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Abstract— The combined effects of magnetic field 
and electric field on the onset of thermal convection in 
an anisotropic saturated by nanofluid has been studied. 
The nanofluid layer bounded by rigid-rigid, rigid-free 
and free-free boundaries with zero flux of nanoparticles 
volumetric fraction. Linear stability theory is employed 
and the characteristic equation for Rayleigh number is 
obtained by using the single term Galerkin 
approximation. The results are presented graphically to 
observe the effect of electric Rayleigh number, 
magnetic field, mechanical anisotropy parameter as 
well as thermal anisotropy parameter.    

Keywords— thermal convection, anisotropy, 
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I.  INTRODUCTION  

Electrothermal instability is a natural convection 
under the influence of alternate current (AC) electric 
field in a dielectric fluid. There are few practical 
applications of electrohyrodynamics discussed in [1] 
and [2]. The stability of dielectric fluid in the presence 
of electric field has been studied and it is found that 
electric force plays an important role in driving the 
motion of poor electrically conducting fluid [3,4]. The 
study of electrothermal convection attracts researchers 
due to its wide and growing applications in electronic 
devices and electrical equipment. Reference [5] and 
[6] considered rotational effect on the 
electrohydrodynamic convection in dielectric fluid with 
the effect of velocity and temperature boundary 
conditions. Then, [7] studied the onset of 
electroconvection in a dielectric nanofluid saturated 
porous layer while [8] considered anisotropy effect and 
thermal modulation on the electro thermal instability. 

 The existence of nanoparticle in a base fluid like 
water and oil making the fluid called as nanofluid [9]. 
Nanofluid is a promising fluid that has been used 
widely in many applications such as drug delivery, 
electronic application and energy supply. The fact is 
due to the nanoparticle that presence in fluid help to 
increase the thermal conductivity of fluid, thus it 

enhances the transfer of heat. The nanofluid model 
developed by [10] is used in [11-16] to study the 
thermal convection in a nanofluid layer. Reference [17] 
considered mechanical and thermal anisotropy 
parameter in the problem of the onset of convection in 
porous medium saturated by a nanofluid. These 
literatures have been employing the Buongiorno model 
which involves the conservation equations of a non-
homogeneous equilibrium model of nanofluid that 
incorporates the Brownian motion and thermophoresis. 
[18] revisited the study on the onset of convection in 
nanofluid saturated porous layer by imposing zero-flux 
for nanoparticle fraction on the boundary which is more 
realistic. Zero-flux nanoparticle means the value of 
nanoparticle fraction on the boundary adjust 
accordingly. This motivates [19] to revise [17] as well 
as considering the more realistic boundary condition. 

The study of magnetic field effect on Rayleigh 
Benard convection in fluid pioneered by [20]. Since 
then, Chandrasekhar number is introduced to 
represent non-dimensional parameter of magnetic 
field. The investigation on the effect of magnetic field 
on the thermal instability of nanofluid under different 
situation can be referred to literatures [21-24]. The 
researches on nanofluid convection under the 
influence of magnetic field seem to be significant due 
to its wide range applications in physics and 
engineering. There are several wide applications are 
such as magnetic storage media, 
magnetohydrodynamics generators and magnetic field 
sensors. 

To the best of our knowledge, none of the literature 
above consider magnetic field effect on the 
electrothermal convection in a dielectric nanofluid 
saturated anisotropic porous medium. The present 
problem attempts to extend the study of paper [7] and 
[8] by considering the effect of magnetic field along 
with electric field effect on the thermal instability in an 
anisotropic porous medium saturated by a dielectric 
nanofluid. This investigation incorporates three 
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different type of boundary conditions which are free-
free, rigid-free and rigid-rigid. We performed linear 
stability analysis and obtained Rayleigh number as 
eigenvalue by using the Galerkin method. 

II. MATHEMATICAL FORMULATION 

               

    Fig.1. Configuration of the problem. 

 

 Use a Cartesian coordinate system (𝑥, 𝑦, 𝑧)  in 
which 𝑧 − axis points vertically upward, we consider a 
horizontal layer of nanofluid saturated anisotropic 
porous medium confined between two plates 𝑧 ∈ (0, 𝑑) 
is heated from below and is subjected to a vertical AC 
electric field as illustrated in Fig.1. The temperature at 
lower and upper plates are denoted by 𝑇0  and 𝑇1 
respectively, which 𝑇0  is greater than 𝑇1 and the 
normal component of nanoparticle flux has to vanish at 
an impermeable boundary. 𝑇1 and 𝜙0 are taken to be 
the reference scale for temperature and nanoparticle 
fraction respectively. A uniform vertical magnetic field 
𝑯 = (0, 0, 𝐻0) acts on the system. Following [7,19,24] 
the governing equations of the problem under 
Boussinesq approximation are: 

 ∇  ∙ 𝒗 = 0,          (1) 

∇𝑝 +  𝜇𝑲−1𝒗 = [𝜙𝜌𝑝 + (1 − 𝜙)𝜌0{1 − 𝛽(𝑇 − 𝑇1)}] 𝒈 +

   𝒇𝒆 +
𝜇𝑚

4𝜋
(∇ × 𝒉) × 𝑯,                                   (2) 

(𝜌𝑐)𝑚
𝜕𝑇

𝜕𝑡
+  (𝜌𝑐)𝑓 (𝒗 ∙ ∇) 𝑇 =

 𝑘𝑚∇2𝑇     + 𝜀(𝜌𝑐)𝑝 [𝐷𝐵∇𝜙 ∙ ∇ 𝑇 +
𝐷𝑇

𝑇1
(∇ 𝑇)𝟐], 

                  (3) 

𝜕𝜙

𝜕𝑡
+

1

𝜀
𝒗 ∙ ∇𝜙 = 𝐷𝐵∇2 +

𝐷𝑇

𝑇1
∇2𝑇,       (4) 

magnetic induction equations 

𝑑𝒉

𝑑𝑡
= (𝑯 ∙ ∇)

𝒗

𝜀
+ 𝜏∇2𝒉,         (5) 

∇ ∙ 𝒉 = 0,         (6)
    

where ∇ =  
𝜕

𝜕𝑥
𝑖̂ +

𝜕

𝜕𝑦
𝑗̂ +

𝜕

𝜕𝑧
�̂�, 𝒗 =  (𝑢, 𝑣, 𝑤) is the Darcy 

velocity, 𝑝  is the pressure,  𝜌𝑝  is the nanoparticle 

density, 𝜌0 is the nanofluid density at the lower 

boundary, 𝜇  is the viscosity, 𝜇𝑚 is the magnetic 
permeability, 𝛽 is the thermal expansion coefficient, 𝜀 
is the porosity of the porous medium, 𝒈 is the 
gravitational force, 𝜙  is the nanoparticle volume 
fraction, 𝑇  is the temperature, (𝜌𝑐)𝑚  is the heat 
capacity of fluid in porous medium, (𝜌𝑐)𝑓 is the heat 

capacity of nanofluid, (𝜌𝑐)𝑝 is the heat capacity of 

nanoparticles, 𝐷𝑇  is the thermophoretic diffusion 
coefficient and 𝐷𝐵 is the Brownian diffusion coefficient, 
𝒉  is the component of magnetic field and 𝜏 is the 
resistivity of the fluid. The anisotropic permeability 
tensor and thermal conductivity tensor are denoted by 

 𝑲−1 =  𝐾𝑥
−1(𝑖̂𝑖̂ + 𝑗̂𝑗̂) + 𝐾𝑧

−1(�̂��̂�)  and 𝑘𝑚 =  𝑘𝑚𝑥
−1 (𝑖̂𝑖̂ +

𝑗̂𝑗̂) + 𝑘𝑚𝑧
−1 (�̂��̂�), respectively, where 𝐾𝑥  and 𝐾𝑧  are the 

permeability, 𝑘𝑚𝑥 and 𝑘𝑚𝑧 are the thermal conductivity 
in the 𝑥 and 𝑧 direction, respectively. 

 𝒇𝒆 is the force of electrical origin which can be stated 
as: 

 𝒇𝒆 =  𝜌𝒆𝐄 −
1

2
(𝐄 ∙ 𝐄)∇ϵ +

1

2
∇ (𝜌

𝜕𝜖

𝜕𝑝
𝐄 ∙ 𝐄)      (7) 

where 𝐄 is the electric field, 𝜌𝒆  is the charge density 
and 𝜖 is the dielectric constant. It is noted that the last 
term in (7) can be grouped into pressure term in (2) 
and it does not affect on the incompressible fluid. The 
Coulomb force which is the first term on the right-hand 
side is of negligible order compared with 
dielectrophoretic force term for most dielectric fluids in 
a 60-Hz AC electric field thus it is neglected. The 
dielectrophoretic force is denoted in second term 
which the only retain and it depends on (𝐄 ∙ 𝐄) rather 𝐄. 
Considering the variation of 𝐄 is very rapid, the root 
mean square value of 𝐄  is applied as the effective 
value [5-8]. 

 The Maxwell equations are 

∇ ×  𝐄 = 0,         (8) 

∇ ∙ (𝜖𝐄) = 0.                        (9) 

Employing (8), the electric field can be expressed as 

𝐄 = −∇𝜓       (10) 

where 𝜓 is the root mean square value of the electric 
potential. The electrical conductivity is considered to 
vary linearly function with temperature in the form 

𝜖 = 𝜖0[1 − 𝛿(𝑇 − 𝑇1)] = 0,                              (11) 

where 𝛿(>  0)  is the thermal coefficient of electrical 
conductivity.  

We assume the temperature is fixed and there is no 
vertical nanoparticle flux on the boundaries which is 
physically more realistic. The boundary conditions for: 

free-free boundary 

𝑤 =  0,   
𝜕2𝑤

𝜕𝑧2 = 0, 𝑇 = 𝑇0, 𝐷𝐵  
𝜕𝜙

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0 (12a) 

at 𝑧 = 0, 

𝑤 =  0,   
𝜕2𝑤

𝜕𝑧2 = 0, 𝑇 = 𝑇1, 𝐷𝐵  
𝜕𝜙

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0   (12b) 

at 𝑧 = 1, 

rigid-free boundary 
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𝑤 =  0,   
𝜕𝑤

𝜕𝑧
= 0, 𝑇 = 𝑇0, 𝐷𝐵  

𝜕𝜙

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0 (13a) 

at 𝑧 = 0, 

𝑤 =  0,   
𝜕2𝑤

𝜕𝑧2 = 0, 𝑇 = 𝑇1, 𝐷𝐵  
𝜕𝜙

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0   (13b) 

at 𝑧 = 1, 

rigid-rigid boundary 

𝑤 =  0,   
𝜕𝑤

𝜕𝑧
= 0, 𝑇 = 𝑇0, 𝐷𝐵  

𝜕𝜙

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0 (14a) 

at 𝑧 = 0, 

𝑤 =  0,   
𝜕𝑤

𝜕𝑧
= 0, 𝑇 = 𝑇1, 𝐷𝐵  

𝜕𝜙

𝜕𝑧
+

𝐷𝑇

𝑇1

𝜕𝑇

𝜕𝑧
= 0    (14b) 

at 𝑧 = 1. 

 

The basic state of the nanofluid is taken to be 
quiescent layer  

𝒗 =  0, 𝑝 =  𝑝𝑏(𝑧), 𝑇 =  𝑇𝑏 (𝑧), 𝜙 = 𝜙𝑏 (𝑧),  

𝜖 = 𝜖𝑏 (𝑧), 𝐄 =  𝐄𝑏 (𝑧), 𝜓 =    𝜓𝑏 (𝑧),   

 𝑯 =  𝑯𝑒𝑧         (15) 

where subscript 𝑏  indicates the basic state. The 
solution of basic state by referring to [8] are given by 

𝑇𝑏 = 𝑇0 −
Δ𝑇

𝑑
𝑧, 

𝜙𝑏 = 𝜙0 + (
𝐷𝑇Δ𝑇

𝐷𝐵𝑇1
) 𝑧 

𝜖𝑏 = 𝜖0 (1 +
𝛿Δ𝑇

𝑑
) 𝑧�̂� 

𝐸𝑏 = 𝐸0 (
1

1 +
𝛿Δ𝑇

𝑑
𝑧

) �̂� 

𝜓𝑏 = −
𝐸0𝑑

𝛿Δ𝑇
log (1 +

𝛿Δ𝑇

𝑑
) �̂� 

where Δ𝑇 = 𝑇0 − 𝑇1   and 𝐸0 =  −
𝜓1

𝛿Δ𝑇

𝑑

log(1+𝛿Δ𝑇)
 is the root 

mean square value of the electric field at the lower 
boundary. 

 The basic solution is slightly being perturbed and 
the perturbed state in the form 

𝒗 = 𝒗′, 𝑝 = 𝑝𝑏 + 𝑝′, 𝑇 =  𝑇𝑏 + 𝑇′,  

𝜙 = 𝜙𝑏 + 𝜙′, 𝜖 = 𝜖𝑏 + 𝜖′,  

  𝐄 =  𝐄𝑏  +   𝐄 ′, 𝜓 =    𝜓𝑏 + 𝜓′,    (16) 

where 𝒗′,  𝑝′, 𝑇′,  𝜙′, 𝜖′,   𝐄 ′  and 𝜓′  are the perturbed 
quantities. 

 We apply the small disturbance on the initial 
state by substituting (16) into (1)-(14). Vanishing the 
pressure from the momentum equation by operating 
curl twice and retaining the 𝑧 -component. Thus, (2) 
becomes 

𝜇 (∇𝐻
2 +

1

𝜉

𝜕2

𝜕𝑧2) 𝑤′ = ∇𝐻
2 𝜙′[𝜌𝑝 − 𝜌0]𝒈 − ∇𝐻

2 (𝑇′ −

𝑇1)𝜌0𝛽𝒈 +
𝜖0𝐸0

2𝛿2Δ𝑇

𝑑
∇𝐻

2 𝑇′ −
𝜖0𝐸0𝛿Δ𝑇

𝑑

𝜕

𝜕𝑧
∇𝐻

2 𝜓′ − 𝑯
𝜕

𝜕𝑧
∇𝐻

2 𝒉′

       (17) 

Nondimensionalizing the governing equations (3-
14) and (17) by scaling  

(𝑥∗, 𝑦∗, 𝑧∗) = (𝑑)(𝑥′, 𝑦′, 𝑧′)  

(𝑢∗, 𝑣∗, 𝑤∗) = (
𝑑

𝜅𝑇𝑧
) (𝑢′, 𝑣′, 𝑤′)  

𝑡∗ = (
𝜅𝑇𝑧

𝜎𝑑2) 𝑡′  

𝑝∗ = (
𝐾𝑧

𝜇𝜅𝑇𝑧
) 𝑝′  

𝑇∗ =
𝑇′−𝑇1

Δ𝑇
  

𝜙∗ =
𝜙′−𝜙0

𝜙0
  

𝜓∗ = (
1

𝛿Δ𝑇𝐸0𝑑
) 𝜓′  

ℎ∗ = (
𝜏

𝐻0𝜅𝑇𝑧
) ℎ′     (18) 

where 𝜅𝑇𝑧 =
𝑘𝑚𝑧

(𝜌𝑐)𝑓
 and 𝜎 =

(𝜌𝑐)𝑚

(𝜌𝑐)𝑓
. We obtain the 

nondimensional form after eliminating the asterisk (∗) 
for simplicity in the form: 

(
1

𝜉

𝜕2

𝜕𝑧2 + ∇𝐻
2 ) 𝑤 − 𝑄∇2 𝜕ℎ𝑧

𝜕𝑧
− 𝑅𝑡∇𝐻

2 𝑇 + 𝑅𝑛∇𝐻
2 𝜙  

+𝑅𝑒∇𝐻
2 (𝑇 −

𝜕𝜓

𝜕𝑧
) = 0,      (19) 

𝑤 + [(𝜂∇𝐻
2 +

𝜕2

𝜕𝑧2) − (
𝜕

𝜕𝑡
+

𝑁𝐴𝑁𝐵

𝐿𝑒

𝜕

𝜕𝑧
)] 𝑇  

−
𝑁𝐵

𝐿𝑒

𝜕

𝜕𝑧
𝜙 = 0,                                                            (20) 

𝑁𝐴

𝜀
𝑤 −

𝑁𝐴

𝐿𝑒
∇2𝑇 + (

1

𝜎

𝜕

𝜕𝑡
−

1

𝐿𝑒
∇2) 𝜙 = 0,    (21) 

𝜀

𝜎

𝑃𝑟2

𝑃𝑟1

𝜕𝜒

𝜕𝑡
−

𝜕𝜍

𝜕𝑧
− 𝜀∇2𝜒 = 0,      (22) 

𝜀

𝜎

𝑃𝑟2

𝑃𝑟1

𝜕ℎ𝑧

𝜕𝑡
−

𝜕𝑤

𝜕𝑧
− 𝜀∇2ℎ𝑧 = 0,     (23) 

𝜕𝑇

𝜕𝑧
− ∇2𝜓 = 0,                    (24) 

where  ∇𝐻
2 =

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 is the two-dimensional horizontal 

Laplacian operator. (19), (23) and (24) have been 

obtained by eliminating ∇𝑝  and introducing 𝜒 =
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
 

and 𝜍 =
𝜕ℎ𝑦

𝜕𝑥
−

𝜕ℎ𝑥

𝜕𝑦
.  

 The dimensionless parameters in (19)-(24) are 

𝐿𝑒 =  
𝜅𝑇𝑧

𝐷𝐵
 is the Lewis number, 

𝑅𝑡 =  
𝑑𝐾𝑧Δ𝑇𝜌0𝛽𝒈

𝜇𝜅𝑧
 is the thermal Rayleigh number, 

𝑅𝑒 =
𝐾𝑧𝜖0𝐸0

2𝛿2Δ𝑇

𝜇𝜅𝑧
 is the electric Rayleigh number, 

𝑅𝑛 =
𝑑𝐾𝑧𝜙0[𝜌𝑝−𝜌0]𝒈

𝜇𝜅𝑧
 is the concentration nanoparticle 

Rayleigh number, 
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𝑁𝐴 =
𝐷𝑇Δ𝑇

𝐷𝐵𝑇1𝜙0
 is the modified diffusivity ratio, 

𝑁𝐵 = 𝜀
(𝜌𝑐)𝑝𝜙0

(𝜌𝑐)𝑓
 is the modified particle density, 

𝜉 =
𝐾𝑥

𝐾𝑧
 is the mechanical anisotropy parameter, 

𝜂 =
𝑘𝑚𝑥

𝑘𝑚𝑧
  is the thermal anisotropy parameter, 

𝑄 =
𝜇𝑚𝐻0

2𝑑2

4𝜋𝜇𝜏
 is the Chandrasekhar number, 

𝑃𝑟1 =
𝜇

𝜌0𝜅𝑇𝑧
 is the Prandtl number, 

𝑃𝑟2 =
𝜇

𝜌0𝜏
 is the magnetic Prandtl number. 

 The set of (19)-(24) will be subjected to normal 
mode analysis to analyze the behavior of the nanofluid 
system. Upon normal mode analysis, the perturbation 
quantities are taken to be 

[𝑤, 𝑇, 𝜙, ℎ𝑧] = [𝑊(𝑧), Θ(z), Φ(z), K(z)]  

                        × 𝑒𝑖(𝑎𝑥𝑥+𝑎𝑦𝑦)+𝑛𝑡   (25) 

where 𝑎𝑥 and 𝑎𝑦 are wave number in (𝑥, 𝑦) plane and 

𝑛 is the growth rate.  

 Setting 𝑛 =  𝑖𝜔, since the real part of 𝑛 is zero 
for neutral stability (𝜔 is real and is a dimensionless 
frequency). As we consider the case of stationary 
convection, 𝑛  is equal to zero since 𝜔 =  0.  Then, 
substituting (25) into (19)-(24) yields the set of the 
stability equations: 

(
1

𝜉
𝐷2 − 𝑎2) − 𝑄(𝐷2 − 𝑎2)𝐷𝐾 + 𝑅𝑡𝑎2Θ − 𝑅𝑛𝑎2Φ  

+ 𝑅𝑒𝑎2(Θ − 𝐷Ψ) = 0,     (26) 

𝑊 + (𝐷2 − 𝜂𝑎2 −
𝑁𝐴𝑁𝐵

𝐿𝑒
𝐷) Θ +

𝑁𝐵

𝐿𝑒
𝐷Φ = 0,     (27) 

−
𝑁𝐴

𝜀
𝑊 +

𝑁𝐴

𝐿𝑒
(𝐷2 − 𝑎2)Θ +

1

𝐿𝑒
(𝐷2 − 𝑎2)Φ = 0, (28) 

𝐷Θ − (𝐷2 − 𝑎2)Ψ = 0,    (29) 

𝐷𝑊 + 𝜀(𝐷2 − 𝑎2)𝐾 = 0,    (30) 

where 𝐷 =
𝑑

𝑑𝑧
 and 𝑎 = (𝑎𝑥

2 + 𝑎𝑦
2)

1/2
 is the 

wavenumber. 

Upon eliminating (30), we let (𝐷2 − 𝑎2)𝐾 = −
𝐷𝑊

𝜀
, then 

substitute it into (26) and we obtain 

(
1

𝜉
𝐷2 − 𝑎2) +

𝑄

𝜀
𝐷2𝑊 + 𝑅𝑡𝑎2Θ − 𝑅𝑛𝑎2Φ  

+ 𝑅𝑒𝑎2(Θ − 𝐷Ψ) = 0.      (31) 

Thus, for further analysis we will be using (31) in 
exchange with (26) 

Now (31) and (27)-(29) are solved subjected to the 
appropriate boundary conditions 

free-free boundary 

𝑊 = 0,    𝐷2𝑊 = 0, Θ = 0,  

  𝑁𝐴𝐷Θ + 𝐷Φ = 0, DΨ = 0 at 𝑧 = 0,1                        (32) 

Lower rigid- upper free boundary 

𝑊 = 0,     𝐷𝑊 = 0, Θ = 0,  

  𝑁𝐴𝐷Θ + 𝐷Φ = 0, DΨ = 0 at 𝑧 = 0     

𝑊 = 0,    𝐷2𝑊 = 0, Θ = 0,  

  𝑁𝐴𝐷Θ + 𝐷Φ = 0, DΨ = 0 at 𝑧 = 1       (33) 

rigid-rigid boundary    

 𝑊 = 0,     𝐷𝑊 = 0, Θ = 0,  

 𝑁𝐴𝐷Θ + 𝐷Φ = 0, DΨ = 0 at 𝑧 = 0,1        (34) 

 

We solve the set of (31) and (27)-(29) numerically 
by using the Galerkin method in order to get an 
approximate solution to the system of equations. The 
basis functions 𝑊, Θ, Φ  and Ψ  were chosen 
accordingly: 

𝑊 =  ∑ 𝐴𝑖𝑊𝑖
𝑁
𝑖=1 ,       Θ =  ∑ 𝐵𝑖Θ𝑖

𝑁
𝑖=1 ,  

Φ =  ∑ 𝐶𝑖Φ𝑖 ,
𝑁
𝑖=1         Ψ =  ∑ 𝐷𝑖 Ψ𝑖

𝑁
𝑖=1     (35) 

             

where  𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖  and 𝐷𝑖  are constants and 𝑖 = 1,2,3 …. 
The basis function represented the power series 
satisfies boundary conditions (32)-(34) and 𝑊𝑖 , Θ𝑖 , Φ𝑖 , 
and  Ψ𝑖   are assumed in the following form: 

free-free boundary 

𝑊 = Θ =  sin(𝜋𝑧) , Φ = −𝑁𝐴 sin(𝜋𝑧),   

Ψ = cos(𝜋𝑧)                   (36)      

lower rigid- upper free boundary 

𝑊 = 3𝑧2 − 5𝑧3 + 2𝑧4, Θ = 𝑧 − 𝑧2,  

Φ = − 𝑁𝐴(𝑧 − 𝑧2), Ψ = 𝑧3 − 𝑧2 − 𝑧                       (37)   

rigid-rigid boundary  

𝑊 = 𝑧2 − 2𝑧3 + 𝑧4, Θ = 𝑧 − 𝑧2,  

Φ = − 𝑁𝐴(𝑧 − 𝑧2), Ψ = 𝑧 − 𝑧2.                 (38) 

 Substituting (35) into set of (31) and (27)-(29) 
and making the expressions on the left-hand sides of 
those equations (the residuals) orthogonal to the trial 
functions, we obtain a system of 4N linear algebraic 
equations in the 4N unknowns. Eliminating the 
determinant of the coefficient leads to the 
characteristic equation giving the thermal Rayleigh 𝑅𝑡 
as the eigenvalue for the system. 

Now, we perform integration by part with respect to 
𝑧 from zero to one. By employing boundary conditions 
(32)-(34), the system of linear homogeneous algebraic 
equations is obtained 

𝐴𝑖𝑗𝑊𝑖 + 𝐵𝑖𝑗Θ𝑖 + 𝐶𝑖𝑗Φ𝑖 + 𝐷𝑖𝑗  Ψ𝑖 = 0,  (39) 

𝐸𝑖𝑗𝑊𝑖 + 𝐹𝑖𝑗Θ𝑖 + 𝐺𝑖𝑗Φ𝑖 + 𝐼𝑖𝑗  Ψ𝑖 = 0,   (40) 

𝐽𝑖𝑗𝑊𝑖 + 𝐿𝑖𝑗Θ𝑖 + 𝑀𝑖𝑗Φ𝑖 + 𝑁𝑖𝑗  Ψ𝑖 = 0,   (41) 

𝑃𝑖𝑗𝑊𝑖 + 𝑅𝑖𝑗Θ𝑖 + 𝑆𝑖𝑗Φ𝑖 + 𝑇𝑖𝑗  Ψ𝑖 = 0   (42) 

 

The above set of homogeneous algebraic 
equations can have a non-trivial solution if and only if 
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||

𝐴𝑖𝑗  𝐵𝑖𝑗  𝐶𝑖𝑗  𝐷𝑖𝑗

𝐸𝑖𝑗 𝐹𝑖𝑗 𝐺𝑖𝑗  𝐼𝑖𝑗

𝐽𝑖𝑗  𝐿𝑖𝑗  𝑀𝑖𝑗 𝑁𝑖𝑗

𝑃𝑖𝑗  𝑅𝑖𝑗  𝑆𝑖𝑗 𝑇𝑖𝑗

|| = 0.    (43) 

 

The eigenvalue has to be obtained from the 
characteristic (43). For the first approximation N=1, the 
expression of the thermal Rayleigh number for free-
free boundary condition are 

𝑅𝑡 =
1

𝑎2
(

𝜋2𝑄 + 𝑎2𝜀

𝜀
+

𝜋2

𝜉
) (𝜂𝑎2 + 𝜋2) −

𝑎2𝑅𝑒

(𝑎2 + 𝜋2)
− 

       𝑁𝐴𝑅𝑛 (
𝐿𝑒(𝜂𝑎2+𝜋2)

𝜀(𝑎2+𝜋2)
+ 1)    (44) 

 

III. RESULTS AND DISCUSSIONS 

In this paper, we investigate the combined effect of 
magnetic field and AC electric field on the onset of 
convection in an anisotropic porous medium saturated 
by a dielectric nanofluid heated from below. A linear 
stability analysis has been carried out and the 
expression of thermal Rayleigh number, 𝑅𝑡 is obtained 

by performing the Galerkin method. The term of 𝑅𝑡 is 
defined by the other parameters, and the range of the 
parameter value is taken as proposed by [10] to 
observe the stability of the nanofluid layer. The 
influence of magnetic field, AC electric field, 
mechanical and thermal anisotropy parameter on the 
thermal Rayleigh number 𝑅𝑡  and critical Rayleigh 

number 𝑅𝑡𝑐  for three types of boundary conditions 
such as free-free, rigid-free and rigid-rigid are depicted 
graphically in Fig. 2-8.  

The variation of thermal Rayleigh number with 

wavenumber, 𝑎 under the influence of magnetic field is 
illustrated in Fig. 2. It is observed that the value of 𝑅𝑡 

increase with an increase in 𝑄 , indicating that 
magnetic field has stabilizing effect on the stability of 
nanofluid, thus it inhibits the onset of convection. This 
reveals that increasing the strength of magnetic field 
trigger the magnetic line to be distorted by the 
convection due to the viscosity of the fluid is induced 
and hence it obstructs rate of disturbance [23]. As can 
be seen in Fig.2 as well, the nanofluid layer by rigid-
rigid boundary has the most stable system since it 
dominates the upper part of the graph. This type of 
boundary condition delays the onset of thermal 
convection. 

 Fig.3 depicts the effect of AC electric field on 

the onset of electro convection in nanofluid layer. 𝑅𝑡 
seems to decrease when elevating the value of 𝑅𝑒, 
showing that AC electric field effect helps to quicken 
the onset of convection. This occurs due to electric 
field act upon the temperature difference causing the 
constant gradient of electric constant to trigger 
destabilizing electrostatic energy to the system and 
thus the system becomes unstable.  

 

 

 

  

 

Fig.2 Influence of magnetic field, 𝑄 on thermal Rayleigh 

number, 𝑅𝑡 against wavenumber, 𝑎 

 

 

 

. Fig.3 Influence of electric field number, 𝑅𝑒  on thermal 

Rayleigh number, 𝑅𝑡 against wavenumber, 𝑎 
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Fig.4 Influence of mechanical anisotropy parameter,𝜉on 

thermal Rayleigh number, 𝑅𝑡 against wavenumber, 𝑎. 

 The plot of 𝑅𝑡 versus 𝑎  for different value of 𝜉 
considering three different type of boundary 
conditions is displayed in Fig. 4. From the plot, it 

can be seen that an increase of 𝜉  decrease the 
thermal Rayleigh number. This indicates an 
increase in mechanical anisotropy parameter is 
due to larger horizontal permeability thus it 
escalates the motion of fluid vertically to accelerate 
the onset of convective instability of dielectric 
nanofluid. 

  

 

Fig.5. Influence of thermal anisotropy parameter, 𝜂  on 
thermal Rayleigh number, 𝑅𝑡 against wavenumber, 𝑎 

 

 

 Fig. 5 exhibits the onset of electrothermal 
instability in nanofluid layer due to the effect of 
thermal anisotropy parameter. The value of 𝑅𝑡 is 

seen to decrease when reducing the value of 𝜂 . 
This happens because when 𝜂 decreases, thermal 
diffusivity in horizontal direction also decreases to 
be transferred through porous layer. Hence, it slow 
down the destabilizing process of the nanofluid 
system and inhibit the onset of convection. 

 The combined effects of magnetic field and AC 
electric field on the critical Rayleigh number are 
shown in Fig. 6. From the graph, increasing the 
strength of magnetic field  hinders the growth of 

disturbance induced by 𝑅𝑒  and thus it enhances 
the stability within the fluid. From the graph as well, 
it is noticed that the critical Rayleigh number 
maintain the highest value when the nanofluid 
system is bounded by rigid-rigid surfaces. 

 

 

Fig.6. Variation of the critical thermal Rayleigh number, 𝑅𝑡 

with electric Rayleigh number, 𝑅𝑒 for different value of 

magnetic field, 𝑄. 

 

 

 Fig. 7 and Fig. 8 show the impact of mechanical 
and thermal anisotropy parameters, respectively 
combining with the effect of magnetic field on the 
onset of convection. In Fig.7, the elevating value of  
𝜉 supress the critical Rayleigh number. In contrast, 
the critical Rayleigh number is supressed when 
reducing the value as shown in Fig. 8. From both 
figures, 𝑅𝑡𝑐 is observed to increase and magnetic 
field is increasing as illustrated earlier, thus 
increasing the strength of magnetic field postpone 
the onset of the convection in dielectric fluid and 
stabilize the system. 
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 Fig.7. Variation of the critical thermal Rayleigh 
number, 𝑅𝑡 with magnetic field, 𝑄  for different value of 

mechanical anisotropy parameter, 𝜉. 

 

 Fig.7. Variation of the critical thermal Rayleigh 
number, 𝑅𝑡 with magnetic field, 𝑄  for different value of 

thermal anisotropy parameter, 𝜂. 

 

IV. CONCLUSION 

In this paper, the dual effect of magnetic field and 
electric field on the onset of thermal convection in a 
dielectric nanofluid saturated porous medium has been 
analyzed.  The expression of thermal Rayleigh number 
is obtained using the Galerkin technique. This analysis 
subjected to three different boundary conditions which 
are free-free, rigid-free and rigid-rigid boundary. The 
result shows the instability of nanofluid is reinforced 
when elevating the value of electric field Rayleigh 

number, 𝑅𝑒 and mechanical anisotropy parameter, 𝜉 . 

However, increasing the strength of magnetic field, 𝑄 
and thermal anisotropy parameter, 𝜂  slow down the 
destabilization process thus delay the onset of 
convection. Based on the boundary conditions chosen, 
it is found that rigid-rigid boundary has the most stable 
system compared to rigid-free and free-free boundary. 
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