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Abstract—The brain, which acts as a central 
processing unit, is wired by neurons. Signals that 
are transmitted along the brain circuitry are 
amplified by action potentials generated inside the 
neurons. In this paper, the finite element method 
is used to simulate the propagation of the electric 
signals along the branches of the neuron. For this 
purpose, the method of weighted residual is 
applied to the cable equation of neurons. Two 
types of elements were tested and the 
corresponding finite element formulations were 
derived. The first type of element was a linear one-
dimensional element, and the second was based 
on the cubic-Hermitian polynomials. The 
performances of the above two elements were 
compared to exact closed form solutions.  
The advantages/disadvantages of using these two 
elements, as well as the benefits of using the finite 
element method, are discussed. 
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I. Introduction  

The brain, which acts as a central processing unit, is 
wired by neurons. Signals that are transmitted along 
the brain circuitry are amplified by action potentials 
generated inside the neurons. On a global scale, the 
neuron is composed of: the soma, which is the main 
body; the dendrites, which represent the signal 
receiving branches of the neuron; and the axon, the 
body transmitting the signal from one neuron to an 

associated one, as shown in Fig. 1. The signal is 
transmitted from one neuron to the next through the 
release of transmitters.  The strength of the signal felt 
by the receiving neuron depends on the number of 
active channels and gates on its membrane. The 
propagation of the action potential along the 
dendrites/axon was determined to be mainly one-
dimensional. The equation governing the propagation 
of the action potential is referred to as the cable 
equation.  
Solution methods were devised for this cable 
equation, such as closed-form for particular 
properties and boundary conditions, finite difference 
method, and others. These methods relied on the 
similarities between the cable equation and 
equations in other fields of science. 
In this paper, the finite element method is used to 
solve the cable equation with emphasize on its 
similarities with the field of continuum mechanics. 
The propagation of the signals along the neuron is 
modeled and simulated using the method of 
weighted residuals. Two types of elements were 
tested and the corresponding finite element 
formulations were derived. The first type of element 
was a linear one-dimensional element, and the 
second was based on the cubic-Hermitian 
polynomials. The performances of the above two 
elements were compared to the exact closed form 
solutions. The advantages/disadvantages of using the 
above two elements, as well as the benefits of using 
the finite element method, are discussed. 

Fig. 1   Schematic representation of a brain nerve cell 

   II. THEORY  
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The brain nerve cell consists of the soma, as the 

main body, the dendrites and the axon. The 

dendrites represent the branches of the nerve cell 

that, in addition to the soma, receive the signals 

from other neurons. The action potential generated 

by the soma is transmitted to other neurons by the 

axon. 

The membrane of the cell, which is mostly 

impermeable, allows ions to be exchanged between 

the extracellular and the intracellular media through 

channels that could be active/passive.  For the 

active channels the flow of ions depends on the 

voltage across the membrane in a nonlinear fashion.  

The modeling of systems could be attempted at the 

atomic level, molecular level, or micro-meter level 

[1-11]. For the present analysis, the membrane is 

modeled as an electric circuit made of a capacitor 

with capacitance Cm , resistance to the flow of ions 

represented by the membrane resistance Rm and 

resistance to the flow in the intracellular medium 

represented as Rc. The battery in the circuit is 

represented by the equilibrium potential Em, as 

shown in Fig. 2. 

Since the propagation of signals along the 

dendrites/axon was determined to be one-

dimensional, the dendrites and axon are modeled as 

tubes with constant or variable diameters. One of 

the simplifications in deriving the cable equation is 

to assume the extracellular medium to be 

isopotential. The resulting equation that governs the 

variation of the potential ,V, along the 

dendrite/axon and in the presence of distributed 

external current, Ie(s,t), is called the cable equation. 

For constant diameter “d” or a slightly tapered tube, 

the cable equation could be expressed as: 

 
 d.[ Cm.∂V/∂t+(V-Em)/Rm ] = ∂/∂s [ (d2/4Rc).∂V/∂s ] + d.Ie(s,t)  (1) 

 

In this equation, “s” represents the position along 

the tube and “t” the time. 

 

   III. FINITE ELEMENT FORMULATION –  

         Method of Weighted Residual 

 

The finite element method has been used as a 

numerical simulation tool in almost every field of 

science. In this paper, the finite element method is 

used to solve the cable equation of brain neurons by 

emphasizing the similarities with the field 

continuum mechanics.  

 
Fig. 2 Equivalent electrical circuit of cell membrane 

 

For this purpose, the method of weighted residual is 

applied to the cable equation. Two types of 

elements were tested and the corresponding finite 

element equations were derived. The first is a linear 

one-dimensional element, sometimes used in one-

dimensional heat transfer analysis. The second is 

based on the cubic-Hermitian polynomials, used 

mainly in modeling two-dimensional beam 

elements in solid mechanics. The performance of 

the above two elements is compared to exact closed 

form solutions. One of the advantages of using the 

finite element method is the possibility of 

embedding these neuron elements as substructures 

into models of higher dimensions. This will 

increase both the scope of the problems that could 

be solved as well as the complexity of the details 

that could be included in the analysis. 

 
   A. Linear Element 

 

The finite element equations could be derived by 

using the method of weighted residuals [12].  

 

We start by space discretization of the voltage along 

an element 

                                                         

V(s,t)=JNJ(s).VJ(t)                                               (2) 

 

where NJ(s) is the shape function of node J , VJ(t) 

the potential at node J and “s” the distance along the 

dendrite/axon. 

  

The time derivative of the potential is expressed as: 

                                                        

∂V(s,t)/∂t=JNJ(s).dVJ(t)/dt                                   (3) 

 

Multiplying eq.(1) by NI(s) and integrating over the 

length of the tube, ds, we get the following equation 

in the absence of external distributed current: 

http://www.jmest.org/
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 NI(s).[ Cm.∂V/ ∂t + (V-Em)/Rm ].(d).ds  = 

NI(s).∂/∂s [ (d2/4Rc).∂V/∂s ].ds                           (4)                  

 

Replacing eqs. (2) and (3) in eq. (4) and integrating 

by parts, leads to (summation is implied over 

repeated index J): 

 

 CIJ.dVJ(t)/dt  + KIJ.VJ(t) = FI                                 (5)       

 

where  

 

CIJ =  0
L Cm.NI(s).NJ(s).d.ds                                  (6)                   

 

KIJ = 0
L [ NI(s).NJ(s).d/Rm ] ds 

             + 0
L [ (d2/4Rc).∂NI(s)/∂s.∂NJ(s)/∂s ds    

 

FI =  0
L [ NI(s).Em.d/Rm ] ds +  

                        (1/).[NI(s).(d2/4Rc).∂V/∂s]0
L 

    = 0
L [ NI(s).Em.d/Rm ] ds 

      + (1/).[NI(s).(-Ilong(s,t))]0
L 

 

where Ilong(s,t) is the longitudinal current  

= -(d2/4Rc).∂V/∂s . 

 

The matrices CIJ, KIJ and FI are be expressed as: 

                    (7) 

 (8) 

                 (9) 

 
   B. Cubic-Hermitian polynomial 

 

Eventhough this element is used in solid mechanics 

for fourth order differential equations, it is 

employed in this finite element formulation of the 

cable equation to increase the accuracy of the 

solution and reduce the number of elements to be 

used. However, in this case only the continuity of 

the voltage across elements is enforced. 

 

We start by space discretization of the voltage along 

an element  

 

              V(s,t)=4
J=1NJ(s).VJ(t)                       (10) 

 

where NJ(s) is the shape function of node J based on 

the cubic-Hermitian polynomials, VJ(t) the degrees 

of freedom at node J and “s” the distance along the 

tube. 

 

 
Fig. 3 Degrees of freedom of the cubic-Hermitian 

element 

 

with  

N = [ 1-3s2/L2+2s3/L3 , s-2s2/L+s3/L2 , -s2/L+s3/L2 ,      

          3s2/L2-2s3/L3  ]                                          (11) 

 

and 

∂N/∂s = [ -6s/L2+6s2/L3 , 1-4s/L+3s2/L2 ,  

    -2s/L+3s2/L2 , 6s/L2-6s2/L3  ]                           (12) 

 

with 

V= [  V1  ,  ∂V1/∂t  , ∂V2/∂t  , V2  ]                        (13) 

  

The time derivative of the potential is:  

 

∂V(s,t)/∂t=JNJ(s).dVJ(t)/dt                             (14) 

 

Multiplying eq.(1) by NI(s) and integrating over the 

length of the tube, ds, we get: 

 

NI(s).[ Cm.∂V/∂t + (V-Em)/Rm ].(d).ds   

 = NI(s).∂/∂s [ (d2/4Rc).∂V/∂s].ds +  

NI(s).Ie(s).(d).ds                                               (15)                  

 

Using the relative potential, we replace V-Em by V, 

and, then, integrate by parts: 

 

NI(s).[ Cm..∂V/∂t + V /Rm].(d).ds  = 

[NI(s).(d2/4Rc).∂V/∂s]0
L  

 - (d2/4Rc).∂NI(s)/∂s .∂V/∂s.ds +  

NI(s).Ie(s).(d).ds                                               (16)                  

 

Replacing eqs. (11) and (12) in eq. (16) and 

integrating by parts, leads to: 

 

 CIJ.dVJ(t)/dt  + KIJ.VJ(t) = FI                              (17)   

     

where  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 7 Issue 1, January - 2020  

www.jmest.org 

JMESTN42353262 11444 

CIJ =  0
L d.Cm.NI(s).NJ(s).ds                               (18)                   

 

KIJ = 0
L [ NI(s).NJ(s).].d/Rm ] ds  

+ 0
L [ ((d2)/4Rc).∂NI(s)/∂s.∂NJ(s)/∂s ds    

 

FI = (1/).[NI(s).(d2/4Rc).V/s]0
L +NI(s).Ie(s).d.ds        

F = [ Inode1/ , 0 , 0 , -Inode2/]T  +  NT(s).Ie(s).d.ds        

 

For a constant diameter “d” and constant material 

properties, the matrices CIJ and KIJ could be 

expressed as: 

  

         (19) 

 

        (20) 

 

        (21) 

 

with eq. (17) expressed as: 

 

     (22) 

 

   IV.TRANSIENT SOLUTION: TIME     

        INTEGRATION 
 

The transient cable equation can be expressed as: 

 

CIJ.dVJ(t)/dt  + KIJ.VJ(t) = FI(t)                            (23)       

 

or, in matrix form, 

 

 C.dV(t)/dt  + K.V(t) = F(t)                                 (24)       

 

Integrating over time, we get: 

 

 t
t+t

 C.dV(t) + t
t+t 

K.V(t) dt   

                       =  t
t+t

 F(t)  dt                            (25)                                                  
 

 

For constant C and K matrices, the trapezoidal rule 

is used to integrate over time. This leads to:  

 

C.( V(t+t) - V(t) ) + K.( V(t+t) +(1-)V(t)  )t  

= ( F(t+t) + (1-)F(t)  )t                              (26)          

 

where α is a parameter in the interval [0,1]. 

Rearranging the terms, 

  

 [ C + Kt ]V(t+t) =  [ C - (1-)Kt ]V(t) +   

[ F(t+t) + (1-)F(t)  ]t                                  (27)          

                                        
Consequently, 

 

V(t+t) =  [ C + Kt ]-1 . { [ C - (1-)Kt ]V(t) +  

[ F(t+t) + (1-)F(t)  ]t }                               (28)          

 

For =0, we get the forward Euler integration 

scheme. 

 

   V. NUMERICAL SIMULATIONS 

 
 A. Numerical solution for one dendrite  

 

The dendritic element is assumed to have a current 

injected at the left end and sealed at the right end, as 

shown in Fig. 4. 

 

 
Fig 4. Dendritic cable with current injected at the left-

end and sealed at the right-end 

 

In the absence of external current, the cable 

equation can be  expressed as: 

 

 Cm.∂V/∂t+(V-Em)/Rm=(d/4Rc).∂
2V/∂s2              (29) 

 

If the voltage is measured relative to Em, then we 

can write the cable equation as: 

 

 Cm.∂VR/∂t + VR/Rm  = (d/4Rc).∂
2VR/∂s2             (30) 

 

with VR=V-Em. 

 

1) Steady-State solution 

 

The steady-state solution of the cable equation with 

no external distributed current can be expressed as: 

 

 ∂2VR/∂s2 - 2.VR  =0                                           (31) 
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The solution is of the form VR = Ae
-s

 + Be
s 

  where   

2 = 2Rc/(a.Rm)  and “a” the radius of the dendritic 

element. 

 

The values of the constants “A” and “B” are given by: 

 

A = -Io.Rc.e
2L/[.a2.(1-e2L) ]     and     

B = -Io*Rc/[.a2.(1-e2L) ] 

 

In this problem, the model parameters are as follows: 

L=70x10-3 cm , d=2x10-3 cm  , Em=-60 mV ,    

Rm=7. k.cm2  , and Rc=0.09 k.cm [8]. 

          

 
(a) 

 

 
(b) 

Fig. 5. Steady-state solution of one dendrite with current 

injected at left and sealed at right: FEA vs. Exact solution 

 (a) Total voltage along length  (b) Current along length 

 

 In Fig. 5, the closed-form solution is compared to 

the finite element solution using one cubic-

Hermitian element. 

The voltage and current from the finite element 

solution are cubic and quadratic, respectively. 

These solutions match well the closed form 

solution. 

 

Another type of problem is solved that imposes a 

voltage Vo at the left-end and seals the right-end. 

In this case, the solution is expressed as follows: 

 

 VR(s) = Ae
-s

 + Be
s 

  where   2 = 2Rc/(a.Rm)    (32) 

 

with 
 

A = VR(0).e
2L

/(1+e
2L

)  , B = VR(0)/(1+e
2L

) (33) 
 

 
(a) 

 
(b) 

Fig. 6. Steady-state solution of a dendrite with voltage 

specified at left and sealed at right: FEA vs. Exact solution 

 (a) Total voltage along length  (b) Current along length 

 

For the same parameters used in the previous 

solution, the finite element results for three types of 

elements are compared to the exact solution, as 

shown in Fig. 6. The cubic-Hermitian element 

matches well the closed-form solution as well as the 

10 linear elements solution. 

 

2) Transient Solution 

  

Starting with the transient cable equation expressed 

relative to the equilibrium potential 

 

 Cm.∂V/∂t + V/Rm  - (d/4Rc).∂
2V/∂s2  =0             (34) 

 

The problem to be solved is of a dendrite element, 

with initial total voltage Em , injected by a current  

at the left end and sealed at the right end. 

 

Using the method of separation of variables with 

V(s,t)=X(s)T(t), the solution could be expressed as: 

 

V(s,t)=Vs(s)+


n=0 { cn.cos(n.s).exp(-n
2
(t/m)) }                                            

                                                                             (35) 

where  
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Vs(s) = steady-state solution, n = n./L , 

 n
2
 = n

2
. (d.Rm/4Rc)+1 , and m = Rm . Cm 

 

The finite element solution could be expressed as 

follows for the forward-Euler integration scheme 

(=0):  

 

 V(t+t) =  C-1 . { [ C - Kt ]V(t) +  F(t)t }     (36)          

 

 
Fig. 7. Transient solution of the relative voltage at 

t=2.1ms : Closed-form vs. FEA solution 

 

For an injected current at the left end of value 

Io=1.1x10-3 A and using one cubic-Hermitian 

element, the finite element solution matches well 

the closed-form solution at 2.1ms, as shown in Fig. 

7. 

 
B. Solution of Y-branched dendrites 

 

1) Comparison with steady-state solution 

 

A classical problem for dendrites, that has a closed 

form solution for steady-state, is the Y-branched 

dendrites problem. The geometry and mesh are 

shown in Fig. 8. A current Io is injected at node “1” 

of dendrite #1 and the ends of dendrites #2 and #3 

are sealed. 

 
    Fig. 8.  Y-branched dendrites 

 

Three cubic-Hermitian elements were used, one for 

each dendrite. The compatibility conditions are 

applied at node ”2” and the currents at nodes “3” 

and “4” are set to zero. 

 

A closed-form solution could be derived for this 

case, with the potentials of the dendrites expressed 

as: 

V1(s)=A1.sinh(1s)+B1cosh(1s)                         (37) 

V2(s)=A2.sinh(2(s-L2))+B2cosh(2(s-L2)) 

V3(s)=A3.sinh(3(s-L3))+B3cosh(3(s-L3)) 

 

For the properties of the dendrites used in [8], the 

values of constants Ai and Bi are as follows: 

 
Table 1. Values of Ai and Bi 

A1 B1 A21 B21 A22 B22 

-21.74 22.36 0.0 1.39 0.0 0.071 

 

Fig. 9 compares the finite element solution with the 

closed-form solution. The use of one cubic-

Hermitian element gives results close to the 

exact/10 linear elements solutions.  

 

 
Fig. 9.  Steady-state of the relative voltage of Y-

branched dendrites: FEA vs. exact 

 

However, the use of one linear element shows 

considerable variation from the exact solution. By 

using two cubic-Hermitian elements along 

dendrite#3, the finite element solution is made even 

closer to the exact solution at node “4”. 
 

 
(a) 
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(b) 

 
(c) 

Fig. 10. Steady-state voltage of Y-branched dendrites: 

(a) One linear element (b) Ten linear elements (c) One 

cubic-Hermitian/Ten Linear elements/exact solution 
 

     VI. CONCLUSIONS 

 

In this paper, the finite element method was used to 

simulate the propagation of potentials along the 

dendrites/axon of a brain neuron.  

Two types of elements were tested, namely, linear and 

cubic elements. Numerical simulations using the above two 

elements were presented and compared to available closed-

form solutions. 

In general, for linear elements a considerable number of 

them is needed to achieve accurate results.  

However, the cubic-Hermitian element showed 

improvement in the solution even with one element. For a 

constant diameter of dendrites/axon this element has the 

advantage of modeling the potential with a cubic 

polynomial and the current with a quadratic polynomial.  
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