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Abstract—The magnetohydrodynamic (MHD) 
flow and heat transfer of Jeffrey fluid over a 
stretching sheet with the presence of viscous 
dissipation is studied analytically. The governing 
partial differential equations are transformed to 
non-linear ordinary differential equations with the 
facilitation of sophisticated similarity variables, 
which are then being solved analytically by using 
exact analytical method. The effects of the 
physical parameters on the velocity and 
temperature distributions are presented through 
graphs, discussed and compared with the 
previous work of the same problem that has been 
solved numerically to verify the present analytical 
method being used. The skin friction coefficient 
and the local Nusselt number are also computed 
and analyzed. 
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I. INTRODUCTION 

Nowadays, the study of boundary layer flows of 
non-Newtonian fluids has been the topic of great 
interest to investigators and researchers, as it is known 
to be so significant in real life application. Jeffrey 
model is one kind of the non-Newtonian fluids, which is 
a relatively simpler linear model that used time 
derivatives instead of convected derivatives, which are 
used by most fluid models. Until now, the investigation 
towards this fluid flow is still being studied by the 
researchers in various aspects either by the 
implementation of numerical method or analytical 
method.  

Nadeem et al. [1] have analytically analyzed the 
boundary layer flow of a Jeffrey fluid over an 
exponentially stretching surface by taking concern of 
thermal radiation towards two cases of heat transfer. 
Later, by implementing the same method, three- 
dimensional shrinking flow of Jeffrey fluid in a rotating 
system is presented by Hayat et al. [2] with the 
consideration of magnetic field. Also, the exact solution 
of the combined effect of heat and mass transfer in 
Jeffrey fluid over a stretching sheet in the presence of 

heat source or sink has been investigated by Qasim 
[3]. Moreover, by employing the exact method also, 
Turkyilmazoglu and Pop [4] has investigated unique 
and multiple solutions of the flow and heat transfer of a 
Jeffrey fluid near the stagnation point on a both 
stretching and shrinking sheet. Then, Hussain et al. [5] 
performed an analysis on the flow of Jeffrey fluid over 
exponentially stretching sheet with the consideration of 
various effects such as thermophoresis, Brownian 
motion, thermal radiation, and viscous dissipation 
effects. Some of the recent studies about Jeffrey fluid 
can be found in [6]-[8]. 

The main interest of this work is to solve the 
mathematical model for magnetohydrodynamic (MHD) 
boundary layer flow and heat transfer of Jeffrey fluid 
past a linear stretching sheet with the presence of 
viscous dissipation by using exact analytical method 
as the extension to [9], that has solved the problem 
numerically by using a finite-difference method, 
namely the Keller-box method. The profiles are plotted 
and discussed for the variations of different involved 
parameters such as magnetic parameter, Prandtl 
number, Eckert number, and Deborah number. The 
skin friction coefficient and local Nusselt number have 
been computed and analyzed through the tabulation of 
data and then being compared to the previous results 
to verify the validity of the technique and the method 
that we used in this paper. 

II. METHODOLOGY 

A. Modeling 

We consider a steady two-dimensional (2D) 
laminar boundary layer flow of incompressible, 
electrically conducting Jeffrey fluid with the presence 
of magnetohydrodynamic (MHD) over a stretching 
sheet with viscous dissipation. Here x-axis is chosen 
in the direction of the sheet motion, while y-axis 
normal to x-axis. Let  𝑢𝑤(𝑥)  =  𝑐𝑥  describes the 
stretching velocity along the x-direction. A uniform 
transverse magnetic field of strength 𝐵0  is applied 
parallel to the y-axis. The boundary layer equations 
governing the flow and heat transfer of Jeffrey fluid 
can be written as follows [9]:  
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with a set of initial and boundary conditions, 

𝑢 = 𝑢𝑤 , 𝑣 = 0, 𝑇 = 𝑇𝑤 = 𝑇∞ + 𝐴 (
𝑥

𝐿
)

2

  at  𝑦 = 0, 

𝑢 → 0,
𝜕𝑢

𝜕𝑦
→ 0, 𝑇 → 𝑇∞  as 𝑦 → ∞, 

(4) 

 

where 𝑢 and 𝑣 are the velocity components in x- and 

y- directions respectively, while 𝜈 =
𝜇

𝜌
 is the kinematic 

viscosity, where 𝜇  is the coefficient of fluid viscosity 
and 𝜌  is the fluid density. Moreover,  𝜎  is for fluid 
electrical conductivity, 𝐵0  for uniform magnetic field, 

𝜆1 is the ratio of relaxation and retardation times which 
held fixed at zero, 𝜆2  is the relaxation time, 𝑇  for 

temperature, 𝛼 =
𝜅

𝜌𝐶𝑝
 stands for thermal diffusivity 

where 𝐶𝑝 is specific heat at constant pressure and 𝜅 is 

the thermal conductivity. Further, 𝑇𝑤 ,  𝑇∞, 𝐴  and 𝐿 
stand for constant surface temperature, ambient fluid 
temperature, a constant and characteristic length. 
 
By using similarity transformation,  

𝑢 = 𝑐𝑥𝑓′(𝜂), 𝑣 = −(𝑐𝜈)
1
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, 

(5) 

 
the continuity equation (1) is automatically satisfied 
and equation (2), (3) become 

𝑓′′′ − (1 + 𝜆1)[𝑓′2 − 𝑓𝑓′′] + 𝛽(𝑓′′2 − 𝑓𝑓𝑖𝑣)

− (1 + 𝜆1)[𝑀𝑓′] = 0, 

(6) 

𝜃′′ + 𝑃𝑟(𝑓𝜃′ − 2𝑓′𝜃) + 𝑃𝑟𝐸𝑐𝑓′′2 + 𝑀𝑃𝑟𝐸𝑐𝑓′2 = 0, (7) 

 
subject to the new transformed initial and boundary 
conditions, 
𝑓 = 0, 𝑓′ = 1, 𝜃 = 1,  at  𝜂 = 0, 
𝑓′ → 0, 𝑓′′ → 0, 𝜃 → 0,  as  𝜂 → ∞, 

(8) 

 

where 𝑓 and 𝜃 are the dimensionless stream function 
and the dimensionless temperature, accordingly. The 

prime denotes differentiation with respect to 𝜂. Noted 

that 𝛽 = 𝑐𝜆2  is the Deborah number, Ec =
𝑐2𝑙2

𝐴𝐶𝑝
 is the 

Eckert number, 𝑀 =
𝜎𝐵0

2

𝜌𝑐
,   stands for the magnetic 

parameter and Pr =
𝜇𝑐𝑝

𝑘
 is for the Prandtl number.  

 
According to [9], the skin friction coefficient and local 
Nusselt number through dimensionless scale are as 
the following, respectively. 

1

2
𝑅𝑒𝑥

1
2𝐶𝑓 = 𝑓′′(0), 

(9) 

 

𝑅𝑒𝑥

−
1
2𝑁𝑢𝑥 = −𝜃′(0), 

(10) 

 

in which 𝑅𝑒𝑥 = 𝑢𝑤𝑥/𝜈  depicts the local Reynolds 
number. 
 

B. Exact Analytical Method 

A numerical solution of (6) and (7) has already 
been given in [9]. In this section, we instead present 
the exact analytical solution. 
 

a. Velocity field 
 

As according to Crane [10], nice exact formula 
representing the boundary layer flow in different 
configurations can be obtained where we can assume 
that (6) possesses solution of exponential type 

𝑓(𝜂) =
1

𝜆
(1 − 𝑒−𝜆𝜂). 

(11) 

 
By using the boundary conditions and some steps of 
substitution, as a result, we obtain the value of  𝜆 and 

the exact velocity field function 𝑓′(𝜂) as shown below 

𝜆 = √
−(1 + 𝜆1)(−1 − 𝑀)

1 + 𝛽
, 𝜆 > 0,    

(12) 

 

𝑓′(𝜂) = 𝑒
−√

−(1+𝜆1)(−1−𝑀)
1+𝛽

 𝜂
. 

(13) 

 
 

b. Temperature field 
 

As referring to [11] and [12], the exact solution for 
temperature field can be obtained. We suppose the 

following transformation, where 𝑡 = 𝑒−𝜆𝜂  and we then 
propose the following relations between the derivatives 

with respect to 𝜂 and 𝑡, 
𝑑

𝑑𝜂
𝜃 = −𝜆𝑡

𝑑

𝑑𝑡
𝜃,      

𝑑2

𝑑𝜂2 𝜃 = 𝜆2[𝑡2 𝑑2

𝑑𝑡2 𝜃 + 𝑡
𝑑

𝑑𝑡
𝜃] (14) 

 
By applying the transformation, we obtain 

𝑡𝜃′′(𝑡) + (𝑛 − 𝑚𝑡)𝜃′(𝑡) + 2𝑚𝜃(𝑡) + Pr Ec 𝑡 −
𝑚 𝑀 𝐸𝑐 𝑡 = 0, 

(15) 

 
associated to the boundary conditions 

𝜃 (0) =  0,                𝜃 (1)  =  1. (16) 
 
Therefore, solving the ordinary differential equation 
(15), we obtain the exact solution for temperature field 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 12, December - 2019, Special Issue  

www.jmest.org 

JMESTN42353057 51 

𝜃(𝜂)

=
1

2

(𝑚2(𝑒−𝜆𝜂)2 − 2𝑚 𝑒−𝜆𝜂(𝑛 + 1) + 𝑛2 + 𝑛)Ec(𝑀 𝑚 − Pr )

𝑚2(𝑛 + 1)
 

+
1

2

Ec(𝑀 𝑚 − Pr)(2𝑚 𝑒−𝜆𝜂 − 𝑛)

𝑚2
 

−
1

2
𝐻

(𝑒−𝜆𝜂)
−𝑛+1

(Ec 𝑀 𝑚 − Ec Pr − 2𝑛 − 2)

(𝑛 + 1)
, 

(17) 
 

where  

  𝐻 =
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III. RESULT AND DISCUSSION 

To facilitate the analysis process, we have used 
Maple software to calculate and solve the equation, as 
well as plotting the graph. So, in this section, we will 
discuss and analyze the results that we obtained, 
which we will explore the effects of various influential 
parameters on the velocity 𝑓′(𝜂) and temperature 𝜃(𝜂) 
distributions for Jeffrey fluid. We found out that it gives 
good agreement and well coincide with the numerical 
solution provided by [9]. 

TABLE 1. COMPARISON OF SKIN FRICTION COEFFICIENT 

M 𝜷 

𝒇′′(𝟎) 

Ahmad & Ishak 
[9] 

Present 

0.2 
 

0 -1.0955 -1.0954 

0.5 -0.8945 -0.8944 

1.5 -0.6930 -0.6928 

 Impacts of Deborah number 𝛽  and magnetic 
parameter 𝑀  on the non-dimensional velocity field 

𝑓′(𝜂) are plotted in Figs. 1 and 2 respectively. Fig. 1 
illustrates the impact of Deborah number 𝛽 on velocity 
field 𝑓′(𝜂) as well as the magnetic parameter 𝑀, 
meanwhile Fig. 2 depicts the relation of velocity field 
with Deborah number but with constant value of 𝑀. It is 
noted that the velocity field increases as the value of 
Deborah number 𝛽  increases, but opposite behavior 

occurs for magnetic parameter 𝑀. 

Moreover, impacts of Deborah number 𝛽, magnetic 

parameter 𝑀, Prandtl number Pr and Eckert number Ec 
on the non-dimensional temperature field 𝜃(𝜂)  are 
plotted in Figs. 3-5 respectively. Fig. 3 displays the 

effects of Deborah number 𝛽 and magnetic parameter 
𝑀 to temperature field 𝜃(𝜂), and it can be concluded 

that the increment of Deborah number 𝛽  results in 
decrement of temperature field 𝜃(𝜂).  Also, the 

magnetic parameter 𝑀 enhances the temperature field 
𝜃(𝜂). The impact of Prandtl number Pr on temperature 
is shown in Fig. 4, where the high value of Prandtl 

number Pr  decays the temperature field 𝜃(𝜂) . 
Meanwhile, the high value of Eckert number Ec which 

is the parameter for viscous dissipation enhances the 

temperature field 𝜃(𝜂) as plotted in Fig. 5. 

Variations of skin friction coefficient 𝑓′′(0)  with 

Deborah number 𝛽  for various value of magnetic 
parameter 𝑀 are shown in Table 1 and Table 2 in the 
tabulation of numerical data. As have been mentioned 
earlier, it can be seen in Table 1, that the values of the 

skin friction coefficient 𝑓′′(0) of present study are well 
coincide with the previous result obtained numerically 
by [9]. Also, from Table 2, it can be seen that the 
higher the value of magnetic parameter 𝑀, the lower 

the value of skin friction coefficient 𝑓′′(0)  and the 
higher the value of Deborah number 𝛽, the higher the 

value of skin friction coefficient 𝑓′′(0).  

 The variations of Nusselt number −𝜃′(0) also being 
analyze in the form of tabulation data in Table 3, 4 and 
5. It is noticed in Table 3 and Table 4 that the 

increment of Deborah number 𝛽 increases the value of 
Nusselt number −𝜃′(0),  meanwhile, the increase in 
Eckert number Ec and magnetic parameter 𝑀  lessen 

the local Nusselt number −𝜃′(0). It is also depicted in 
Table 5 that the increment of Prandtl number Pr 

increases the value of Nusselt number −𝜃′(0). 

 

Fig. 1. Plots of velocity field for Deborah number and 

magnetic field parameter. 

 

Fig. 2. Plots of velocity field for Deborah number and 

constant magnetic field parameter M. 
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Fig. 3. Plots of temperature field for Deborah number and 
magnetic parameter. 

 

Fig. 4. Plots of temperature field for Prandtl number and 
Deborah number. 

 

Fig. 5. Plots of temperature field for Eckert number and 
Deborah number. 

TABLE 2. SKIN FRICTION COEFFICIENT 

M 𝜷 𝒇′′(𝟎) 

0.0 
 

0.5 -0.8164965809 

1 -0.7071067810 

1.5 -0.6324555320 

0.5 
 

0.5 -0.9999999996 

1 -0.8660254033 

1.5 -0.7745966690 

1 
 

0.5 -1.1547005380 

1 -1.0000000000 

1.5 -0.8944271907 
 

TABLE 1. NUSSELT NUMBER WHEN Pr =  0.7, 𝑀 =  0.2 

𝜷 Ec −𝜽′(𝟎) 

0.5 
 

1.0 0.831095487 

3.0 0.294750507 

5.0 -0.241594475 

 
1 

1.0 0.899802780 

3.0 0.433573661 

5.0 -0.032655455 

1.5 

1.0 0.944983682 

3.0 0.523793489 

5.0 0.102603295 
 

TABLE 2. NUSSELT NUMBER WHEN Pr =  0.7,  Ec =  0.3 

M 𝜷 −𝜽′(𝟎) 

0.0 
 

0.5 1.064638764 

1.0 1.105689690 

1.5 1.133114735 

0.5 

0.5 0.956566211 

1.0 1.004782562 

1.5 1.036757584 

1.0 

0.5 0.863316352 

1.0 0.918981117 

1.5 0.954454832 

 

TABLE 5. NUSSELT NUMBER WHEN 𝛽 =  1,  Ec =  0.3 

M 𝐏𝐫 −𝜽′(𝟎) 

1.0 
 

0.7 0.918981117 

1.0 1.133333333 

1.5 1.421445057 

 

IV. CONCLUSION 

 The boundary layer flow and heat transfer of Jeffrey 
fluid in the presence of magnetohydrodynamic (MHD) 
over a stretching sheet with viscous dissipation has 
been discussed. The governing equations were 
reduced to the ordinary differential equations by using 
appropriate similarity transformation variables and 
these ordinary differential equations were then further 
solved analytically by using exact analytical method. 
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From the results obtained, it can be seen that the 
present analytical solution show a good agreement as 
to be compared with the previous numerical solution 
presented by [9]. 
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