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I. INTRODUCTION  

Let be a bounded regular open set of ( 2)n n R . 

We consider the boundary value problem for the 
second order degenerate elliptic equation  
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 (1.1) 

where ( , ) : n nA x  R Ra is a Carathéodory function 

satisfying the coercivity and growth conditions: for 

almost all x , all
n R ,  

(H1) 
1

( , )
p

A x   


 ,
 

(H2) ( , ),
p

A x       , 

where1 < <p  , 0 < <   ,
1,

0 ( )ru W  is a boundary 

value function. 

Definition 1.1 A function 
1,

0 0 ( )ru u W   ,  

ma x { 1 , 1 }p <r p  is called a very weak solution to 

(1.1), if  

( , ), d = 0A x u x

     

holds true for any
1,

1

0 ( )

r

r pW    with compact support 

in . 

A crucial fact is that r can be smaller than the 

natural exponent p . For variational extremals the 

global higher integrability of the derivative u has been 

studied by Granlund S [1] in the case =p n . For this it 

seems necessary to impose a regularity condition for
 . 

We say that  is r -Poincaré thick, if there is 

0 < <C such that for all open cube
n

RQ R with side 

length > 0R , it holds 
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(1.2) 

whenever
1,

2( )r

Ru W Q , = 0u a.e. on 2( \ )n

RQR I , 

and 3

2

C

RQ  I . Here, and in the following, ( )Q R

, > 0 , means a cube parallel to ( )Q R with the same 

center as ( )Q R and with side length R . See [2]. 

The following is the main conclusion of this paper. 

Theorem 1.2   Suppose that a bounded regular 
domain has a r -Poincaré thick boundary and that 

1

n
r

n



, operator A satisfy conditions (H1)-(H2). If

1,

0 ( )ru W  is the boundary value function, 
1, ( )ru W  is the very weak solution of Dirichlet 

problem (1.1), then there exists 0 > 0R and 1r , 2r , 

satisfying 

1 1 0 2 2 0= ( , , , , , , ) < < = ( , , , , , , ),r r n p K R p r r n p K R      

such that 1[ , )r r p  ,
1,

2 ( )
r

u W  , then u is the weak 

solution in the classical meaning. 

II. PRELIMINARY LEMMAS 

Let  be a bounded regular domain, 0x  , 

00 < < dist( , )R x  , 0( )RQ x  , here 0( )RQ x is a cube 

with side length of R and a center of 0x . 

Lemma 2.1 [3]  Let 1 < <p n , 0 <
np

q
n p




if 

1,

0( ( ))p

Ru W B x , then 
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   ， (2.1)  

here
( ) ( )

0 0

1
d = dR

B x B x
R RR

u u x u x
B @ , C is a positive 

constant only depending on p , q , n . 

Specially, if 
1,

0 0( ( ))p

Ru W B x , then  

     0 0
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1
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n
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L B x B x
R

L
R

u CR u

 
  

  
     

(2.2) 

This lemma gives the dependence of embedding 

theorem on region size. For the case =
np

q
n p

see [4]. 

This lemma is a direct corollary of theorem 7.10 and 

the Hölder inequality in Gilbarg-Trudinger [4] . 

This lemma also applies to cubes. 

Lemma 2.2 [3]  (Hodge decomposition) Let n R  

be a regular domain and
1,

0 ( , )r mu W  R ,and let

0 < < 1r  , = max{1, 1}r p p   .Then there exist 

1,
1

0( ) ( , )
r

mx W    R and a (divergence free) matrix-

field 1( ) ( , )
r

n mH x L    R , such that  

= .u u H





   
             

(2.3) 

Moreover  

1

1

r
r

H C u









 
             

(2.4) 

where C is a constant that only depends on n , r and 

 . 

Remark 2.3  It can be seen from (2.3) and (2.4), 

estimates of  are similar to those of (2.4). 

Lemma 2.4 [5]  Suppose X andY are vectors of an 

inner product space, 0 <1 . Then  

12 (1 )
|| | | | | | | .

1
X X Y Y X Y


  



  
  


 

Lemma 2.5 [6]  (Reverse Hölder inequality) Let Q  

be an n -cube. Suppose  

( ) ( ) ( ) ( )
0 2 0 2 0 2 0

d d d d

q

q q q

Q x Q x Q x Q x
R R R R

g x g x c g x f x
 

   
 

     

for each 0x Q and each 0 0

1
< dist( , )

2
R x Q R  , where 

0R , b ,  are constants with >1b , 0 > 0R , 0 <1 . 

Then ( )p

locg L Q for [ , )p q q   and  

1 1 1

( ) ( ) ( )
0 2 0 2 0

d d d
p q pp q p

Q x Q x Q x
R R R

g x c g x f x
 
      

       
       
  

 

for 2RQ Q , 0<R R , where c and  are positive 

constants only depending on b , , q , n . 

III. PROOF OF THEOREM 1.2 

Proof.  Let 0x  , 0= ( )Q Q x  is a cube with side 

length of  and a center of 0x .  is a sufficiently small 

positive number, =r p  . Since  is bounded, we 

can choose a cube 0 2
0

= RQ Q such that
0

RQ  . Next 

let 2 0RQ Q . There are two possibilities: (1) 3

2
R

Q  
; 

(2) 3

2

C

R
Q  I . 

In the case (1), for 3

2
R

Q  
, fix a cutoff function 

0 3

2

( )
R

C Q  such that 0 1  , | |
C

R
  , and 1  on 

Rx Q . Let
1, ( )ru W  be a very weak solution of 

problem(1.1). Consider the following Hodge 
decomposition  

( ) ( ) = ,u u H


  


   
         

(3.1) 

here 
1,

1
0 3

2

( )
r

R
W Q  , 1

3

2

( )
r

R
H L Q  is a (divergence 

free) matrix-field, satisfying  
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             (3.2) 
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(3.3) 

Let  

( , ) =| ( ) | ( ) | |E u u u u u           ,   (3.4)

 

by Lemma 2.4 we have  
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( , ) 2
1

E u u
 

 



 


.         (3.5)

 

A useful technique in the following calculation is to 

use  in Hodge decomposition (3.1) as the test 

function in Definition 1.1. Then  
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(3.6) 

that is   
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A x u u u x
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Let’s first estimate the left side of formula (3.7). By the 

hypothesis condition (H2) and the definition of   ,  

3
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     (3.8) 

The estimate of 1I  is given below. By the hypothesis 

(H1), the Hölder inequality and (3.3), we can get the 
result  
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  (3.9)  

Notice that u plus a constant vector does not affect 
u and the A -harmonic equation in (1.1) in our case, 

so let’s assume that the average integral of u  on 3

2
R

Q
 

is zero, and then by using Lemma 2.1,  
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(3.10) 

then we have  

 1 .
r

r
I C u 

              
(3.11) 

The estimate of 2I  is given below. By the hypothesis 

(H1), (3.5) and the definition of  , we have  
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(3.12) 

By Young’s inequality, for any 1 > 0 ,  

2 1
3 3

2 2

d d .

r
r

Q Q
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u
I C u x C x

R
     

     

(3.13) 

For the second integral formula at the right end of the 

upper formula, take t such that max{1, } <
nr

t r
n r




, 

then by Lemma 2.1,  
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(3.14) 

it doesn’t effect u and A -harmonic equation when u  

plus a constant, so assuming the integral average of 

u is zero in 3

2
R

Q
, then we have  

 2 1
3 3
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d d .

r
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   (3.15) 

Combining the inequalities (3.7), (3.8), (3.11), (3.15), 
we obtain  
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 (3.16) 

Divide the two sides of the formula above by 

| |= n

R nQ R ( here n  is the volume of unit cube in n
R ), 

then 
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2

d .

r

t

t

Q
R

C u x

 
  
  
 


        

(3.17) 

Since   is bounded, 
0

RQ  , 0<R R , the formula 

above becomes  
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(3.18) 

Let  , 1 be small enough such that 1= ( ) <1C   . 

Then  
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where 0= ( , , , , , , )C C n p r R   . Noticing that the case 

we considered is that r  is close enough to p , then 
r  can be removed from the parameter of C . For 

1 < <t r , then (3.19) is a weak reverse Hölder 

inequality about u . 

Choosing =| |tg u , = 0G in 3

2
R

Q
and = = 0g G in 

2 3

2

\R
R

Q Q
with =

r
q

t
. Then we arrive at the following 

inequality in 2RQ   , that is  
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1,

0 0 2= ( ) ( )p r

Rw u u W Q   , 

where 0 2( )RC Q  is a cutoff function, 0 1  , 

| |
C

R
  , and 1  in RQ . 

Extending the function 0u u with zero to \n R  

continuously. Then by Lemma 2.2, there exist 
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1

0 2( )
r

RW Q  and 1
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RH x L Q , such that  
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(3.23) 

where C is a constant only depending on n , r and . 

Note that for Hodge decomposition (3.21), (3.22) and 

(3.23), we have 0 = 0u u , H and   are equal to 

zero when 0 \nu u  R . By the Minkowski inequality 

and the selection of  , we have  

 

1

0 0

1

0

[ ( )] ( )

( ) .

p

rr

r

u u C u u

u u





 




    

          

(3.24) 

Noting that the boundary  is r -Poincaré thick. Since 

0u u is continually zero to \n R , then by (1.2),  
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(3.25) 

here we used 0 = 0u u in \n R . Substitute the above 

formula into (3.24), we get  
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(3.26) 

Then (3.22) and (3.23) are  
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(3.28) 

By the conditions (H1), (H2), Lemma 2.4, Hodge 
decomposition (3.21), and the Definition1.1, we obtain 
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 (3.29)  

The estimate of 3I is given below. By Young’s 

inequality, for any 2 > 0 ,  
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(3.30) 

The estimate of 4I is given below. By Young’s 

inequality, for any 3 > 0 ,  
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 (3.31) 

For the second integral formula at the right end of the 

upper formula, noticing that   is r -Poincaré thick. 

By (3.25) we get  
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(3.32) 

Then by Minkowski inequality and the Hölder 
inequality, we have 
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 (3.33) 

Then  
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(3.34) 

The estimate of 5I is given below. By Young’s 

inequality, (3.27) and the Hölder inequality, for any 

4 > 0 , we have  
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(3.35) 

Combining the inequalities (3.29),(3.30), (3.34), 
(3.35), we obtain   
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(3.36) 

where = ( , , , , , )C C n p K   . 

Choosing 2 , 3 , 4 and 0 > 0 small enough, there 

exist 1 0= <r p p , such that 2 3 4= ( ) <1C        

when 0<  . By (3.36),  
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where = <
nr

t r
n r

. Let =| |tg u , = 0G .Then we arrive 

at the following inequality when 0<  , that is  
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(3.38) 

where = ( , , , , , )C C n p K   .Then by (3.20),(3.38) and 

Lemma 2.5, there exists r  , and >r r , such that 
1, ( )ru W


  . For r  , repeating the above process, the 

integrability of u is improved over and over again. In 

this way, there must be an integrable exponent 1r  

and 2r , satisfying 1 2< <r p r , such that
1, ( )u W   , 

1 2( , )r r  . The proof is complete. 
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