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Abstract— This paper presents an R-based 
Markov chain model for packet delivery in a multi-
hop wireless sensor network and it was tested 
using the “markovchain” library. The model was a 
5-node mesh network with a source node, 
destination node, and three intermediate sensor 
nodes. The model can be generalized to more 
complex mesh networks that use multi-hop 
routing. A simplified Markov decision process 
model was also presented, which has the form of 
a minimum total weighted cost node deployment 
policy dependent only upon the number of sensor 
nodes and their associated transmission range.  

Keywords—Markov model; multi-hop wireless 
sensor networks; R libraries; packet delivery 

I.  INTRODUCTION  

A wireless sensor network (WSN) is a collection 
of widely-dispersed autonomous sensor nodes 
deployed collaboratively enabling physical 
measurements made by the sensor nodes to be 
collected, monitored, and processed for further use. 
The sensor nodes communicate wirelessly and are 
often equipped with computation capabilities. WSNs 
are a key feature in contemporary industrial and utility 
automation, supervisory control and data acquisition 
(SCADA) systems, smart grids, the Internet of Things 
(IoT) and a wide variety of other applications [1]. Fig. 
1 depicts a nominal wireless sensor network.  Many 
other network architectures are possible. 

 
Fig. 1. An example of a wireless sensor network [1] 

 
WSNs operate as stochastic systems because of 
randomness in the monitored environments [2]. Since 
the future state of a sensor node is generally 
dependent upon the current state and not past states, 

Markov decision processes can be used to model 
WSNs to help optimize the WSN’s operations [2]. 
Several recently-developed variants of Markov 
decision processes were examined for applicability 
towards WSN packet delivery models. These included 
Markov blankets [3], imprecise Markov models [4], 
and updated hidden Markov models [5], [6]. All of 
these, especially hidden Markov models, were 
applicable towards WSN packet modeling but either 
added unneeded complexity or were challenging to 
implement in R.

1
 Also considered, albeit briefly, were 

various decision-making algorithms used in multi-
agent systems; these included Bayesian game theory, 
graph theory, and swarm intelligence [7].  

The research presented here is intended to find 
an accurate Markov-based representation of data 
packet delivery for a generic WSM that was 
implementable in R and would inform a Markov 
decision model seeking an optimum policy for data 
packet delivery. A further research led to the 
narrowing of the problem by confining the WSN to 
multi-hop implementations and the use of a discrete 
time Markov chain to represent the network. 

II. PROBLEM STATEMENT 

Consider two widely used WSN topologies illustrated 
in Figure 2. The arrangement on the left is known as a 
star topology and uses single-hop communications. In 
a single-hop WSN, the sensor nodes transmit their 
measurements directly to the base station (i.e. in a 
single hop). This configuration requires power at the 
sensor node that is sufficient to enable the 
transmission. Since the sensor nodes are self-
powered, often by a battery, care must be taken in 
selecting a transmission protocol, and associated duty 
cycle, that minimizes power consumption, especially 
where the transmission is over large geographic 
distances.   

An alternative arrangement is the mesh topology 
using multi-hop communications as shown on the right 
side of Fig. 2. Here sensor nodes capture and 
disseminate their own data as well as serve as relays 
for other sensor nodes. In this arrangement, the data 

                                                           
1 Hidden Markov models are an exception.  There are 
several well-developed packages in R for hidden Markov 
models such as HMM (Hidden Markov Model) and 
depmixS4 (Dependent Mixture Models S4 Class). 
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packet is issued from the sensor node to the base 
station through a series on multiple intermediate hops. 
The power consumption is considerably less than in 
the single-hop case since the transmission distances 
for the individual hops are much smaller than the 
distances between the sensor nodes and the base 
station. 

While less electrical power may be required by 
the sensor nodes in a multi-hop configuration, several 
new complications are introduced. Among these is the 
requirement that the nodes must now collaborate to 
enable their aggregate data to be organized and 
received by the base station [8]. The task of finding a 
multi-hop path from a sensor node to the base station 
is a complex routing problem; when a node serves as 
a relay for multiple routes it may analyze and pre-
process sensor data in the network leading to the 
elimination of redundant information or aggregate the 
data such that it may be smaller than the original 
packet and as a consequence adjust the routing path 
for a more efficient packet delivery [1], [8].

2
 Finding a 

solution to such problems is becoming increasingly 
important as the presence of WSNs becomes more 
ubiquitous in industry and everyday life. 

 
Fig. 2. Single-hop and multi-hop WSN 

communications [8] 
 

Multi-hop WSNs have previously been modeled as 
discrete time Markov chains using both cooperative 
and non-cooperative automatic repeat request 
protocols [9].

3
 The approach to be taken here is to 

model WSN packet delivery as a discrete time Markov 
chain and attempt to implement the model using 
existing libraries in R. Several libraries were evaluated 
with the search being confined to the CRAN 
repository.

4
 A summary of their principal capabilities is 

shown in Table 1. This list is not exhaustive and 

                                                           
2 There is also an NP-complexity issue for large mesh 
networks because as more nodes are added the number 
of links increases exponentially. 
3 In cooperative automatic repeat request protocols the 
data packet is retransmitted by a neighboring node if 
the original data packet was not received.  This 
retransmission does not occur for non-cooperative 
protocols.  For this paper, cooperative automatic repeat 
protocols will be assumed with the packet being 
retransmitted by the adjacent (prior) node if the 
transmission from the original sending node was not 
received. 
4 The “Comprehensive R Archive Network” or CRAN is a 
collection of sites which collectively serve as the 
“official” repository for R material, R distributions, 
contributed extensions, and documentation for R. 

Markov-related libraries related to specific 
applications, such as genomics, were not considered. 

The R package “markovchain” was selected 
because it was built specifically to accommodate 
discrete time Markov chains and appeared more 
capable than DTMCPack; it is also capable of 
modeling continuous time Markov chains, as well as 
homogeneous and some forms of inhomogeneous 
Markov chains [10].   

 
Table 1. Summary of principal Markov-related 
capabilities of the R libraries evaluated. 
R Package Discrete 

Time 
Markov 
Chain 

Continuous 
Time 

Markov 
Chain 

Hidden 
Markov 
Model 

Markov 
Chain 
Monte 
Carlo 

Markov chain X X   
HMM   X  

depmixS4   X  
mcmc    X 
msm  X X  

DTMCPack X    

 
We may now summarize the problem statement as 
follows:  use the “markovchain” library to implement a 
discrete time Markov chain model of a multi-hop WSN 
as a tool for aiding in the development of a Markov 
decision process to discover an optimum packet 
delivery policy for the multi-hop network.  

III. MARKOV DECISION MODEL FORMULATION 

Markov decision models require that the future system 
state be dependent upon only the current state and 
not on any of the past states. The solution of the 
model, referred to as a policy, may be implemented in 
a WSN as a look-up table stored in the sensor node’s 
memory [2]. Multi-hop WSNs have been modeled as a 
discrete time Markov chain with an absorbing state 
[9]. Following the techniques developed in [9] a multi-
hop WSN, with cooperative automatic repeat request 
protocols, is represented as a Markov chain in figure 
3.  In our initial case, the WSN has five equidistant 
sensors with four links and a transmission range of 
Rt=2 units from each node. For the general case, we 
would have a source node (n=1) followed by any 
number of intermediate nodes (nodes 2, 3, and 4 in 
figure 3), and concluding with a destination (n=5 in 
Fig. 3 but generalizable to n = N). The final destination 
node, nominally the base station, does not retransmit 
the data packet and is represented as an absorbing 
state. 

 
Fig. 3. Package transmission as a discrete time 

Markov chain model [9] 
 

Let p represent the probability a packet is delivered 
correctly from node n to a node Rt links distant. The 
probability that the packet is not received by this node 
is therefore (1–p); if not received then, under the 
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cooperative automatic repeat request protocol, the 
prior adjacent node will retransmit the packet and the 
probability it will be successfully received is (1-p)p.

5
 

The probability that the packet is still not received is 
(1- p)

2
 at which point a request for retransmission 

must be sent to the source node and the process 
repeated.  The corresponding probability matrix for 
successful packet transmission is therefore: 

   

   

   

 

2

2

2

1 1 0 0

0 1 1 0

0 0 1 1

0 0 0 1

0 0 0 0 1

p p p p

p p p p

P p p p p

p p p

  
 
  
    
 


 
  

  (1) 

The next step taken was to input the equation (1) 
transition matrix into the “markovchain” library in R. 
Note that the model developed in R provides a model 
for the Markov chain; this is not synonymous with a 
Markov decision process. The Markov chain 
represented in R furnishes a performance analysis 
tool that ideally will help inform or augment a Markov 
decision process study. The tool does not consider 
actions and rewards, as a Markov decision process 
does, and does not perform a stochastic optimization 
that identifies the best course of action given a 
particular set of objectives and constraints.  

The use of a Markov chain to inform a Markov 
decision process in wireless sensor networks is not 
new.  For example, Fei et al. [11] have modeled the 
process of moving sensor nodes as a Markov chain 
and the selection of moving direction being 
determined by a Markov decision process. In our 
case, a Markov chain will model the number of 
intermediate nodes and their associated transmission 
range Rt and a Markov decision process will be used 
to determine a minimum cost policy associated with 
the number of nodes and transmission ranges. To 
simplify the analysis, we will assume that the 
intermediate nodes are all alike in terms of capability 
and cost and that the transmission costs are 
proportional only to the transmission range Rt and not 
related to any other factor. The (simplified) Markov 
decision model we seek is one that minimizes the total 
weighted cost; this cost is dependent only upon the 
number of sensor nodes and their transmission range 
Rt. 

To build a cost definition, a cost of λN is 
assigned to the sensor nodes present in the network 
where λ is the cost of the sensor and N is the number 
of sensor nodes. To associate a cost to the 
transmission range Rt, a cost of c(r) is assigned to the 
interval distance r separating each pair of successive 
sensors.  The total transmission cost Ctrans may then 

be defined as Ctrans =  ∑ 𝑐(𝑟𝑖)
𝑁
𝑖=1  where N is again the 

total number of sensor nodes and ri is the interval 
distance cost over the i

th
 interval between sensors. 

                                                           
5 The probability the packet will be forwarded by its 
previous node is the probability that the original packet 
was not originally received (1 – p) multiplied by the 
probability it was received correctly in at the prior node 
(p) thereby resulting in a probability of (1-p)p. 

The association between the interval distance cost 
and sensor transmission power is made by assigning 
c(ri) = Pr where Pr represents the minimum power 
required to successfully transmit a data packet across 
the distance r from one sensor node to the next (i.e. to 
transmit over a hop). Note that in more sophisticated 
models c(r) would be the sum of several factors that 
takes into account path loss, a signal-to-noise ratio 
(SNR) constraint, and other factors [12]. Because we 
have previously imposed a simplifying requirement 
that the sensors be equidistant, r1 = r2 = r3 = r and, 
under a cooperative automatic repeat request 
assumption, Rt is required to be twice the distance r.

6
 

The total transmission cost can now be expressed as 

Ctrans= ∑ 𝑐(𝑟𝑖)
𝑁
𝑖=1  =∑ 2 ∗ (𝑃𝑟)

𝑁
𝑖=1  = 2NPr. If now let Eπ 

represent the expectation operator, we seek a Markov 
decision model policy π that is defined by the 
following objective function: 

 
Minimize Eπ λN + Eπ Ctrans    
=   Minimize λEπ N + 2Eπ NPr  (2) 

 

IV. SOLUTION APPROACH 

The transition matrix developed in the previous 
section (equation 1) was input into R using the 3.5.0 
version of R, R Studio, the “markovchain” library, and 
the “diagram” library which renders simple graphs 
based upon the transition matrix (only the ‘plotmat’ 
utility from this library was used).  The ‘markovchain” 
library was the primary analytical tool used. 

After implementing the transition matrix in R, 
“markovchain” was tasked to return transition matrix 
values, identify transition and absorbing states, and to 
determine the fundamental matrix.  In addition 
“diagram” was tasked to render a Markov state 
transition diagram.  

Finally an attempt was made at using the Markov 
chain model to inform a Markov decision process that 
would optimize the linear combination of average 
sensor node power and the number of sensor nodes 
deployed.  Several features of the “markovchain” 
library were explored for this purpose.  

V. RESULTS AND DISCUSSION 

The Fig. 4 is a code snippet that details how the 
transition probability matrix was manifested into 
“markovchain” object.

7
  The vector name “Transition” 

was assigned to the transition matrix and a test value 
of p = 0.8 was used to numerically evaluate the 

                                                           
6 Recall that if the signal from the transmitting node (at 
a distance of Rt = 2r units away) is not received, the 
preceding node (at a distance of r units away) will 
retransmit the packet.  The Rt = 2r requirement is not a 
universal feature of cooperative automatic repeat 
request protocols as there are many other ways to 
implement this protocol. 
7 The R script is included in Appendix 1 and an R 
Markdown document of the entire code and associated 
output is furnished in Appendix 2. 
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results.  Variables a, b, and c were used as shorthand 
for (1-p)

2
, p(1-p) and (1-p), respectively. 

 

 
Fig. 4. Code snippet for implementation of the 

transition matrix in R. 
 

The next section of code, omitted here but included in 
both appendices, was to have provided a state 
transition diagram using the “diagram” library.  Despite 
extensive testing with the “diagram” utility and the 
subroutine that was developed, the transition diagram 
displayed nonexistent links not represented in the 
transition matrix. Using the same subroutine on three-
node networks produced accurate state diagrams but 
higher number of nodes proved to be too complex.   

The next section of code, shown in Fig. 5, tells 
“markovchain” to identify transient and absorbing 
states. The results correctly indicated states 1, 2, 3, 
and 4 as being transient and state 5 as absorbing; this 
further indicated that the R-model was working 
correctly but did not otherwise contribute much 
additional insight. 

 

 
Fig. 5. Code snippet for function calls for 

transient/absorbing states in R. 
 

The final section of code puts the Markov chain in 
canonical form and calculates the number of cycles 
until absorption.  A Markov chain in canonical form 
has the properties illustrated in Fig. 6. 

 
Fig. 6. Partition matrix [13] 

 
Conversion was easily accomplished using the call 
“canonicForm(MarkChain).” The fundamental matrix E 
was also found by inverting E=(I – Q) producing an eij 
representing the expected number of times the 
process is in state j having started in transient state i. 

The E matrix is also used to compute the expected 
number of transitions, starting at state i, until 
absorption. Fig. 7 illustrates depicts the code used. 

 

 
Fig. 7. Code snippet for computing the canonical form 

of the transition matrix. 
 

The result for algorithmically obtaining the canonical 
form is shown in Fig. 8 (the red partitions were added 
for clarity). 

 

 
Fig. 8. Output snippet of transition probability matrix in 

canonical form. 
 

The Q matrix was successfully extracted from the 
partitioned canonical matrix (see Fig. 9) and used to 
compute the fundamental matrix E (see Fig. 10). 

 

 
Fig. 9. Output snippet of the Q matrix. 

 

 
Fig. 10. Output snippet of the fundamental matrix. 

 
By inspection of the top row of the fundamental 
matrix, it can be seen that states 1, 2, 3, and 4 are, on 
the average, transitioned 1.041667, 0.1736111, 
0.8969907, and 0.3530093 times, respectively. We 
can assign the times t1, t2, t3, and t4, to the above state 
transitions to determine the total time taken to transmit 
a data packet from the source (node 1) to destination 
(node 5) as: 
 

http://www.jmest.org/
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Ttotal=1.041667t1+0.1736111t2 +0.8969907t3+0.3530093 t4 (3) 
  
If we have t1 = t2= t3 = t4 = t then the above equation 
becomes: 
   
Ttotal=1.041667t+0.1736111t+0.8969907t+0.3530093 t (4) 
 
This corresponds to the absorption time computed by 
“markovchain” as can be seen by comparing the 
above result to the first element of the column vector 
in Fig. 11. 

 
Fig. 11. Output snippet for the absorption time 

computation. 
 

Unfortunately none of the features examined provided 
informative guidance for a Markov decision process.  
Of moderate utility was the absorption time 
computation because the absorption time represented 
the total time the data packet is in the system; this can 
be viewed as either a cost or a constraint depending 
upon how the Markov decision process is formulated. 
Fig. 12 illustrates who absorption time changed as the 
transition probability p varied from 0.10 to 1. 

 

 
Fig. 12. Absorption time as a function of transition 

probability. 
 

What was sought from this research was to formulate 
the objective function (Equation 2) as an infinite time 
Markov decision process with the optimal policy being 
derived from the Markov chain simulation of the 
optimal node number and transmission range r. This 
was initially believed to be an easy problem because 
the simplifying assumptions made it a one-
dimensional problem (i.e. finding node placement and 
node separation on a line) versus a more complex 
two-dimensional problem of node placement on a 
lattice [9].  However there was no linkage between the 
first order “markovchain” library features to the 
parameters comprising Markov decision process. 
The approach intended was to start with the standard 
method of defining the Markov decision process as a 
4-tuple < S, A, P, R, T > where: 

 S represents states, specifically as utilizing 1, 2, 
or 3 intermediate sensor nodes. 

 A represents action, specifically positioning the 
sensor nodes so that they have the same 
separation distance. 

 P represents the transition probability, specifically 
the probability of adding a sensor node after their 
separation distance is adjusted. 

 R represents the reward, specifically the minimum 
cost obtained from the constrained objective 
function (Equation 2) after the node separation 
distance is adjusted. 

 T represents the decision timeframe which for this 
case would have been infinite (note that system 
and component reliability considerations have 
been disregarded so the operating time is 
therefore assumed to be infinite). 

The Markov chain was intended to model the number 
of intermediate nodes (states) which the Markov 
decision process would have optimized (i.e. a policy 
π* would have been found that made an optimal 
selection of the number of sensor nodes).  Since the 
node separation distance, transmission range Rt, and  
node transmitter power Pr were linked together and 
transformed into a cost (see Section III), it was also 
intended to model these parameters via a Markov 
chain and permit the Markov decision process to 
determine a minimum cost policy associated with the 
transmission range.   

Crucially, the transition probability matrix 
developed by the Markov chain successfully modeled 
packet transition between the sensor nodes but did 
not represent the desired transition probabilities for 
the Markov decision process, namely the transition 
probability of adding a sensor node after node 
separation distance is adjusted.  Modeling the packet 
transition was vital to this work but representing the 
transition probabilities tied to actions that are 
represented in the 4-tuple was also vital. 

Available techniques for solution of infinite time 
Markov decision processes include the familiar 
methods of value iteration, policy improvement, and 
linear programming, along with approximation 
methods (for large Markov decision processes) and 
online learning (for problems where the transition 
probabilities are not initially known) [2]. 

VI. CONCLUSION AND FUTURE RESEARCH 

An R-based Markov chain model for packet delivery in 
a multi-hop wireless sensor network was successfully 
demonstrated for a simplified 5-node mesh network 
model.  Although it was not proven, it is believed that 
the model presented here is generalizable to more 
complex topologies. The Markov chain model, as 
implemented herein, was not useful in guiding the 
development of a Markov decision process.  The 
principal reason for this was a failure to associate the 
first order “markovchain” library features to the 
parameters comprising the total cost Markov decision 
process. Future research, including further 
development of “markovchain” capabilities, may 
potentially correct this. 

It should be noted that, for the sake of simplicity, 
many omissions were made that must be taken into 
account in future versions if the model is to ultimately 
reflect all the phenomenon present; these include data 
packet latency and delay issues, packet size, 
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bandwidth, data aggregation and routing complexities, 
quality of service (QoS) issues, overall geometry of 
the network, fault tolerance, and static network design 
assumptions that presume both the traffic and the 
wireless environment are static [14].  

Broader consideration of available analytical 
tools is also warranted for use in future research. 
These include hidden Markov models [5], multi-agent 
Markov decision processes [2], and partially 
observable Markov decision processes [2], all of 
which furnish additional analytical power. Distributed 
computation of the optimum policy is an exciting 
direction for future research which allows the nodes to 
autonomously make real-time decisions based upon 
local information exchanges with other sensor nodes 
[14]. 
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