analyze the 
volatility spillovers among the Guangdong pilot market, 
Shenzhen pilot market and Hubei pilot market. The 
empirical results show that there are significant 
spillover effects from Guangdong to Hubei, Hubei to 
Shenzhen and Shenzhen to Guangdong during Phase 
I. The spillover effect is only significant from Shenzhen 
to Guangdong during Phase II as well as the whole 
sampling.  

Existing research has laid the foundation for this 
paper to explore the relationship between the prices of 
pilot carbon markets. For the research on the effects of 
volatility spillovers between China’s carbon pilots, 
Wang [2] et al. and Wang et al.[18] both adopted the 
GARCH-BEKK model. The GARCH model allows 
time-series not to obey normal distribution and 
eliminates heteroscedasticity. However, there is a 
theoretical flaw in univariate GARCH model [19]. The 
GARCH model could describe the static volatility 

spillover effects among markets, but it is difficult to 
measure the evolutionary trajectory of volatility 
spillovers among markets. In this paper, a time-varying 
parameter state space model is used to characterize 
the dynamic mean spillover effects among the pilot 
carbon markets in China, focusing on the time-varying 
relationship between the markets and analyzing the 
magnitude of the corresponding spillover effectiveness.  

II. METHOD AND DATA 

A. The time-varying parameter space state 
model 

The state space model establishes the dynamic 
relationship between observable variables and system 
internal variables, which is generally used for 
multivariate time series. Let 𝑦𝑡 be a k × 1-dimensional 

observable vector containing k  economic variables, 
and unobservable variables of m economic systems, 
such as rational expectations, measurement errors, 
and long-term income, reflect the true state of the 

system and are called state vector  𝛼𝑡. We defined  

 {
𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑦𝑡 = 𝑍𝑡𝛼𝑡 + 𝑑𝑡 + 𝜀𝑡 , 𝑡 = 1, … , 𝑇,

𝑆𝑡𝑎𝑡𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛:  𝛼𝑡 = Γ𝑡𝛼𝑡 + 𝑐𝑡 + 𝑅𝑡𝜂𝑡 , 𝑡 = 1, … , 𝑇,
   (1) 

Where T  is the sample length, ε  and η  are normal 

distribution that are independent of each other, and 
obey the mean value and constant variance. They 
represent the disturbance terms of the measurement 
equation and the state equation. The covariance 
matrix is: 

Ω𝑡 = 𝑣𝑎𝑟 (𝜀𝑡
𝜂𝑡

) = (
𝐻𝑡 𝐺𝑡

𝐺𝑡 𝑄𝑡
),                                    (2) 

where 𝑍𝑡 , Γ𝑡 , 𝑅𝑡 , 𝐻𝑡 , 𝑄𝑡 , 𝐺𝑡 , 𝑑𝑡 , 𝑐𝑡  are called system 
matrices or vectors. One task of the state space model 
is to estimate these parameters. It is generally 
assumed that the state vector αt is subject to the AR(1) 
model[20]. 

There are two advantages to using state space 
model [21]. First, the state space model incorporates 
unpredictable variables into the observable model and 
obtains the estimation results together with it; The 
second is that the state space model uses Kalman 
filtering, a powerful iterative algorithm, to filter out the 
effects of unpredictable factors. 

B. Data and summary statistics 

The purpose of this paper is to study the mean 
spillover effect among China’s pilot carbon markets. 
Due to the short establishment time of the Fujian 
carbon trading market and relatively few trading data, it 
is not included in this study. As there are multiple types 
of transactions in the Shenzhen market, this article 
selects SZA-2013 as the Shenzhen carbon market 
data. This study spans the period from January 5, 
2015, to June 29, 2018. The data for the price series 
are sourced from the China Carbon Emissions Trading 
Network (http://www.tanpaifang.com/). Excluding non-
trading day data, a total of 848 observations were 
obtained. 
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Fig.1 shows the price series for seven carbon 
markets. Market prices fluctuated in different ranges, 
and Beijing and Shenzhen prices were relatively high. 
There are horizontal line segments of different lengths 
in Chongqing and Tianjin markets, indicating that the  
market activity is relatively low. There is no significant 
consistency in the trends of the price curves, indicating  
that the degree of price correlation in each market is 
low. 

 

Fig. 1. Carbon price in Chinese carbon pilots. 

This paper used carbon price return to study the 
spillover effects between the seven carbon pilots 
because of the instability of the price series. Let ReBJ, 
(ReCQ, ReGD, ReHB, ReSH, ReSZ, ReTJ) represent the 
return of Beijing (Chongqing, Guangdong, Hubei, 
Shanghai, Shenzhen, Tianjin) pilot. The unit root test 
results show that the return of each market has  
rejected the unit hypothesis at a significant level of 1%. 
Therefore, state space model analysis can be 
performed. 

III. EMPIRICAL RESULTS  

A. Spillover relationship 

A seven-variable vector autoregressive (VAR) 
model was constructed to represent the correlation 
between carbon markets. Based on the five 
information criteria (LR, FPE, AIC, SC, HQ) in Table 1, 

the optimal lag order of the VAR model is 2. Then 
Granger causality test was performed on seven 
variables to determine the causal relationship between 
the variables. The results are shown in Table 2. 

Table 1. Lag and information criteria of VAR model. 

Lag Log L LR FPE AIC SC HQ 

0 7724.499 NA 2.64e-17 18.310 -18.270 -18.294 

1 7909052 365.602 1.91e-17 -18.631 -18.317* -18.510 

2 8007.734 193.854 1.70e-17* -18.749* -18.159 -18.523* 

3 8041.823 66.398* 1.76e-17 -18.71 -17.848 -18.382 

                      Note: * denotes that the following variables are Granger causes of row at 10% confidence level.
  

Table 2. The results of Granger causality test. 

𝐂𝐡𝐢-𝐬𝐪 𝐑𝐞𝐁𝐉 𝐑𝐞𝐂𝐐 𝐑𝐞𝐆𝐃 𝐑𝐞𝐇𝐁 𝐑𝐞𝐒𝐇 𝐑𝐞𝐒𝐙 𝐑𝐞𝐓𝐉 

𝐑𝐞𝐁𝐉  0.0290 3.4150 0.4454 0.7837 0.1447 1.7771 

𝐑𝐞𝐂𝐐 1.0979  0.4347 0.9009 0.9082 2.5072 0.7600 

𝐑𝐞𝐆𝐃 1.8000 0.2784  0.0634 3.4606 7.8813** 0.8269 

𝐑𝐞𝐇𝐁 0.2424 0.4038 0.7586  4.6938* 0.0053 0.3492 

𝐑𝐞𝐒𝐇 0.9317 0.2993 4.6911* 1.0128  1.9927 1.1542 

𝐑𝐞𝐒𝐙 9.6737*** 0.0542 2.2525 2.3851 0.0916  0.0893 

𝐑𝐞𝐓𝐉 0.0425 0.0787 3.6413 3.1690 1.4029 7.1464**  

Note: ***, **,* denotes that the following variables are Granger causes of row variables at  

1%, 5%, 10% confidence level, respectively. 

Fig.2 shows the Granger spillover relationship 
diagram, where circles represent the carbon market, 
and directional arrows indicate the direction of the 
overflow. It can be found that Beijing pilot return is the 
Granger reason for Shenzhen carbon market, 
Shenzhen carbon market is the Granger reason for 
Guangdong and Tianjin, Guangdong pilot is the 
Granger reason for Shanghai pilot, and the Shanghai 
is the Granger reason for Hubei. These six markets 

form a network of spillover relationships, and the 
Chongqing market is independent of the network. In 
the network of this study, the Shenzhen market has a 
two-out, one-in spillover relationship, which plays an 
important role. This is related to the earliest 
establishment of the market and broader industry 
coverage, which has strong market effectiveness. The 
conclusion is the same as that of Wang et al. [18]. 
However, the results of the Granger causality in this 
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paper are quite different Wang et al. [2], which may be 
caused by different sample intervals. 

 
Fig. 2. Granger spillover relationships network between 

carbon pilots. 

B. Spillover analysis 

The OLS method was used to establish fixed 
parameter models for the Shenzhen and Guangdong 
carbon markets, Shanghai and Hubei carbon markets, 
Guangdong and Shanghai carbon markets, Beijing 
and Shenzhen carbon markets, and Shenzhen and 
Tianjin carbon markets. According to the results of 
model test (table 3), the OLS model for the Shenzhen 
and Guangdong pilots is significant at a significance 
level of 1% . Five pairs of Granger causality time-
varying state space models can be obtained by taking 
k = 1 in (1), 

{
𝑆𝑖𝑔𝑛𝑎𝑙 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑌𝑡 = 𝑐1 + 𝑠𝑣𝑡𝑋𝑡 + 𝜖𝑡

𝑆𝑡𝑎𝑡𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛: 𝑠𝑣𝑡 = 𝑐2 + 𝑐3𝑠𝑣𝑡−1 + 𝜂𝑡
                   (3) 

Where 𝑋𝑡  in turn denotes the return of Shenzhen 
(Shanghai, Guangdong, Beijing and Shenzhen) pilot, 

𝑌𝑡  in turn denotes the return of Guangdong (Hubei, 
Shanghai, Shenzhen and Tianjin) pilot, and  𝑠𝑣𝑡 is the 
corresponding time-varying impact coefficient. 

Table 3. Significance test results of fixed parameter model. 

 F-statistic 𝐩 value 

𝐑𝐞𝐒𝐙 − 𝐑𝐞𝐆𝐃 9.4690 0.0022 

𝐑𝐞𝐒𝐇 − 𝐑𝐞𝐇𝐁 0.0222 0.8817 

𝐑𝐞𝐆𝐃 − 𝐑𝐞𝐒𝐇 0.9789 0.3227 

𝐑𝐞𝐁𝐉 − 𝐑𝐞𝐒𝐙 0.9709 0.3247 

𝐑𝐞𝐒𝐙 − 𝐑𝐞𝐓𝐉 4.1819 0.0412 

Combining the data of each variable, we get the 
signal equation of between pilots by using Kalman filter 
algorithm: 

ReGD = −0.000630 + 𝑠𝑣1𝑅𝑒𝑆𝑍 + [𝑣𝑎𝑟 = exp(−5.370911)]  (4) 

ReHB = −0.000422 + 𝑠𝑣2𝑅𝑒𝑆𝐻 + [𝑣𝑎𝑟 = exp (−6.482628)] (5) 

ReSH = 0.000509 + 𝑠𝑣3𝑅𝑒𝐺𝐷 + [𝑣𝑎𝑟 = exp (−5.549545)]    (6) 

ReSZ = 0.000292 + 𝑠𝑣4𝑅𝑒𝐵𝐽 + [𝑣𝑎𝑟 = exp (−5.28449)]       (7) 

ReTJ = 0.000769 + 𝑠𝑣5𝑅𝑒𝑆𝑍 + [𝑣𝑎𝑟 = exp (−5.25189)]       (8) 

The corresponding time-varying parameters 𝑠𝑣1 − 𝑠𝑣5 
are given in fig.3. 

In order to examine the reliability of the estimation 
results, it is necessary to check whether the residuals 
of the measurement equations are stable. If the 
residual sequence is stationary, it is a credible 
estimate. If the residual series is not stationary, it may 
be ‘pseudo-regression’ [22]. The ADF test is performed 
on the residuals of the signal equation of the state 
space model. The test results show that all the residual 
sequences are stable at the significance level of 1%, 
and the time-varying state space model can be used 
for research.  

As can be seen in fig.3, there exist significant time-
varying characteristics between carbon pilots. On the 
whole, there are obvious fluctuations in the state series, 
indicating that the pilot market spillover effect is not 
constant. Secondly, the fluctuation of time-varying 
parameters has obvious phase characteristics. Before 
July 10, 2015, the time-varying parameters fluctuated 
greatly, and then significantly decreased. Before July 
10, 2015, the time-varying parameters fluctuated 
greatly, and then significantly decreased. The reason 
is that in the initial stage of market operation, each 
market is still in the exploration stage, and market 
information has a greater impact on prices. In the later 
stages, each market initially formed its own 
characteristics of the mechanism, which was not easily 
affected by other markets, and the spillover effects 
between markets tended to stabilize. In the first stage, 
the impact of the Beijing market on the Shenzhen 
market was the largest and was positive. Since then, 
the magnitude of the relationship has staggered, but 
the difference is not as obvious as before. 

 

Fig. 3. Evolution of spillover  parameter among carbon 

markets. 

Individually, each evolutionary trajectory has its 
own characteristics. The spillover effect of the 
Shenzhen pilot to the Guangdong pilot fluctuated 
between −0.3081 and 0.8168 , with an average 

effectiveness of −0.0775 . Specifically, during the 
quarter from January 5, 2015, to April 13, 2015, the 
volatility spillover effect of Shenzhen carbon market to 
Guangdong carbon market has weakened sharply, 
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from a maximum of 0.816 to −0.3081. This shows that 
the Guangdong carbon market was relatively fragile at 
the beginning, and the spillover effect of the Shenzhen 
carbon market to the Guangdong carbon market 
changed from promoting to inhibiting. The subsequent 
small increase gradually tended to a stable process, 
indicating that with the continuous improvement of the 
market mechanism, the suppression effect of the 
Shenzhen carbon market on the Guangdong carbon 
market gradually decreased, and the Guangdong 
market became more mature. 

The spillover effect of Shanghai pilot to the Hubei 

pilot fluctuated between −0.0446 and 0.1452, with an 
average of −0033. On the whole, the spillover effect of 
Shanghai carbon market to Hubei carbon market is not 
very obvious, which is related to the high maturity of 
the Hubei carbon market. Existing research shows that 
the Hubei carbon market is the best in terms of market 
maturity, operation performance and comprehensive 
evaluation [14]. However, the Hubei carbon market 
has not spillover effect to other markets. And the 
possible reason lies in market efficiency [18]. 

The spillover effects of Guangdong pilot to 
Shanghai pilot and Beijing pilot to Shenzhen pilot 
changed in opposite directions. The former showed an 
upward trend throughout the sample period, while the 
latter showed a decrease in volatility. One year before 
the sample period, the former is an inhibitory effect, 
and the late period action direction is exactly the 
opposite of the prophase. 

The spillover effect of the Shenzhen pilot to Tianjin 

pilot fluctuated from −0.1783 to 0.039, with an average 
of −0.0777. From the specific trend of the graph, the 
elastic time-varying coefficient of Shenzhen carbon 
market to Tianjin carbon market is constantly changing. 

Except for the overflow effect of 0.0393 on June 27, 
2016, the rest of the time is negative. This 
phenomenon indicates that the Shenzhen carbon 
market has a reverse suppression effect to Tianjin 
carbon market. 

Fig.2 also shows the size of the inter-market 
spillover effect. The numbers next to the directed 
arrows indicate the average spillover effect during the 
sample period. A positive sign denotes a positive 
promotion relationship, and a negative sign denotes a 
negative inhibitory effect. In terms of average 
effectiveness, only the Beijing carbon market has a 
positive effect on the Shenzhen carbon market. The 
Shenzhen carbon market has the largest spillover 
effect on the Tianjin carbon market and the Shenzhen 
carbon market on the Guangdong carbon market, 
while the Shanghai carbon market has the smallest 
impact on the Hubei carbon market.  

IV. CONCLUSION 

In this paper, we analyze the mean spillover effects 
across China’s pilot carbon markets by applying a 
time-varying parameter state space model. Results 
show that there is network of mean spillover across 
China’s seven pilot carbon markets. More precisely, 

the Shenzhen pilot carbon market is net receiver of 
Beijing carbon market, and at the same time, it is net 
transmitters of shocks to Guangdong and Tianjin 
markets. The Shanghai pilot has spillover effects to 
and from other markets. It is affected by the net 
spillover effect from Guangdong pilot, while there is a 
net spillover effect to Hubei pilot. Secondly, the time-
varying parameter state space models of the 
Shenzhen and Guangdong carbon markets, Shanghai 
and Hubei carbon markets, Guangdong and Shanghai 
carbon markets, Beijing and Shenzhen carbon markets, 
and Shenzhen and Tianjin carbon markets were 
constructed based on the Granger causality test 
conclusions to study the dynamic evolution of spillover 
effectiveness across China’s pilot carbon markets. We 
find that the Shenzhen carbon market has the largest 
spillover effect on Guangdong and Tianjin carbon 
markets, but the impact is a restraining effect. Rising 
carbon prices in the Shenzhen carbon market will 
cause carbon prices in the Guangdong and Tianjin 
carbon markets to decrease. On the whole, the 
market’s spillover effectiveness changed drastically in 
the initial period of the sample, and the spillover effect 
in the later period was not obvious. 

The spillover network of pilot carbon markets show 
evidence of a significant correlation among the 
considered markets, which meets the carbon market 
integration requirements and price regulation goals. 
This is the basis for a unified national carbon market. 
In the early stage of the full launch of the national 
unified carbon trading market, some suggestions 
should be considered when investors invest and 
government formulates legal policies. First, investors 
should not only pay attention to the price changes of 
the invested markets, but also comprehensively 
consider the price behavior of the markets that have 
spillover effects to this market, especially the 
Shenzhen market, in order to obtain the best return 
when participating in the carbon market trading. 
Second, relevant departments need to take measures 
to promote linkages between carbon markets. There 
are currently only five pairs of spillover relationships 
among the seven pilot markets, and the pilot markets 
have a low density of spillover effects. Local and 
central governments should improve the price 
management system of the carbon market, optimize 
the market operation mechanism, further promote the 
correlation between carbon markets, and increase the 
activity of the unified carbon market across the country. 
Third, coordination between central and local 
governments should be strengthened. The central 
government department needs to make reasonable 
use of the average spillover effect existing in the local 
pilot markets, improve trading regulations and policies 
and system design and implement corresponding 
policies during the operation of the national unified 
carbon market.  
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