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Abstract— Infectious diseases have been 
modeled over the past centuries using equation-
based modeling. Ordinary differential equations 
have been used in these models to represent the 
rate of flow of individuals among compartments in 
the modeling process. These equations have been 
quite useful but over the past few decades, two 
different models that have also proved a lot 
powerful and very useful are the agent-based 
model and the contact network-based model. In 
Agent-Based Modeling (ABM), the movements of 
individuals are simulated over time and space to 
model the spread of an infection. Similarly in 
contact Network-Based Modeling (NBM), the 
spread of an infection is modeled as a diffusion 
process on graphs. Our sole aim in this paper is 
to investigate how contact rates in a network 
based model influence infection spread within 
populations. We use susceptible-; infected-; and 
recovered epidemic models consisting of ordinary 
differential equations for our equation based 
model. For our contact based network model, we 
simulate the infection spread on a network 
following a Poisson degree distribution. The 
epidemic spread on the network uses bond 
percolation whereas in the agent based model, we 
use NetLogo to simulate the infection spread 
process. Using the network based model, we 
investigate how different contact rates contribute 
to epidemic spread within populations.   

Keywords—epidemiology; emerging infectious 
diseases; bond perclation; contact network. 

I.  INTRODUCTION  

Infectious diseases have caused devastating effects 
on the human race for centuries. From the 1918 
Spanish Flu pandemic which claimed about 20 to 100 
million lives [1-4]  to the recent 2019 measles 
outbreaks in the United States of America which the 
CDC has warned is the highest measles outbreak 
since 1992, infectious diseases have affected many 
populations and countries. The CDC has estimated 
1215 cases for the outbreak as at August 2019. 
Measles is highly contagious with high infection rate 
and basic reproductive number  [5, 6]. One other 
infectious disease that has also been so devastating 
is the Ebola virus. It has been a great threat to some 
parts of West Africa with a mortality rate of 70 percent 
at one point. Liberia recorded about 10,666 cases with 
close to 3,200 deaths. In spite of control measures 

like quarantine, Sierra Leone at some point recorded 
13,379 total infections with close to 9,000 deaths. 
Infected individuals were quarantined since it was 
observed that one key factor that resulted in the fast 
spread of the infection was contact with infected 
people. Contacts between infected and susceptible 
individuals in populations result in the transmission of 
infectious diseases. There is therefore the need to 
investigate how contact rates within populations result 
in the spread of infections and their influence in the 
occurrence of large scale epidemics. Conditions that 
result in outbreak of epidemics and the percentage of 
population that is infected are among issues that are 
of keen interest to researchers. Thus, resources such 
as isolation, influence, vaccination and anti-virus have 
been modeled to  investigate their effect on infection 
spread [7]. Zhilan et al [7] in 2011 investigated how 
vaccination and antiviral drug treatment could help 
with the spread and control of the influenza disease. 
Lisa et al [8] investigated the effect of quarantine on 
the spread of the 1918-19 Spanish flu in central 
Canada and Troy et al [9] also looked at quarantine as 
a control strategy for emerging infectious diseases in 
general.   
   In this paper, we consider the contact rates within a 
network and its influence in determining whether a 
large scale epidemic is possible within a population. 
We first simulate the spread of infectious diseases in 
agent based; network based; and equation based 
models. For the agent based model, we use NetLogo, 
computer software that is used to build models; run 
experiments; produce, store and analyze simulated 
data [2, 10, 11]. Here, we use it to simulate the 
interaction between individuals in a population as a 
system of interacting agents. For the network model, 
we consider how contact rates influence the likelihood 
of epidemics. How frequent or scarce people within 
the population of interest have disease causing 
contacts determines the rate at which infection will be 
transmitted within the population. The disease causing 
contacts from node i to node j  are denoted by sij [1, 
12] and it  is used in computing the transmissibility, Tij-
: the probability that node j will be infected by node i 
[12, 13]. 

In the agent based and equation based models, we 
briefly simulate how infection spreads within those 
models and when large scale epidemics are possible. 
For the network model, we particularly examine the 
impact of contact rates on epidemic spread from a 
bond percolation perspective in Poisson networks. We 
simulate how varying contact rates affect infection 
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spread. We use data from past infectious disease 
outbreaks to simulate the contact rates and relate this 
to the recent 2019 measles outbreaks in the United 
States. The results show the high influence of contact 
rates on large scale epidemics. We present our 
methodology in Section 2 and the experiments with 
their results in Section 3. Section 4 contains the 
discussions and the conclusions from the 
investigation. 

II. METHODOLOGY 

In this section, the models used in the paper are 
discussed. Information on how the SIR equation 
based model is used is provided as well as the 
network model. Finally, an introductory model in the 
curricular unit section of NetLogo, called epiDEM 
(Epidemiology: Understanding Disease Dynamics and 
Emergence through Modeling) [2] will be looked at for 
Agent-Based modeling. 

A. Equation-Based Model  

Susceptible, Infected and Recovered Model: A 
system of Ordinary differential equations is considered 
for our initial simulation where we show infection 
transmission within populations from different modeling 
paradigms. We solve the system of ordinary differential 
equations in eqn. (1) in MATLAB to simulate the 
infection spread process.   

𝑑𝑆

𝑑𝑡
=

−𝛽IS

N
  

𝑑𝐼

𝑑𝑡
=

𝛽IS

N
− 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼                                                                (1) 

S, I and R are the number of susceptible, infected 
and recovered individual. These change with time, 
thus, can be represented by S(t), I(t) and R(t). The rate 
of movement of individuals from compartment S(t) to 
I(t)  is denoted as 𝛽, the infection rate, whereas 𝛾 is 
the recovery rate-: the rate of transitioning of 
individuals from the infected compartment to the 
recovered group. The infection and recovery rates are 
estimated from epidemiological data and for each 
infection being modeled, these parameters will be 
provided. The population is considered a closed one, 
hence, there are no births or deaths. The total 
population size (N) is therefore given by:  

N= S(t) + 𝐼(𝑡) + 𝑅(𝑡)                                            (2) 

 

B. Agent-Based Model  

epiDEM (Epidemiology: Understanding Disease 
Dynamics and Emergence through Modeling), an 
introductory [2] model in curricular unit in NetLogo is 
the model to be considered for agent-based models. 
This agent-based model follows the concept of SIR 
model thus individuals are classified into susceptible, 
infected and recovered. In NetLogo, the agents are the 
individuals in the population under consideration. 
NetLogo has two types of agents, 'turtles', which move 
about and 'patches' which are stationary [2, 10, 14]. 

The agents have contact with each other according to 
a Poisson distribution and in the course of contact; 
infected agents transmit infection to susceptible 
agents. 

In order to model the spread of an infection in the 
agent-based model, an infected agent (turtle) is 
introduced into the model. This agent has a color red 
while all other agents are white. Disease spread in this 
model is based on the proximity of other agents to the 
infected agent and the infection spread chance. The 
turtles move about and when a susceptible turtle and 
an infected turtle occupy the same patch, the program 
tests whether there has been an infection spread using 
the infection spread chance. Once a turtle becomes 
infected, it is infectious thus transmits the infection to 
other turtles. When an infected turtle reaches its 
recovery time period, it recovers based on its recovery 
chance. The infection spread chance and the recovery 
chance are both probabilities. With the recovery 
chance, the program tests if an infected turtle could 
become recovered. Once the turtle recovers, it 
becomes green and is eliminated from the disease 
spread. The recovery chance, the infection spread 
chance, the initial number of people and the average 
recovery time are all determined by the user. 

 

C. Network-Based Model  

Contact networks are used based on 
compartmental models to model an infection spread. 
This model uses bond percolation theory in modeling 
the spread of infections [15, 16] and the simulations 
are done in MATLAB. Populations under consideration 
are considered as the network and the individuals are 
the nodes. 

Contacts between individuals are represented by 
edges and infections are transmitted from one node to 
the other through these vertexes. Previously derived 
relations from Lauren and Newman [1, 3, 4, 12, 17] are 
used here. From Edoh et al [1], based on the disease 
causing contacts, sij, an infection is transmitted with 
the probability Tij which is given in equation 3 below. 
More so, the infection spread depends on the mean 
disease transmission probability, T, which is also 
referred to by Newman as average transmissibility 
[13]. 

𝑇𝑖𝑗 = 1 − (1 − 𝑠𝑖𝑗)𝜏                                                   (3) 

Tij is the probability of an infection being transmitted 

after 𝜏 time [1]. We see from (3), that this is dependent 
on the contact rate. We show in this paper from our 
simulations how the contact rate influences Tij and the 
infection spread.  
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III. RESULTS AND DISCUSSION 

In the first part of our results, we show briefly how 
infection spread is modeled through the agent based, 
network based and equation based models. Our 
previous work in Edoh et al [1] has more details on 
infection spread in Network and Equation based 
models for your reference.  We simulate how infection 
spreads in the agent based model using the epiDEM 
model described in Section 2. Contact patterns in the 
network and agent based models follow a Poisson 
distribution which is the assumption upon which the 
equation based model is built.  

1000 agents are considered in the agent based 
model to represent a small town and the infection 
spread is modeled for 100 days in the population by 
introducing three infected agents into the population. 
The network based model also has three infected 
nodes placed within the network. For the equation 

based model, we set the infection rate as 𝛽 = 0.5 and 
the recovery rate as 𝛾 = 5days based on past 
epidemiological data. The initial conditions are set as 
below:  

I(0) = 3 ;R(0) =0; S(0) = 997. 

 In our simulation, we consider two cases of 
networks, one with varying contact rates and another 
with fixed contact rates. Equation based models 
assume individuals in a population are equally likely of 
being infected when an infected individual is 
introduced into the population, thus, we consider such 
a case on the network model by fixing contact rates 
between nodes. The results for the varying contact 
rates is shown in Fig. 1 whereas that for the fixed 
contact rates is shown in Fig. 2.  

 

 

Fig.1: varying contact rates, sij as in regular network 
models.  

The results in Fig. 1 indicate that about 90% of the 
population was infected considering the equation 
based model, 80% with the network model with varying 

contact rates and the entire population from the agent 
based model. 

 

Fig. 2: contact rates, sij fixed for simulation based 
on assumption of equation based models. 

 In Fig. 2, we see the network model with fixed 
contact rates resulting in about 95% infected cases in 
the lifespan of the infectious disease.  
 

After showing how infection spread is simulated in 
the different models, we investigate how the contact 
rates influence infection spread. The results are shown 
in Fig. 3 and 4 for the varying and fixed contact rates 
respectively.  

 

Fig. 3: Effect of contact rates on infection spread. 
Varying contact rates 

From Fig. 3, we notice as 𝑇𝑖𝑗  increases, the number 

of infected cases reduces and as 𝑇𝑖𝑗  decreases, the 

number of infected cases increases. From Eqn. (3), 
𝑇𝑖𝑗  is influenced by contact rates in the period of 

infectiousness of an infectious disease. Our simulation 
therefore shows that an increase in the contact rate, 

𝑠𝑖𝑗, results in a decrease in 𝑇𝑖𝑗, which in turn, leads to 

a rise in infected cases. In the first case in Fig. 4, we 
see 𝑇𝑖𝑗  =0.2 with almost 100% of the population being 
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infected in the long run and then 𝑇𝑖𝑗  =0.8, we see about 

85% of the population being infected.  

 

Fig. 4: Effect of contact rates on infection spread. 
Fixed contact rate. 

For the fixed contact rates in Fig. 4, we see the 

same relationship between 𝑠𝑖𝑗  and the possibility of 

large scale epidemic as in Fig. 3. Thus from our 
simulations, we have been able to show how 
increasing contact rates influence the occurrence of 
large scale epidemic.     

Reducing contact rates in a population will reduce 
to a great extent the possibilities of a large scale 
epidemic, notwithstanding; it is worth noting that 
factors like the pathogen strength and vaccination 
status also have influence on the chances of an 
epidemic. However, since individuals need to come in 
contact before pathogen strength and vaccination 
status influence infection transmission, the contact 
rates are very important. We therefore see the reason 
for the concept of quarantine as a control strategy, 
implemented by public health.  

While reducing the contact rates play a significant 
role, it might be difficult in some cases. In big cities 
where there are crowds of people that need to use 
health facilities, schools and public transportations, 
contact reduction can only be applied to the minimum 
except in the worse outbreak cases (like in Liberia 
during Ebola outbreak). Vaccination and other control 
strategies are implemented in most cases: as in the 
case of the New York City making vaccination a 
requirement in 2019 for individuals within specific zip-
codes.  

 

IV. CONCLUSIONS 

We showed how contact rates in a network 
influence infection spread within populations. For the 
initial part, we illustrated how infectious diseases are 
simulated within different modeling frameworks: 
considering agent based; network based and equation 

based models. For our main aim, the effect of contact 
rates on the infection spread, we observe that for 
higher contact rates in the network, the 𝑇𝑖𝑗 is low, 

resulting in a higher infection spread and vice versa. 
Thus, for an infection spread to be contained in a 
population, the contact rates within the population play 
a significant role-: the contact rates need to be 
reduced significantly.  
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