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Abstract— In this paper an approach to 
Okumara-Hata pathloss model optimization that 
utilizes radioclimatic parameters, namely; 
temperature, pressure and relative humidity is 
presented. In the optimization approach network 
site survey data were collected in two days, 
specifically, in the morning, afternoon and 
evening of each day, which gives rise to six 
different site survey dataset. The empirical survey 
measurement was conducted for global system 
for mobile communication (GSM) network at 900 
MHz frequency band  that is located, in Akwa Ibom  
State, Nigeria. Multi-parameter tuning approach 
was used to tune two constant values in the 
original Okumara-Hata   model for the six different 
site survey datasets. The mean temperature, mean 
pressure and mean relative humidity from the six 
different site survey datasets were used to 
develop two multiple linear regression models 
that relate temperature, pressure and relative 
humidity to the Okumara-Hata   model. The results 
showed that for the six different site survey 
datasets, the Root Mean Square Error (RMSE) 
value of the original Okumara-Hata model 
predicted pathloss varied from a minimum of 
58.1758 dB to a maximum of 61.6716 dB. On the 
other hand, the RMSE value of the original 
Okumara-Hata model predicted pathloss varied 
from a minimum of 2.5084 dB to a maximum of 
4.0535 dB. In all, the results showed that by tuning 
the Okumara-Hata model with radioclimatic 
parameters the RMSE was maintained below 4.5 
dB irrespective of the variations in the 
atmospheric parameters and their attendant effect 
on the pathloss. 
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I. INTRODUCTION 

In mobile radio communication networks 

pathloss models are important for estimating coverage 

area, frequency assignments, interference analysis 

and other cell parameters which are basic elements 

for such network planning process [1, 2, 3, 4,  5]. 

Generally, there are three categories of pathloss 

models, namely the empirical models, semi-

deterministic models and deterministic models [4, 6,  

7,   8, 9]. While empirical models are based on 

empirical measurement data, statistical properties and 

few parameters, the semi-deterministic models are 

based on empirical models and deterministic aspects. 

On the other hand, the deterministic models are site-

specific, requires enormous number of geometry 

information about the city, computational effort and 

more accurate model. In all, the empirical pathloss 

models are the most widely used because of their 

simplicity [10, 11, 12,  13,  14,  15].  Furthermore, 

Okumara-Hata   has proven to be the most popular 

empirical model for urban areas, suburban areas, as 

well as rural and open areas.  

In any case, the major drawback of empirical 

model is that the models give much prediction error 

when they are employed in areas other than the ones 

where the empirical data used in the model 

development were taken [14, 15,  16, 17,  18,  19,  

20]. In this wise, the model parameters are usually 

tuned or adjusted based on empirical data collected in 

the specific area where the empirical model are to be 

employed. Several tuning methods have been 

employed for this purpose. One method use the Root 
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Mean Square Error (RMSE) obtained from the 

measured and the model predicted pathloss values to 

optimize the model prediction. Particularly, the RMSE 

is added or subtracted from each model predicted 

pathloss depending on the value of the sum of 

prediction error; if the sum of errors is positive, the 

RMSE is added to each model predicted pathloss 

whereas if the sum of errors is negative , the RMSE is 

subtracted from each model predicted pathloss  [21,  

22,  23,  24, 25,   26]. Other tuning methods use 

different approaches to one or more model 

parameters such that the RMSE obtained is minimal.  

When more than one model parameters are tuned to 

minimize the RMSE  such method can be referred to 

as multi-parameter tuning method [22,  26,  27,  28,  

29]. Such methods in many cases leads to better 

(smaller) RMSE  between the measured and the 

tuned model predicted pathloss. 

In all, these model tuning methods have failed 

to address one common problem prevalent in the 

wireless communication industry, namely; 

radioclimatic parameters such as temperature, 

atmospheric pressure and relative humidity 

significantly affect the pathloss [30 , 31, 32,  33,  34].  

As such, the measured pathloss at any given location 

differs when the pathloss is measured at the same 

location at different time of the day with different 

values of the radioclimatic parameters. Consequently, 

in this paper a new pathloss model tuning method that 

accounts for the effect of the radioclimatic parameters 

is presented. The tuning method combines multi-

parameter tuning method with a multiple linear 

regression model the effectively relates the 

radioclimatic parameters to the tuned parameters of 

the pathloss model. As such, the tuned pathloss 

maintains acceptable pathloss value irrespective of 

the variations in the radioclimatic parameters and their 

attendant effect on the pathloss. 

II.  METHODOLOGY 

A combination of empirical and simulation 

research approaches are used in the study. The 

empirical entails field measurements to acquire 

requisite data as well as process the acquired data for 

the simulation process. The simulation process 

involves the use of Mathlab program to carryout multi-

parameter tuning of Okumara-Hata pathloss   model 

and the generation and application of a multi-linear 

regression model that relates pathloss   to the radio 

climatic parameters, namely; temperature, pressure 

and relative humidity. 

Basically, the study started with the selection 

of the specific Cellular Network Base Station (CNBS). 

The empirical survey measurement was conducted for 

global system for mobile communication (GSM) 

network at 900 MHz frequency band. The 

measurement survey route within the selected CNBS 

network coverage area is selected and the specific 

points where the measurements are to be taken along 

the route are identified and marked. Then the 

measurement campaign is carried out at different 

times on different days. However, measurements are 

taken only on clear sky condition; that means no rain 

or fog. In this study, the field measurement is 

conducted within University of Uyo main campus. The 

measurements were conducted on two different days 

and at different times in each of the days. 

The key data measured during the 

measurement campaign are the network data (the 

received signal strength (RSS) in dBm); the spatial 

data (including longitude, latitude and altitude) and the 

primary radioclimatic parameters (including 

atmospheric temperature, atmospheric pressure and 

relative humidity). The following steps are used to 

process the field measured data and to achieve the 

desired objectives: 

(i) The RSS and spatial data (longitude and 

latitude) are further processed to obtain the 

measured pathloss     ( 𝑃𝐿𝑚(𝑖) ) and the 

transmission distance ( 𝑑𝑖 ) for each of the 

locations where data is collected.  

(ii) The distance ( 𝑑𝑖 ) data is used in the 

Okumara-Hata   pathloss   model to generate 

the predicted pathloss.   

(iii) The prediction accuracy of the Okumara-Hata 

pathloss model is evaluated with respect to 

the measured pathloss.  

(iv) The optimized Okumara-Hata pathloss model 

is then develop to improve on its prediction 

accuracy. Particularly, multi-parameter tuning 
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method is employed in carrying out tuning of 

two parameters (two constant; 69.55 in 

Equation4 and 44.9 in Equation5  ) in the 

original Okumara-Hata model.  

(v) The average values of the measured 

temperature, pressure and relative humidity 

are obtained along with the values of the two 

tuned parameters in Okumara-Hata   model. 

The two tuned parameters are denoted as  

K1i  and K2i  whereas the average 

temperature, pressure and relative humidity 

are denoted as  Ti , Pi and Hi respectively. 

(vi) The step i to step v are repeated for each of 

the six datasets captured at different time, of 

the day and on different days. 

(vii) Eventually, the set of data K1i  , K2i  , Ti  , Pi 

and Hi  are used to develop  a multi-linear 

regression model that relates K1ito Ti , Pi and 

Hi   and also relates K2ito Ti , 𝑃𝑖 and 𝐻𝑖 

Essentially, the desired, optimized Okumara-

Hata   model is the one that uses K1iand  K2i 

in its prediction of the pathloss  , where 

K1iand  K2i are obtained from the multi-linear 

regression model in step vii. 

A. Okumara-Hata Pathloss   model 

The following equations are used for the 

computation of the pathloss (in dB) according to the 

Okumara-Hata model [11, 35,  36, 37, 38]: 

𝐿𝑃𝐻𝐴𝑇𝐴(𝑢𝑟𝑏𝑎𝑛)  =

𝐴 + 𝐵 ∗ log10(𝑑)                   𝑓𝑜𝑟 𝑈𝑟𝑏𝑎𝑛 𝐴𝑟𝑒𝑎 (1) 

𝐿𝑃𝐻𝐴𝑇𝐴(𝑠𝑢𝑏𝑢𝑟𝑏𝑎𝑛)  =

𝐴 + 𝐵 ∗ log10(𝑑) − 𝐶             𝑓𝑜𝑟 𝑆𝑢𝑏𝑢𝑟𝑏𝑎𝑛 Area (2) 

𝐿𝑃𝐻𝐴𝑇𝐴(𝑜𝑝𝑒𝑛/𝑟𝑢𝑟𝑎𝑙)  =

𝐴 + 𝐵 ∗ log10(𝑑) − 𝐷           𝑓𝑜𝑟 𝑂𝑝𝑒𝑛 𝐴𝑟𝑒𝑎/Rural (3) 

𝐴 = 69.55 + 26.16 ∗ log10(𝑓) − 13.82 ∗ log10(ℎ𝑏)  −

𝑎(ℎ𝑚)   ( 4) 

𝐵 = 44.9 −  6.55 ∗ log10(ℎ𝑏)    (5) 

𝐶 = 5.4 +   2 ∗ [log10 (
𝑓

28
)]

2

   

     (6) 

𝐷 = 40.94 +   4.78 ∗ [log10(𝑓)]2  − 18.33 ∗ log10(𝑓)

    (7) 

𝑎(ℎ𝑚) = [1.1 ∗ log10(𝑓) − 0.7] ∗ ℎ𝑚   −   [1.56 ∗

log10(𝑓) − 0.8]            (8) 

Eq  8 is for 

 small city, medium city, open area, rural area and sububan area 

𝑎(ℎ𝑚) =

 8.28 ∗ [log10(1.54 ∗ ℎ𝑚)]2 − 1.1     𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒  𝑐𝑖𝑡𝑦  f ≤

 200MHz  (9) 

𝑎(ℎ𝑚) =

 3.2 ∗ [log10(11.75 ∗ ℎ𝑚)]2 −

4.97         𝑓𝑜𝑟 𝑙𝑎𝑟𝑔𝑒  𝑐𝑖𝑡𝑦   f ≥  400MHz (10) 

Where  

f is the centre frequency f  in MHz 

d is the link distance in km 

𝑎(ℎ𝑚)is an antenna height-gain correction factor  that 

depends upon the environment 

C and D are used to correct the small city formula for  

suburban and  open areas 

150 MHz≤ f≤ 1000MHz 

30m ≤ℎ𝑏 ≤ 200m 

1m≤ ℎ𝑚≤ 10 m1 km ≤ d ≤ 20km 

Hence, from Eq 1, Eq 4 and Eq 5 Okumara-Hata    

model for urban area is given as  

𝐿𝑃𝐻𝐴𝑇𝐴(𝑢𝑟𝑏𝑎𝑛)  = 69.55 + 26.16 ∗ log10(𝑓) − 13.82 ∗

log10(ℎ𝑏)  − 𝑎(ℎ𝑚) + (44.9 −

 6.55 ∗ log10(ℎ𝑏)) ∗ (log10(𝑑))(11)

  

 

B.  Data Collection and Processing 

Site survey data collection was conducted 

using SAMSUNG GALAXY S4 mobile phone which 

has the following android application software; 

Cellmapper android application, Netmonitor android 

application and MYGPS coordinate android 

application. Also, Microsoft Excel data recording 

template and Haversine Distance Calculator software 

are installed on the laptop used in the data 

processing. 

The Netmonitor android application is used to 

detect and locate the GSM mast within the study area. 

The GSM mast coordinate is captured using MYGPS 

android application. Then the measurement points are 

marks at about 30 m to 70m apart, starting from a 

distance of about 60 m from the base station or GSM 

mast. The distance between the measurement points 

geo-coordinates are determined using Haversine 
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distance calculator software based on  the Haversine 

formula in Equation 12 ; 

𝑑 =

2𝑟 {√sin (
𝐿𝐴𝑇2−𝐿𝐴𝑇1

2
)

2

+ cos(𝐿𝐴𝑇1) cos(𝐿𝐴𝑇2) sin (
𝐿𝑂𝑁𝐺2−𝐿𝑂𝑁𝐺1

2
)

22

}

  (12) 

LAT in Radians =   
(LAT in Degrees  ∗ 3.142)

180
  

 (13) 

LONG in Radians =   
(LONG  in Degrees  ∗ 3.142)

180
 

 (14) 

Where LAT1 and LAT2 are the latitude of the 

coordinates of point1 and point 2 respectively; LONG1 

and LONG2 are the longitude of the coordinates of 

point1 and point 2 respectively; R = radius of the earth 

= 6371 km ,  d =the distance between the two 

coordinates  and R varies from 6356.752 km at the 

poles to 6378.137km at the equator. 

 The measure point coordinates are logged on 

the Microsoft Excel data recording template along with 

the distance between the measurement point and the 

base station or GSM mast. The Cellmapper android 

application is used to capture the received signal 

strength (RSS) in dBm. Each of the RSS value is 

converted to measured pathloss  (PLm(dB)) using the 

formula in Equation 15: 

PLm(dB) = EIRPt (dBm) – Pr (dBm) = EIRPt 

(dBm) – RSS (dBm)    (15) 

where PLm(dB)is the measured pathloss  for each 

measurement location at a distance d( km) ; Pr is the 

mean Received Signal Strength (RSS) in dBm = the 

measured received signal strength and  EIRPt is the 

Effective Isotropic Radiated Power in dBm . In this 

study  EIRPt = 53.5 dBm.  The pathloss     values 

measured in dB are obtained by substituting the given 

value of EIRPt (dBm) and the measured values of 

RSS (in dBm) into Equation 15.Finally, the  

SAMSUNG GALAXY S4 phone was also used to 

capture the temperature, pressure and relative 

humidity at each measurement point.  The 

measurements were conducted on two different days 

and at different times (morning, afternoon and 

evening)   in each of the days. In all a total of six set of 

site survey data were used in the analysis. 

 

C .Prediction Performance of the Models 

The prediction performance of the models 

was evaluated using the Mean Absolute Error (MAE) 

in Equation 16, Root Mean Square Error (RMSE) in 

Equation 17,  and Prediction Accuracy (PA) in 

Equation 20.  

MAE =
1

𝑛
(∑ |𝑃𝐿(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)(𝑖) − 𝑃𝐿(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)(𝑖) |

𝑖 = 𝑛
 𝑖 = 1 ) 

  (16) 

where: PL(measured)(i) is the measured pathloss     (dB) 

and  PL(predicted)(i) is the predicted pathloss     (dB),  

RMSE =  √{
1

𝑛
[∑ |𝑃𝐿(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)(𝑖) − 𝑃𝐿(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)(𝑖) |

2𝑖 = 𝑛
𝑖 = 1 ]}

2

  (17) 

where 

SQUARE ERROR =|𝑃𝐿(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)(𝑖) − 𝑃𝐿(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)(𝑖) |
2

   (18) 

∴            MSE =  √{
1

𝑛
[∑ (SQUARE ERROR )𝑖  = 𝑛

𝑖 = 𝑖 ]}
2

 

  (19) 

PL (measured) (i) is the measured pathloss     (dB), 

PL (predicted) (i) is the predicted pathloss     (dB),  

PL (measured

n
is the mean of measured pathloss     and n 

is the number of measured data points. 

PA (%) =

{1 −
1

𝑛
(∑ |

|𝑃𝐿(𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)(𝑖)− 𝑃𝐿 (𝑝𝑒𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)(𝑖) |

𝑃𝐿 (𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑)(𝑖)
|𝑖=𝑛

𝑖=𝑖 )} * 

100%  (20) 

D.  Model Optimization  

Multi-parameter-tuning method is used. In this 

case the value of the two constants 69.55  in Equation 

4 and 44.9 in Equation 5 of Okumara-Hata   model are 

adjust so as to minimize the RMSE between the 

actual (measured) pathloss  and the Okumara-Hata   

model predicted pathloss. The two constants 

69.55 and 44.9  are referred to as K1 and  K2 

respectively. However, since there are six different 

site survey datasets to be analyzed for the two days 

empirical measurements, the value of the tuned 

constants are represented as K1i  and K2i    where i 

=1,2,3,4,5,6. Hence, Equation 4 and Equation 5 are 

rewritten as  follows; 

𝐴 = 𝐾1𝑖 + 26.16 ∗ log10(𝑓) − 13.82 ∗ log10(ℎ𝑏)  −

𝑎(ℎ𝑚)   (21) 
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𝐵 = 𝐾2𝑖 −  6.55 ∗ log10(ℎ𝑏)   (22) 

Particularly, Microsoft Excel solver tool is 

used to adjust and obtain the values of K1i  and K2i   

that minimize the RMSE obtained from the actual 

(measured) pathloss and the Okumara-Hata   model 

predicted pathloss for each of the six different site 

survey datasets.  

The average values of the measured 

temperature, pressure and relative humidity are 

obtained and they are denoted as Ti , Pi  and Hi 

respectively. The step i to step iv are repeated for 

each of the six datasets captured. Eventually, the set 

of data K1i, K2i, Ti, Pi and Hi are used to develop  a 

multi-linear regression model given as; 

K1 = a1 + a2(T) + a3(P) + a4(H)  (23) 

K2= b1 + b2(T) + b3(P) + b4(H)  (24) 

where K1 and K2 are the tuned constant from the 

Okumara-Hata   model, a1 to a4 are the regression 

constants while  T, P and H are temperature, pressure 

and Relative humidity respectively. From Eq 10, Eq 23 

and Eq 24, the optimized Okumara-Hata   model is 

then given as; 

𝐿𝑃𝐻𝐴𝑇𝐴(𝑢𝑟𝑏𝑎𝑛)  = K1 + 26.16 ∗ log10(𝑓) − 13.82 ∗

log10(ℎ𝑏)  − 𝑎(ℎ𝑚) + (K2 −  6.55 ∗ log10(ℎ𝑏)) ∗

(log10(𝑑)) (25)  

whereK1 and K2 are first determined from the multi-

linear regression model of Eq 23 and Eq 24 

respectively. 

 

III. RESULTS AND DISCUSSION 

A. The Measured Pathloss 

The measured pathloss (dB) from the six site 

survey conducted for the two days (morning, 

afternoon and evening on each of the two days) is 

shown in the Table 1. 

Table  1: The measured pathloss (dB)  from the six site survey conducted  for the two days  (morning , afternoon 

and evening on each of the two days) 

i 1 2 3 4 5 6 

Distance 

(km) 

Measured 

Pathloss (dB)    

for Day one 

Morning 

Measured 

Pathloss (dB)   

for Day one 

Afternoon 

Measured 

Pathloss (dB)  

for Day one 

Evening 

Measured 

Pathloss (dB)  

for Day two 

Morning 

Measured 

Pathloss (dB)  

for Day two 

Afternoon 

Measured 

Pathloss (dB)  

for Day two 

Evening 

0.71 143 139 139 140 137 144 

0.65 144 144 143 145 146 146 

0.61 146 143 142 146 143 149 

0.57 149 144 143 147 144 149 

0.53 144 144 143 145 144 150 

0.50 148 144 136 150 142 147 

0.48 149 148 144 143 141 147 

0.44 141 144 144 141 144 144 

0.40 145 138 140 142 143 139 

0.31 141 137 137 140 134 140 

0.27 141 137 141 143 139 141 

0.23 146 142 143 144 138 142 

0.18 134 132 129 129 140 136 

0.16 145 143 141 144 141 144 

0.12 138 136 139 140 137 140 

0.10 138 135 133 136 134 136 

0.09 141 134 136 137 136 138 

0.07 140 138 135 137 136 136 
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From Table 1 and figure 1 it can be seen that 

the measured pathloss (dB) at each location is 

different at different time of the day and at different 

days. The mean values of the atmospheric 

parameters are shown in figure 2. It can be seen that 

the mean values of the atmospheric parameters 

varied at each time of the day the measurements are 

taken. The individual values of the atmospheric 

parameters at each measurement location are 

different at each of the measurement instance.  

 

 

Figure 1:   The measured pathloss (dB)  from the six site survey conducted  for the two days  (morning , afternoon 

and evening on each of the two days) 

 

 

 

Figure 2: The mean values of the atmospheric parameters for the six site survey conducted for the two days  

(morning , afternoon and evening on each day) 
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Consequently, the variation in the measured 

pathloss at each of the measurement point can be 

explained by the variation in the atmospheric 

parameters by relating the pathloss to the 

atmospheric parameters.  Table 2 shows the Mean 

values of the atmospheric parameters denotedTi , Pi 

and  Hi along with the tuned Okumara-Hata   model 

parameter 1 and 2  denoted as  K1i  and K2i .  The 

data in Table 2 is for  the six (i = 1,2,3,4,5,6) site 

survey conducted  for the two days  (morning , 

afternoon and evening on each day). 

Table 2 :  Mean values of the atmospheric parameters denotedT𝑖, P𝑖 and  H𝑖 along with the tuned Okumara-Hata   

model parameter 1 and 2  denoted as  K1𝑖 and K2𝑖 

 

i 
Days 

Mean 

Temperature 

(⁰C) 

Mean 

Pressure 

(hPa) 

Mean 

Humidity (%) 

Tuned 

Okumara-

Hata   Model 

Parameter 1 

Tuned 

Okumara-

Hata Model 

Parameter 

2 

  T𝑖 P𝑖 H𝑖 K1𝑖 K2𝑖 

1 Day one Morning 22.9 1007.2 100 113.8897 14.7114 

2 Day one Afternoon 37.5 1004.9 66.7401 113.5434 18.6641 

3 Day one Evening 25.3 1008.2 100.2 114.7463 20.1962 

4 Day two Morning 24.7 1006.4 100 114.951 18.0321 

5 Day two Afternoon 36.0 1004.6 69.2584 113.5007 17.3512 

6 Day two Evening 25.0 1005.2 99.6733 115.3381 17.8779 

 

B.  The Result of the Atmospheric Parameters-Tuned 

Okumara-Hata   Model 

From the data in Table 2 Xuru’s online 

regression tool (available at 

http://www.xuru.org/rt/MLR.asp#CopyPaste) was used 

to fit a multiple linear regression model for K1 and K2  

and the models are as follows; 

K1 = 0.4526813053 T – 0.2774698435 P + 

0.2291066031 H + 360.092209  (26) 

K2 = 2.014557362 T + 0.4633367776 P + 

0.7356268646 H - 571.6003707  (27) 

Where T, P, and H are temperature in ⁰C, P is 

atmospheric pressure in hPa and H is relative 

humidity in % while K1 and K2 are the first and 

second tuned Okumara-Hata   model parameters. 

While Eq 26 and Eq27  are the derived Okumara-Hata   

model tuning multiple linear regression expression 

which will be used in the Okumara-Hata   model of 

Equation 25 to determine the optimized Okumara-

Hata pathloss prediction. Table 3 and Figure 3 show 

the  RMSE before tuning and after further tuning with 

atmospheric parameters. 

Table 3 : RMSE before tuning and after further tuning with atmospheric parameters 

i Days 
RMSE before 

tuning 

RMSE after further tuning 

with atmospheric Parameters 

1 Day one Morning 61.6716 3.1157 

2 Day one Afternoon 58.9299 3.3752 

3 Day one Evening 58.1758 4.0535 

4 Day two Morning 60.3463 3.6114 

5 Day two Afternoon 58.8923 2.5084 

6 Day two Evening 61.3248 2.7139 
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Figure 2: RMSE before tuning and after further tuning with atmospheric parameters 

From the results in Table 3 and figure 3 show 

that by tuning with atmospheric parameters the  

RMSE is kept within the acceptable threshold value of 

6 dB irrespective of the variations in the atmospheric 

parameters and their attendant effect on the pathloss. 

IV  CONCLUSION 

A new approach for optimization of Okumara-Hata 

pathloss model is present. The new approach that 

utilizes radioclimatic parameters, namely; 

temperature, pressure and relative humidity it also 

requires that network site survey data should be 

collected on different days and at different time on 

each day, specifically, in the morning, afternoon and 

evening of each day. Also, the network site survey 

data should be collected at the same location on each 

round of measurement. In this paper network site 

survey data were collected in two days, specifically, in 

the morning, afternoon and evening of each day, 

which give rise to six different site survey dataset. The 

empirical survey measurement was conducted for 

global system for mobile communication (GSM) 

network at 900 MHz frequency bands that is located, 

in Akwa Ibom  State, Nigeria. Multi-parameter tuning 

approach and the mean temperature, mean pressure 

and mean relative humidity six different site survey 

dataset were used to develop two multiple linear 

regression models that relate temperature, pressure 

and relative humidity to the Okumara-Hata   model. 

The results showed that irrespective of the variations 

in the atmospheric parameters and their attendant 

effect on the pathloss, by tuning the Okumara-Hata 

model with radioclimatic parameters the RMSE was 

maintained below the generally accepted maximum 

value of 6 dB for pathloss models. 

REFERENCES 

1. Isabona, J., & Obahiagbon, K. (2014). RF 
Propagation Measurement and Modelling to 
Support Adept Planning of Outdoor Wireless 
Local Area Networks in 2.4 GHz 
Band. American Journal of Engineering 
Research (AJER) Volume-03, Issue-01, pp-
258-267. 

2. Isabona, J., Konyeha, C. C., Chinule, B. C., & 
Isaiah, G. P. (2013). Radio Field Strength 
Propagation Data and Pathloss calculation 

Day one
Morning

Day one
Afternoo

n

Day one
Evening

Day two
Morning

Day two
Afternoo

n

Day two
Evening

RMSE before tuning 61.6716 58.9299 58.1758 60.3463 58.8923 61.3248

RMSE after further tuning with
atmospheric Parameters

3.1157 3.3752 4.0535 3.6114 2.5084 2.7139

0

10

20

30

40

50

60

70

R
M

S
E

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 9, September - 2019 

www.jmest.org 

JMESTN42353123 10771 

Methods in UMTS Network. Advances in 
Physics Theories and Applications, 21, 54-68. 

3. Sharma, P. K., & Singh, R. K. (2012). Cell 
coverage area and link budget calculations in 
GSM system. International Journal of Modern 
Engineering Research (IJMER), 2(2), 170-
176. 

4. Roslee, M. B., & Kwan, K. F. (2010). 
Optimization of Okumara-Hata   propagation 
prediction model in suburban area in 
Malaysia. Progress In Electromagnetics 
Research C, 13, 91-106. 

5. Shabbir, M., Al Mahmud, R., & Khan, Z. 
(2009). ANALYSIS AND PLANNING 
MICROWAVE LINK TO ESTABLISHED 
EFFICIENT WIRELESS COMMUNICATIONS. 

6. Bhuvaneshwari, A., Hemalatha, R., 
&Satyasavithri, T. (2016). Semi Deterministic 
Hybrid Model for Path Loss Prediction 
Improvement. Procedia Computer 
Science, 92, 336-344. 

7. Isabona, J., &Srivastava, V. M. (2016). A 
Neural Network based Model for Signal 
Coverage Propagation Loss Prediction in 
Urban Radio Communication 
Environment. International Journal of Applied 
Engineering Research, 11(22), 11002-11008. 

8. Ogbulezie, J. C., Onuu, M. U., Ushie, J. O., & 
Usibe, B. E. (2013). Propagation Models for 
GSM 900 and 1800 MHz for Port Harcourt 
and Enugu, Nigeria. Network and 
Communication Techn 

9. Hansen, J., &Reitzner, M. (2004). Efficient 
indoor radio channel modeling based on 
integral geometry. IEEE Transactions on 
Antennas and Propagation, 52(9), 2456-2463. 

10. Nadir, Z., Bait-Suwailam, M., &Idrees, M. 
(2016). Pathloss Measurements and 
Prediction using Statistical Models. In MATEC 
Web of Conferences (Vol. 54). EDP Sciences. 

11. Pathania, P., Kumar, P., &Rana, B. S. (2014). 
Performance evaluation of different path loss 
models for broadcasting 
applications. American Journal of Engineering 
Research (AJER), 3(4), 335-342. 

12. Sharma, P. K., & Singh, R. K. (2011). 
Comparative study of path loss model 
depends on various parameter. International 
Journal of Engineering Science and 
Technology, 3, 4683-4690. 

13. Hrovat, A., Javornik, T., Plevel, S., Novak, R., 
Celcer, T., &Ozimek, I. (2006, July). 
Comparison of WiMAX field measurements 
and empirical path loss model in urban and 
suburban environment. In presentation at 
WSEAS conference on 10th WSEAS Int. 
Conf. on COMMUNICATIONS, Athens. 

14. Rappaport, T. S. (1996). Wireless 
communications: principles and practice(Vol. 
2). New Jersey: prentice hall PTR. 

15. Benmus, T. A., Abboud, R., & Shatter, M. K. 
(2015, December). Neural network approach 

to model the propagation path loss for great 
Tripoli area at 900, 1800, and 2100 MHz 
bands. In Sciences and Techniques of 
Automatic Control and Computer Engineering 
(STA), 2015 16th International Conference 
on (pp. 793-798). IEEE. 

16. Aba, R. O. (2014). Path Loss Prediction For 
Gsm Mobile Networks For Urban Region Of 
Aba, South-East Nigeria. 

17. Popoola, S. I., Atayero, A. A., Faruk, N., 
Calafate, C. T., Olawoyin, L. A., & Matthews, 
V. O. (2017, July). Standard Propagation 
Model Tuning for Path Loss Predictions in 
Built-Up Environments. In International 
Conference on Computational Science and Its 
Applications (pp. 363-375). Springer, Cham. 

18. Phillips, C., Sicker, D., &Grunwald, D. (2012). 
Bounding the practical error of path loss 
models. International journal of Antennas and 
Propagation, 2012. 

19. Armoogum, V. K. M. S., Soyjaudah, K. M. S., 
Mohamudally, N., & Fogarty, T. (2010). 
Propagation models and their applications in 
digital television broadcast network design 
and implementation. In Trends in 
Telecommunications Technologies. InTech. 

20. Sarkar, T. K., Ji, Z., Kim, K., Medouri, A., & 
Salazar-Palma, M. (2003). A survey of various 
propagation models for mobile 
communication. IEEE Antennas and 
propagation Magazine, 45(3), 51-82. 

21. Kalu, C., Stephen, B. U. A., &Uko, M. C. 
(2017). Empirical Valuation of Multi-
Parameters and RMSE-Based Tuning 
Approaches for the Basic and Extended 
Stanford University Interim (SUI) Propagation 
Models. Mathematical and Software 
Engineering, 3(1), 1-12. 

22. Samuel, W., Odu, N. N., &Ajumo, S. G. 
(2017). Performance Evaluation of Okumara-
Hata  -Davidson Pathloss Model Tuning 
Approaches for a Suburban Area. American 
Journal of Software Engineering and 
Applications,  

23. Chimaobi, N. N., Nnadi, C. C., & Nzegwu, A. 
J. (2017). Comparative Study of Least Square 
Methods for Tuning Erceg Pathloss 
Model. American Journal of Software 
Engineering and Applications, 6(3), 61. 

24. Udofia, K. M., Friday, N., &Jimoh, A. J. (2016). 
Okumura-Okumara-Hata   Propagation Model 
Tuning Through Composite Function of 
Prediction Residual. Mathematical and 
Software Engineering, 2(2), 93-104. 

25. Bhuvaneshwari, A., Hemalatha, R., & 
Satyasavithri, T. (2013, October). Statistical 
tuning of the best suited prediction model for 
measurements made in Hyderabad city of 
Southern India. In Proceedings of the world 
congress on engineering and computer 
science (Vol. 2, p. 7). 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 9, September - 2019 

www.jmest.org 

JMESTN42353123 10772 

26. Phillips, C., Sicker, D., & Grunwald, D. (2011, 
May). Bounding the error of path loss models. 
In New Frontiers in Dynamic Spectrum 
Access Networks (DySPAN), 2011 IEEE 
Symposium on (pp. 71-82). IEEE. 

27. Popoola, S. I., &Oseni, O. F. (2014). Empirical 
Path Loss Models for GSM Network 
Deployment in Makurdi, Nigeria. International 
Refereed Journal of Engineering and 
Science, 3(6), 85-94. 

28. Faruk, N., Ayeni, A., & Adediran, Y. A. (2013). 
On the study of empirical path loss models for 
accurate prediction of TV signal for secondary 
users. Progress In Electromagnetics 
Research B, 49, 155-176. 

29. Mousa, A., Dama, Y., Najjar, M., & Alsayeh, B. 
(2012). Optimizing outdoor propagation model 
based on measurements for multiple rf 
cell. International Journal of Computer 
Applications, 60(5). 

30. Joseph, A. (2016). Force of Atmospheric 
Humidity on (UHF) Radio Signal. International 
Journal of Scientific Research Engineering & 
Technology, 2, 56-59.  

31. Amajama, J. (2016). Impact of Atmospheric 
Temperature on (UHF) Radio 
Signal. International Journal of Engineering 
Research and General Science, 4(2), 619-
622. 

32. Buba, D., Anjorin, F. O., & Jacob, A. (2015). 
The Analysis of Influence of Weather 
Conditions on Atmospheric Extinction 
Coefficient over Bauchi, North Eastern 
Nigeria. Journal of Atmospheric 
Pollution, 3(1), 31-38. 

33. Agbo, G. A., Okoro, O. N., & Amechi, A. O. 
(2013). Atmospheric Refractivity over Abuja, 
Nigeria. International Research Journal of 
Pure and Applied Physics, 1(1), 37-45. 

34. Phillips, C., Sicker, D., & Grunwald, D. (2013). 
A survey of wireless path loss prediction and 
coverage mapping methods. IEEE 
Communications Surveys & Tutorials, 15(1), 
255-270. 

35. Mawjoud, S. A. (2013). Path loss propagation 
model prediction for GSM network 
planning. International Journal of Computer 
Applications, 84(7). 

36. Ekka, A. (2012). Pathloss Determination 
Using Okumura-Okumara-Hata   Model for 
Rourkela (Doctoral dissertation). 

37. Singh, Y. (2012). Comparison of Okumura, 
Okumara-Hata   and cost-231 models on the 
basis of path loss and signal 
strength. International journal of computer 
applications, 59(11). 

38. Nadir, Z., & Ahmad, M. I. (2010, March). 
Pathloss Determination Using Okumura-
Okumara-Hata   Model And Cubic Regression 
For Missing Data For Oman. In Proceedings 
of the International MultiConference of 
Engineers and Computer Scientists (Vol. 2). 

 

http://www.jmest.org/

