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Abstract— The study of superconductivity arising 
from doping a Mott insulator has been an area of 
intense research in the area of superconductivity. 
Within the framework of electron-electron 
mechanism, the specific heat of a square- lattice 
in LSCO and YBCO are discussed. It is shown that 
a sharp peak in the specific-heat appears at the 
superconducting transition temperature, TC  and 
then the specific heat varies exponentially as a 
function of temperature for the temperatures 
𝑻 < 𝑻𝑪 due to the absence of d-wave gap nodes at 
the charge-carrier Fermi surface In particular, 
quantitatively, we report a specific heat value 
1.33×10

-3
eV/K for YBa2Cu3O6 (YBCO), 1.031×10

-

3
eV/K for La2-xSrxCuO4 (LSCO), at their respective 

TC values which are in favorable agreement with 
other recent research findings.  
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I.  INTRODUCTION  

Superconductivity in parent compounds of cuprates 
arises due to strong electron-electron repulsion [1]. 
Superconductivity is then obtained by adding charge- 
carriers to insulating parent compound [2].  Since the 
discovery of superconductivity in cuprate 
superconductors, the search for the superconducting 
(SC) mechanism has been an area of great research 
[3]. In the cuprate superconductors, Cu ions in a 
square array are ordered antiferromagnetically, and 
then spin fluctuations are thought to play a crucial role 
in the charge-carrier pairing [1]. Experimental studies  

in 𝐿𝑎2−𝑥𝑆𝑟𝑥𝐶𝑢𝑂4+𝛿   (LSCO) and 𝑌𝐵𝑎2𝐶𝑢3𝑂𝑥 (YBCO) , 
using small angle neutron scattering (SANS) 
succeeded to measure a well-ordered vortex lattice 
(VL) structure at all doping regimes of LSCO. In the 
optimally to overdoped regime a  field-induced 
transition from hexagonal to square coordination is 
reported  at around H = 0:4 T with the square lattice 
oriented along the anti-nodal direction of the d-wave 
superconducting gap [4]. In a recent experiment, [5]  
observed a similar phase transition in the YBCO 
superconductor, however with two main differences: 
first, the critical field at which the transition occurs is at 
least an order of magnitude higher than in LSCO; 
second, the square VL in YBCO is oriented along the 
nodal direction of the d-wave gap function. The heat 
capacity measurement of the specific heat can be 
used to study bulk properties of superconductors 

which are used to investigate low-energy quasiparticle 
excitations like the charge-carrier symmetry [1]. For  
conventional superconductors, lack of quasiparticle 
excitation results to an exponential specific heat at low 
temperatures since they are gaped at the Fermi 
surface. For Square lattice cuprates in LSCO and 
YBCO, experimental results have shown that Angle-
Resolved Photo-Emission Spectroscopy (ARPES)  in 
underdoped (hole-doped) cuprates generically 
observe open-ended lines of the  Fermi surface 
known as Fermi arcs and accompanied by angle-
dependent pseudogap [6]. At the same time, the 
observations of quantum oscillations indicate the 
presence of small closed Fermi surfaces. This 
phenomenology hinted at the possibility that the Fermi 
arcs originate from closed Fermi surfaces in a smaller 
Brillouin zone (BZ) emerging as a result of some kind 
of periodically modulated background. Such 
interpretations based on one-dimensional stripe-like or 
two-dimensional checkerboard-like charge 
modulations have indeed been proposed [7]. Spin 
modulations have mostly been omitted in these 
interpretations because of the absence of the 
experimental evidence of static spin response in 
YBa2Cu3Oy (YBCO) and other cuprate families 
exhibiting quantum oscillations [6]. 
One of the reason for the hexagonal-square lattice 
transition is the coupling of charge/stripe fluctuations 
or Fermi velocity anisotropies [8]. It should be noted 
that d-wave scenario favours a square VL aligned 
along the nodal direction (as observed in YBCO [5]), 
an anisotropy of the Fermi velocity would result in a 
VL aligned along the anti-nodal direction (as observed 
in LSCO [9]).  
 
Here, the goal is to  develop a model of non-
interacting fermions of spin-1/2 on a square lattice 
coupled through spins to local fields. According to 
Heisenberg, when copper oxide is doped to half-filling 
level and increasing the onsite Coulomb energy to 
large values, the cuprate system becomes anti-
ferromagnetic with neighboring electrons acquiring 
opposite spins; hence an electron would gain energy 
in hoping to the neighbor site where the other electron 
has opposite spin. This leads to pairing of electrons 
forming Cooper pairs that facilitate the process of 
superconductivity. The pairing electrons were found to 
exchange spins and as a result there exists exchange 
energy, J.   
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Figure 1: Interactions of Cu ions 

 
(a)The lattice of copper ions in a single layer of La2 
CuO4. Each ion has a free spin, and at zero 
temperature these spins exhibit antiferromagnetic 
order. 
 
(b) The addition of strontium ions has the effect of 
introducing "holes" into the spin lattice. These holes 
can hop between lattice sites, as indicated by the red 
arrows 
 
FORMALISM 
 
The Heinsberg Hamiltonian for a square lattice was 
expressed interms of spin exchange integral, J, the 

electron spin operators 𝑆𝑖  and 𝑆𝑗  in the neighboring 

sites as  

𝐻𝐻𝑒𝑖𝑛𝑠𝑏𝑒𝑟𝑔 = 𝐽 ∑ 𝑆𝑖 . 𝑆𝑗𝑖𝑗                                      (1) 

Here, we impose a fermion constraint 

𝒻𝑖↑
+𝒻𝑖↑ + 𝒻𝑖↓

+𝒻𝑖↓ = 1                                            (2) 

The Heisenberg exchange term is now written in 
terms of fermion operators as [10]; 

𝑆𝑖 . 𝑆𝑗 = −
1

4
𝒻𝑖𝜎

+ 𝒻𝑗𝜎𝒻𝑗𝛽
+ 𝒻𝑖𝛽 −

1

4
(𝒻𝑖↑

+  𝒻𝑗↓ 
+ − 𝒻𝑖↓

+𝒻𝑗↑
+)(𝒻𝑗↓𝒻𝑖↑ −

𝒻𝑗↑𝒻𝑖↓) +
1

4
(𝒻𝑖𝜎

+ 𝒻𝑖𝜎)               (3) 

Substituting equation (2) back to equation (1) gives  

𝐻𝐻𝑒𝑖𝑛𝑠𝑏𝑒𝑟𝑔 = 𝐽 ∑ −
1

4
𝒻𝑖𝜎

+ 𝒻𝑗𝜎𝒻𝑗𝛽
+ 𝒻𝑖𝛽 −

1

4
(𝒻𝑖↑

+  𝒻𝑗↓ 
+ −𝑖𝑗

𝒻𝑖↓
+𝒻𝑗↑

+)(𝒻𝑗↓𝒻𝑖↑ − 𝒻𝑗↑𝒻𝑖↓) +
1

4
(𝒻𝑖𝜎

+ 𝒻𝑖𝜎)                                                           

(4) 

Let the new operators, 𝛾𝑖𝜎 be defined in terms of the 
old operators,  𝒻𝑖𝜎 as follows; 

i. 𝛾𝑖𝜎 = 𝑈𝑖𝜎𝒻𝑖𝜎 − 𝑉𝑖𝜎𝒻𝑖𝜎′
+   and  𝛾𝑖𝜎′ = 𝑈𝑖𝜎𝒻𝑖𝜎′ +

𝑉𝑖𝜎𝒻𝑖𝜎
+                                                            (5) 

ii. 𝛾𝑗𝜎 = 𝑈𝑗𝜎𝒻𝑗𝜎 − 𝑉𝑗𝜎𝒻𝑗𝜎′
+   and  𝛾𝑗𝜎′ = 𝑈𝑗𝜎𝒻𝑗𝜎′ +

𝑉𝑗𝜎𝒻𝑗𝜎
+                                    (6) 

The complex conjugates of the operators in equations 
(5) and (6) are; 

𝛾𝑖𝜎
+ = 𝑈𝑖𝜎𝒻𝑖𝜎

+ − 𝑉𝑖𝜎𝒻𝑖𝜎′   and  𝛾𝑖𝜎′
+ = 𝑈𝑖𝜎𝒻𝑖𝜎′

+ +

𝑉𝑖𝜎𝒻𝑖𝜎                                                                         (7)  

𝛾𝑗𝜎
+ = 𝑈𝑗𝜎𝒻𝑗𝜎

+ − 𝑉𝑗𝜎𝒻𝑗𝜎′   and  𝛾𝑗𝜎′
+ = 𝑈𝑖𝜎𝒻𝑗𝜎′

+ +

𝑉𝑗𝜎𝒻𝑗𝜎                                                                        (8) 

The constants 𝑈(𝑖,𝑗)  and 𝑉(𝑖,𝑗)  are screened Coulomb 

repulsion term and the electron interaction term 

respectively [10] and ought to satisfy the condition  

𝑈𝑘(𝑖,𝑗)
2 + 𝑉𝑘(𝑖,𝑗)

2 = 1 for fermions. 

Using equations (5),(6),(7) and (8) into equation (4) 
gives  

𝐻𝐻𝑒𝑖𝑛𝑠𝑏𝑒𝑟𝑔 = ∑ 𝐽 {−
1

4
[(𝑈𝑖𝜎𝛾𝑖𝜎

+ + 𝑉𝑖𝜎𝛾𝑖𝜎′) (𝑈𝑗𝜎𝛾𝑗𝜎 +𝑖𝑗

𝑉𝑗𝜎𝛾𝑗𝜎′
+ ) (𝑈𝑗𝜎𝛾𝑗𝜎′

+ − 𝑉𝑗𝜎𝛾𝑗𝜎) (𝑈𝑖𝜎𝛾𝑖𝜎′ − 𝑉𝑖𝜎𝛾𝑖𝜎
+ )] −

1

4
[(𝑈𝑖𝜎𝛾𝑖𝜎

+ + 𝑉𝑖𝜎𝛾𝑖𝜎′)  (𝑈𝑗𝜎𝛾𝑗𝜎′
+ − 𝑉𝑗𝜎𝛾𝑗𝜎) − (𝑈𝑖𝜎𝛾𝑖𝜎′

+ −

𝑉𝑖𝜎𝛾𝑖𝜎) (𝑈𝑗𝜎𝛾𝑗𝜎 + 𝑉𝑗𝜎𝛾𝑗𝜎′
+ )] [(𝑈𝑗𝜎𝛾𝑗𝜎′ − 𝑉𝑗𝜎𝛾𝑗𝜎

+ ) (𝑈𝑗𝜎𝛾𝑗𝜎 +

𝑉𝑗𝜎𝛾𝑗𝜎′
+ ) − (𝑈𝑗𝜎𝛾𝑗𝜎 + 𝑉𝑗𝜎𝛾𝑗𝜎′

+ ) (𝑈𝑗𝜎𝛾𝑗𝜎′ − 𝑉𝑗𝜎𝛾𝑗𝜎
+ )] +

1

4
[(𝑈𝑖𝜎𝛾𝑖𝜎

+ + 𝑉𝑖𝜎𝛾𝑖𝜎′)(𝑈𝑖𝜎𝛾𝑖𝜎 + 𝑉𝑖𝜎𝛾𝑖𝜎′
+ )]}                                                            

(9) 

If we the particle spin up state as 𝑘 and spin down as 
−𝑘  , then the scattered particle spin states will be 
represented by 𝑘′ and −𝑘′ for spin up and spin down, 
respectively. Rearranging terms in equation (9) and 
neglecting the higher order terms, number operators 
and off-diagonal terms, the diagonalized form of the 
Heinsberg Hamiltonian becomes; 

𝐻𝑑𝑖𝑎𝑔 = ∑ 𝐽 {−
1

4
+

3

4
𝑉𝑘

2 −
1

2
𝑉𝑘

4 −
1

2
𝑈𝐾

2𝑉𝑘
2}𝑘,−𝑘                                  

(10) 

On diagonalization,we obtain the values of  𝑈𝐾 and 𝑉𝑘 
as; 

𝑈𝑘 = √2  and 𝑉𝑘 = 1                                         (11) 
 
RESULTS AND DISCUSSIONS 

a. Energy of the Heinsberg system 

Substituting equation (11) back to equation (10) gives 
the ground state energy of the system as; 

E0 = (𝐽)                                                           (12) 
The energy of the system at any temperature, E as a 
function of temperature is obtained by multiplying the 
ground-state energy, E0 by the thermal activation 

factor,  𝑒−
∆∈

𝑘𝑇   [11], where k is Boltzmann’s constant 

and ∆∈  is the energy gap. The energy gap for 
superconductors is a very small quantity and it is 
generally 1% of the minimum energy of the system 
[11]. Thus  ∆∈= 0.01𝐸0. So at any temperature T, the 
energy of the system is given as; 

𝐸 = 𝐸0𝑒−
0.01𝐸0

𝑘𝑇

= 𝐸0𝑒−
𝐸0

100𝑘𝑇                                                  (13)                                                                                           (13) 

Substituting equation (12) in equation (13), we obtain 
the energy of the system at any given temperature as; 

𝐸

= (𝐽). 𝑒−(
𝐽

100𝑘𝑇)                                              (14)                                                                                                                (14) 

𝒃) Specific Heat capacity of the system 
The specific heat capacity at constant volume  𝑐𝑣  of 
the system was obtained by determining the first 
derivative of the energy of the system with respect to 
the temperature [3,10,11] . Hence, using equation 

[14], we obtain the expression of 𝑐𝑣 as; 

𝐶𝑣 =
(𝐽)2

100𝑘𝑇2 . 𝑒−(
𝐽

100𝑘𝑇
)
                          (15) 
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Numerical values of specific Heat 
One of the characteristics quantities in the 
thermodynamic properties of cuprates is the specific 
heat, which can be obtained by evaluating the 
temperature-derivative of the internal energy .Fig. 2, 
we plot the specific heat Cv as a function of 
temperature for hole doped cuprates (YBCO and 
LSCO). The parameters used are  J = 0.17eV for 
YBCO and J=0.13eV for LSCO. The curves obtained 
for the Fermi hybrid model assumes a dome-shaped 
nature. Similar curves were obtained by [1]; [12] while 
investigating specific heat as a function of 
temperature for triangular-lattice superconductors 
under different conditions. Apparently, the main 
feature of the specific-heat observed experimentally 
on the cuprate superconductors is qualitatively 
reproduced. At the peaks, superconducting phase 
transition occurs and we can estimate TC at this point. 
Peak specific heat occurs at critical temperature [3]. 
As expected the transition temperature corresponding 
to this phase transition is lower for LSCO compared to 
YBCO. The step-like transition occurs at TC≈50 K and 
TC≈30 K for YBCO and LSCO respectively. The 
values of specific heats corresponding to this jump 
are; CV=1.33 ×10

-3
eV/K for YBCO and 1.031 ×10

-

3
eV/K for LSCO. It is worth noting that our model 

predicts comparable value of specific heat although at 
different transitional temperatures. However, both 
cuprates registered very high TC values compared to 
their experimental values. The experimental value for 
YBCO is 24.5 K while that of LSCO is 14 K [13].  
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Figure 2. Varriation of Specific Heat with Temperature for YBCO and LSCO
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The large and sharp peak we observe is therefore due 
to electronic effects beyond the band structure [12]. 
 
CONCLUSIONS 
The Bogoliubov-Valatin transformation was used to 
diagonalize the Heinsberg Hamiltonian of a square 
lattice to obtain the ground state energy. From  the 
ground state energy, the specific heat of high-TC 

superconductors was determined. The results 
obtained for specific heat predicted a higher transition 

temperature for both in the electron-doped YBCO and 
LSCO superconducting cuprates. 
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