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Abstract: In this paper, the age-structure infection and vaccination is discussed.Under the assumption of a
certain amount of insect pest and bollworm, using the theory and method of partial differential and ordinary

differential equations, the expression of a reproductive MSEIR model with secondary is obtained ER((D) , At

that time,ifiR((o)<1 the equilibrium state was locally asymptotically stable. at that time, ifiR((p) >1, the
equilibrium state was unstable. At this time, there was an age equilibrium state, and it was proved that if

SR(O) <1the age equilibrium state was globally asymptotically stable.

Keywords—Helicoverpa armigera;MSEIR model;regeneration number;equilibrium state;age equilibrium
state, stability

.  INTRODUCTION

In recent years, the application of mathematical models and computer combined means to study the problem of
pest control has become one of the most concerned topics in many countries. Due to the help of electronic
computers, various variables in the environment can be considered synthetically. The impact of the trend behavior,
the density and spatial distribution of the host and the natural enemy on the system, and the MSEIR model as
close as possible to the real host and natural enemy system of action, the African cotton bollworm is a major pest
damage to cotton in recent years based on Considering the ecological characteristics of pests and cotton growth
stages, environmental conditions and control measures at different stages of the insect state, the MSEIR model
was established to determine when the number and age of cotton bollworm and the number of cotton reached a

state of equilibrium The paper is organized as follows: In Section 1, the MSEIR model was established. In Section

2, analytical expressions for the number of regenerations SR((D) and the number of basic regenerations ‘R, were

given and proved that the if R(¢) <1, the age equilibrium was locally stable at that time, if R(¢) >1when the
age equilibrium was unstable Section 3 discusses the global stability of the equilibrium states of age. Section 4

proves that SR((p) >1, there was an age equilibrium at the time.
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. MODEL

In order to establish a model with MSEIR, we first introduce some markers to indicate“a” representative the age of

cotton bollworm, the“t” which means the growth time and growth cycle of cotton bollworm are divided into five
parts: mating, spawning, larvae, pupae and adults Crossing, we use M (a,t),S (a,t), E(a,t), I (a,t), R(a,t)
said spawning, infestation of larvae, overwintering pupae, fecundity of adult and bollworm population density
function forage A and A, means that the total number of cotton bollworm at J:Z S (a,t)da ,and above the age
range is, expressed as the age-dependent birth rate and mortality , Here assuming and independent of the

number, the age-dependent maternal mating cycle b(a) and U (a) , and the age-dependent spawning cycle and

larval engraftment cycle (a(a)) and (Q(a))_l, respectively. Using the cycle representing the wintering pupae,
The disjunction in one cycle §(a), a(a) and @(a)thus leads to an appropriate reduction in the number,
satisfaction, assumptions, and are positive continuous functions, non-negative continuous functions, assuming
that the disjoint rate has the following form ﬂ(a,t): k(a)J‘:h(p)l (p,t)dp Where and represents the
morbidity and adult rate in the growth cycle of H. armigera. The MSEIR model is constructed under the following
conditions. The MSEIR model can be described by theh(a),k(a)eC [0, +), Hh(a),k(a)=01 [O, +0)

initial boundary value problem of the following five partial differential equations:

oM (a,t) .\ oM (a,t)
ot oa

=—(u(a)+s(a))M(at) (1.m)

oS (a,t) .\ S (a,t)
ot oa

=—(u(a)+ep(a))S(at)+s(a)-1(at)S(at) (1.b)

OE (a,t) s OE (a,t)
ot oa

=—(u(a)+5(a))E(at)+A(at)[S(at)+oR(at)] (1.t)

dl(a,t) al(at)
ot " oa

——(u(a)+0(a))1 (at)+a(a)E(at) (1.1)

oR(a,t) N oR(a,t)
ot oa

=-u(a)R(a,t)+0(a)l(at)+p(a)S(at)

—oA(at)R(at) (1.2)

among them
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M(0,t)=["b(a)[M(at)+S(at)+E(at)+I(at)+R(at)|da (1.1)
s(0,t)=E(0,t)=1(0,t)=R(0,t)=0 (1.1)

M (a,0) =M, (a),5(a,0) =S, (a),E(a,0)=E,(a),1 (a,0) = 1,(a)
R(a0)=R,(a) (L.0)

all of the equations together to get the following about age density function

P(a,t) =M (a,t)+S(a,t)+ E(a,t)+ I (a,t)+ R(a,t) equation

oP(a,t) N oP(a,t)

=—-u(a)P(at) (1L.2a)

ot oa
P(0,t)=["b(a)P(at)da (1.2b)
P(a,0)=PR (a) (1.2¢)

Assumptions below b(a) el” [0, +oo),b(a) >0,Vae [0,+oo)
u(a) € C[0,+0),u(a) > 0,vae[0,4), [ "u(a)da =+

And assuming thatb(@) andu(a) the value is 0 when the*a” maximum value of a certain age is exceeded, it is

further assumed that the number of the bollworm is in a steady state, that is, the following expression

J.;wb(a)exp{_ru (r)dr}da =1 (1.3)
P(at)=P. (a)=b e[ u(r)dr| (1.9

According to the practical significance of the model, the number distribution of cotton bollworm in each cycle is
satisfied

M,(a)>0,S,(a)>0,E,(a

)20,1,(a)20.R,(a)20
M (a)+Sy(a)+Es(a)+1o(a)+ R, (a)=P.(a)  (L5)
(

The following relation can be derived from the (1.4) and (1.5)

b, = [ [M, (a) +5, (a)+ E, (a) + (a)+RO(a)]da.(jfe‘ff“(”“’daJ (1.9
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Make the following transformation

m(at)= M (a,t) o(a :S(a,t) o(at) = E(at)
B @ TR M R
(o) = I (a,t) f(a _R(at) |
@)=l ren-200 )

The system (1.1) will be systematized as a simple system

om(a,t) om(a,t)

2 ) s(amat)  (18)
asgi"t)+8522’t):5(a)m(a,t)—(/)(a)S(a,t)—ﬁ(a’t)S(a’t) (1.8)
aeg,tmeg:t):_a(a)e(a,t>M(a,t)[s(a,t)+ar<a,t>] (1-8)
WD IO payan) afae(@) @)

ar(a,t) N or(a,t)
ot oa

—0(a)i(at)+p(a)s(at)-oi(at)r(at)  (L8e)
m(0,t)=1,5(0,t)=e(0,t)=i(0,t)=r(0,t)=0 (1.8f)
m(a,0)=m,(a)s(a,0)=5,(a).e(a,0)=¢(a),
i(a,0)=i,(a),r(a,0)=r,(a), (1.89)
m(a,t)+s(at)+e(at)+i(at)+r(at)=1 (1.8)
l(a,t):k(a)j:h(p)Pw (p)i(pt)dp (1.8i)

In the next section, we derive iR(l//) expressions, generally called ‘.R(l//) egenerated numbers

Il Expression of Regeneration Number and Local Stability of Age Equilibrium

First, find the age equilibrium point of the model(1.8), that is, to satisfy the solution of the following equation

(m(a.7¢ 20,6 )
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L) s(@m(a)-o(@)s@s(a)  (1.9)
diga) —_a(a)e(a) (L.9¢)

da

d;ga)ze(a)i(a)+¢(a)§(a) (1.9)
m(0)=1s(0)=¢e(0)=i(0)=r(0)=0  (1.9%)
m(a)+s(a)+e(a)+i(a)+r(a)=1 (1.99)

It is easy to understand the (1.8) system there is the following balance

m(a) =exp(-J; 5(r)dr | (2.1a)
E(a) = jo §(r)exp{—JOT§(v)dv}-exp{—'[jgo(v)dv}dr

dr (Z.iﬁ)

In order to study the local stability of the age equilibrium, we linearize the (2.1) equation at the equilibrium (1.8)

point

Make m(a,t)=m"(at)+m(a),s(at)=s"(at)+s(a).e(at)=¢"(at)+e(a)
i(at)=i"(at)+i(a),r(at)=r"(at)+r(a) (2.2)

(2.2)will be brought into (1.8a—1.8e) and out of higher order terms, and the linearized equation of (1.8) system
at the age equilibrium (2.1) point is obtained

am*a(ta,t)+am*aga,t) :_5(a)m*(a,t) (2.38.)
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os (at) os*(at)

St =@M (@ -p(a)s'(at)- 4 (at)s(a) (2.8)
. éta’t) ¥ ae*a(j Yo a(a)e (@t)+ 4 (a)[s(a)+or(a)] (2.3)
OO T ey ai) st e
. ;ta't) ’ ar*a(: U p(@)i (@) +o(@)s (@) -o7 (@)(a) (2.8
Here 2" (a.t)=k(2) [ h(p)P.(pF (p)dp  (23f)

It is assumed that(2.3) the solution has the following form

(M (at),s"(at).€"(a,t),i" (at),r (at))=(M(a),S(a),E(a),1 (a),R(a))e”

Take it into the (2.3C) and (2.3d ) equation get the new equation

i =—(1+a(a))E(a)+k(a)Q,(a)V, (2.4a)
d |dga) =-(2+6(a))T(a)+a(a)E(a) (2.4b)
E(0)=1(0)=0 (2.4c)

Here V, = [“h(a)P, (o) (a)da  (2.5)
Q, (a)=5(a)+ ot (a) o —exp{-[, 5(c) e
+(1—a)[exp{— J o(e)dz}+ [T (r)exp ][ 5(s)is]exp - J'rago(s)ds}dr} (2.9
Solve the (2.4a) and(2.4b) equation and get
E(@)=Vo[ k(PR ()ep|-['(2+a())de|dp  (27a)
1(a)= [} a(£)E(&)exp |- (2+0(r))dr|ds (2.70)
Use(2.7a) substitute (2.7b)and exchange the order of points to get the expression of 1 (@)

T(a) =V, [ k(p)Q, ()] a(e)-e e T g, (2
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Use (2.8) substitute (2.5) and exchange the order of points to get the expression

Vo =Vo [, k(£)Q, (a)] "h(a)P. (a) [ a($)

exp {—j:(l +a(r)) dr} e X F{—E(/l +6(z)) dr} d&dad p (2.9)

The formula of (2.9) equations on both sides divided by V, (VO # O), get the following characteristic equation

1=, k(P)Q, ()] h(@)P. () [ a(2)

.exp{—j;a(r)dr}-ex;{—jj@(r)dr}dfdadp:T(/1) (2.10)

a

Define the number of regenerations iR((p) =T (0) , Which is

R(0)= [, K(0)Q, (2)] ()P, (a) ["a(2) ¢ " e 1" M azaanp (2.1

Can get the following result

A Theoreml:If SR((D) <1, the age equilibrium (2.1) is gradual and steady; If iR(go) >1, the age equilibrium
(2.1) is unstable .

Prove: By(2.10) type, when 4 €R, We have T'(/”t) <0, limT (/I) =0,

A—>+00

lim T (1) =+o0, So function T(A) in (—o0,400) Is a strictly monotonically decreasing function if and only if

A——0

R(y)> 1,(93(1//) :1) , The (2.10)equation has a unique positive real root, to prove A" Is the real root of the
real part of the T (/1) =1 equation. Assume A=X+Yi (X, ye R) Is an arbitrary complex root of the
(2.10) equation, noting 1=T (1) = |T (x+ iy)| <T(x) Sothere X<A . HReA< A

It can be seen, If 9{((0) <1, the age equilibrium (2.1) is gradual and steady; If SR((p) >1, the age equilibrium
(2.1) is unstable. Definition R, = ‘R(O) ,which is

P
. 5(r)dr

5= [ ko)1 P | [ @ el M aziap (222) e

Q, (a) = E(a) + O'F(a) < 1—e_IO oy Forall a>0 setup, sowe

have R(¢) <R,
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IV Global stability of age equilibrium states

The second section to prove f (@) <1, the age equilibrium (2.1) is gradual and steady; This section will prove

if R, <1, The equilibrium state of age is globally asymptotically stable
B Theorem 2:if R, <1, The system of (1.8) equilibrium state of age is globally asymptotically stable.
Prove: Integrate the equation (1.8a)along the characteristic line
m(a,t):m(O,t—a)-exp{—J:c?(r)dr},a<t (3.1
Getfrom (1.8f) when a<t,m(0,t—a)=1, then
m(a,t):exp{—Joaé(r)dr}:ﬁ(a),a<t (3.9
We can get limm(a,t)= m(a) (3.3)

Make f (a,t) for the t moment of the @ age of the adult cotton bollworm emergence ratiowhen a<t,

f(at)=i(at)[s(at)+or(at)]< k(a){l—ej: ‘“’”’]v () (3.9

Here A(at)=k(a)V (1), V(t)=[ "h(a)P, (a)i(at)da (35)

Here we use o <1, By (1.8h) and (3.2) to get the real of

s(at)+or(at)<1- e_IO el

Integrate the (1.8C)equati0n along the characteristic line
a a
e(at)=[ f(a-&t —5)-exp{—'[a_§a(r)dr}d§,a <t (3.6)
The same can be obtained

i(a,t) :J‘Oaa(a—q)e(a—n,t—n)-exp{—j:_ne(r)dr}dn,a <t (3.9

Use the (3.6) equation into (3.7) ,when a<t,we can get

i(at)= j:a(a_n)j:’” fa—n—&t-n—¢)
.exp{—.[:_u ga(f)dr}dg-exp{—.[:_ne(r)dr}dn

—n—

(3.8)

Make changes in (3.8) and change the order of points

(at)=[) f(pt-a+p)[ a(¢)exp|-[ a(r)dr|-exp|-[ 0(r)dr|ddp (39)
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Use the (3.5) and (3.9) into (3.4) to get
f(at)< k(a)(l—ej:s(’)d’].[;wh(a)Pw (a)_[oa f(pt-a+p)
.jja(g)exp{—jja(r)dr}exp{—jje(r)dr}dgdpda (3.10)

Make Y (@)= limsup f (a,t)

t—>+00

On both sides of (3.10) take the upper limitt — +oo, using Fatou lemma to get

' fja(f)eXp{—fj“(f)df}eXp{—jjﬁ(r)dr}dfdpda (3.12)

Use C said the following constants

C=["h(a)r.(a)] Y (p)- j a(e ™ L Lo “dsdpda  (3.13)
The inequality can be rewritten as0 <Y (a) < Ck(a) (1— ej‘jﬁ(r)dr] (3.14)
By(3.13) and (3.14) that we can get

c<| *°°h<a>Pw<a>J§Ck<p>[1—eff ‘“”“’]-Jj (e P e 2 e

=Cj0+°°k(p)[1—effﬁ(f)d’}j;”h(a) ()j (fg)eI g "dd pda

=C%R, (3.15)
By (3.15)We knowing that if R, <1 then C =0 therefore,if R, <1 then

Y( ) 0 ,which is Ilmsupf(at):o

t—>+o0

On both sides (3.6) of (3.7) take the limitt — +o0,we can get

lime(a,t)= é(a) =0, tIirﬂoi(a,t) = i(a) =0,limV (t)=0 (3.16)

t—-+o0 t—+o0

Integrate the (1.8b) equation along the characteristic line

s(at)= Joad(r)m(r,t —a+ r)exp{—f[go(v) +k(V)V (t—a+v)] dv}dr,a <t (3.17)
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On both sides of (3.17) take the limitt — +oo, Then apply (3.2), (3.16)and

(2,1b) ,we can get

lims(a,t)= I:é'(ﬂexp{—ﬂé‘(v)dv}-exp{—jrago(v)dv}dr = E(a) (3.18

t—>+00

Get from (1.8h) and (1.99)

limr(a,t)=lim[1-m(at)-s(at)-e(at)-i(at)]

t—+o t—+0

= lim [1—5(a)—§(a)—é(a)—i(a)}=F(a) (3.19)

t—>+o0

By (2.2), (3.3), (3.16), (3.18), (3.19) Knowable that when R, <1,

The age equilibrium of the system is globally asymptotically stable

V The existence of age equilibrium

Section 2 proved that when 9{((p) >1, Age equilibrium is not stable, in fact, in this case there is a non-trivial
equilibrium, that is, the following theorem
C Theorem 3:When SR((D) >1,system (1.8) There is at least one age equilibrium, seeking system (1.8) .The

equilibrium (1.8) point is to find a time-independent positive solution that satisfies the following system of

(1.8) equations (m*(a),s*(a),e*(a),i*(a),r*(a))

Partial differentiation into ordinary differential equations

dm(;;a) —5(a)m (a) (4.1a)
ds*cfaa’t)=5<a)m*(a)—[<p(a)+k(a>V*]s*<a> (4.1)
de”(a)

. —a(a)e’(a)+k(a)[s"(a)+or"(a)]-V" (4.1c)
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m'(0)=1s"(0)=€"(0)=i"(0)=r"(0) (4.%)
m(a)+s (a)+e (a)+i (a)+r(a)=1 (4.9)
Here V :_[Owh(a)P (a)i"(a)da (4.2

0

Theorem 3 proves as follows: Solve the (4.1) euations are obtained
m (a) = exp{ [5(c )dr} (4.8)
s"(a) = joaa(f)exp{_jo’a(v)dv} exp{—f[(p(v)+k(v)V*]dv}dr (4.8)
e*(a):j:k(p)h(p,v*)-v*-exp{-j:a(s)ds}dp (4.8)
i"(a)= j:a(g)e*(g)exp{-jje(s)ds}dg (4.3d)
(@)= p(£)5"(£)exp|-oV" [ k(s)ds|d¢
[0y ( exp{ oV [k ( ds}dn (4.3¢)
Here i(p V") =5 (p)+ o1 (p) (4.3f)
Use (4.3g) into(4.32) will be substituted and exchanged order
(@)= [ p(e) (g)exp{-avj ds}dcf
A [k(o)r(p V)] e(n)i*(n)exp{_av*j:k(s)ds}
.jza(g).exp{-jja(s)ds}.exp{-j;e(s)ds}dgdndp (4.3n)
The following equations with 72(,,V ") parameters are satisfied
by (4.3 )and (4.3n)
n(av)=g(aVv)+[w(apV’) (4.4)
g(av)=5(a)+o[ p(&) (§)exp{—o-v* K (s)ds}d§ (4.5)
v(apV)=oV'k(p) j:e(n)exp{_av* j:k(s)ds}
{ (g)exp{ - ()ds} exp{—ﬂ@(s)ds}dfdn (4.6)
Obviously Contains only known functions, and all known functions g(,V"),a [0, A)that it is continuousit is

easy to see thatg € C ([O A) xR, R) , the relationV " is continuously differentiable, and for each oneV "~ € R the
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function y/(-,-,V*) is the on the continuous Volterra nucleus (See [15] for details). From the result of the
theorem1.2 in Section 2 of Chapter 5 of [15] we know that for each oneV > 0 there is a solution h(a,V*)
defined [O, Aﬂax) in the maximum interval of existence.And depends onh(a,V*) it continuously V~,so that we
can get a bounded h(a,V*)solution, for some one,we can get

m(a,t)+s(at)+e(at)+i(at)+r(at)=1, al h(a,V*) are bounded by the literature [15].The twelfth
chapter, section one, knows that A, =+ to put (4.39) in (4.2), both sides of the equation obtained

Vv’ (V* # O) at the same time to get

1- J‘Omh(a)Pw (a)IOak(p)dh(p,v*)jaa(f)-eIp a(s)ds ‘e—J‘g 9(S)dsd§dpda

P

+o0

= ["k(p)n(pN ) "h(a)P, () [ a(é): S R

o
=G(V") (4.7)

If there is a positiveV " solution to the (4.7)equation, there is a 7(a,V")bounded solution defined above

[0,40) in (4.4),The original system, there is an age equilibrium, easy to know when V" =0, the equation

(4.1) derivedi (a) =0, this time the equilibrium equilibrium is the state of age, pay attention 7(a,0) = Q,(a),

and thus getG(0)=R(¢) by (2.11)and(4.7). the title R(¢)>1G(0)>1, and by (4.1g) and(4.3)

knowi” (@) <1,soby (4.39)

« [ o\ fa [Fats)as [ o(s)ds
Vv -jok(p)h(p,v )La(g)-efﬂ et dédp<1l (4.9
Thustoany V™ > 0 get

V6 (V)= "h(@P. (v [k(p)r(pV")
-jja(f)exp{—jja(s)ds}exp{—'[;@(s)ds} déd pda

<[ "h(a)p. (a)da<h™[ P, (a)da=h"N (4.9)
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Here N on behalf of the number of cotton bollworm, h*™ = sup h(a)
[0,+oo)

In particular, yes V' =h"N , thereis G (h+N ) <1, butsince G (0) >1

there is a positive solution G (0) >1 on the existence of a positive solutionV ", this solution is not necessarily

unique G (V*) =1 because it is not necessarily(O, h* N) a monotonous function, and then R (@) >1 there is

at least one age mouilibrium in the system, which Is determined by the unique solution to (V*) which the
+

(4.1) equation corresponds.

CONCLUSION: Because 9%((0) > lit is the only sufficient condition for the existence of the equilibrium state of
the age, | only prove that?R(l//) <1 is the equilibrium state of age was locally stable at that time. Therefore, the

existence of the equilibrium point in the system is a problem to be solved iR(t//)<1. Theorem 2 shows that

R(y)<1

at this time, There is an equilibrium of age
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