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Abstract— Emerging vehicle technologies such 
as connected vehicles (CV) technologies create 
new opportunities for collecting new types of 
transportation data that can improve the accuracy 
of transportation system performance 
measurement. The main objective of this study is 
to develop a methodological framework to estimate 
system performance measurements using 100% 
CV data as well as to provide a validation of the 
proposed framework. In doing so, the microscopic 
simulation software VISSIM with trajectory 
conversion algorithm (TCA) is used to generate CV 
data and specifically basic safety message (BSM). 
Two sets of data were considered, namely the CV-
generated data and field data from the National 
Performance Management Research Data Set 
(NPMRDS). A statistical comparison of the selected 
performance measures between the two data sets 
was performed using the ANOVA: Single Factor 
statistical F-test. The results from the statistical 
test showed that the calculated F values were less 
than the critical values of F within 5% significance 
level for all performance measures tested. This 
finding indicates that there is no significant 
difference between performance measures using 
CV-generated data and the NPMRDS data set. 
Hence, the proposed framework is valid, and it can 
be used in practical applications. 

Keywords—Connected vehicles (CV), 
performance measurement, methodological 
framework, VISSIM, Basic Safety Message (BSM). 

I.  INTRODUCTION 

Performance measurement is an indispensable part 
of effective transportation systems management. It is a 
topic of great interest both internationally and in the US 
and can play a vital role in decision making at both the 
federal and state levels. Proper transportation 
measurement and management processes help to 
enhance transportation system planning and 
operations. Estimated performance measures can be 
used by a system operator or planner in order to support 
decisions associated with these processes. Such 
measurements can also be used to derive information 
for dissemination to travelers, third-party data 

aggregators, traveler information service providers, and 
other agencies. The Federal Highway Administration 
(FHWA) defines Transportation Performance 
Management (TPM) as a “strategic approach that uses 
system information to make investment and policy 
decisions to achieve national performance goals” 
(FHWA 2017a). 

Performance measures can be either quantitative or 
qualitative. Examples of quantitative performance 
measures include volume, density, travel time, speed, 
queue length, and emissions. Qualitative performance 
measures include user satisfaction, driver compliance, 
and driver frustration. Performance measures are 
typically estimated based on data from existing 
technologies such as traffic surveillance involving 
closed-circuit television (CCTV), machine vision 
equipment, and sensors such as subsurface induction 
loop, acoustic, and radio frequency (RF). 

Connected Vehicle (CV) technologies promise to 
allow the estimation of performance measures currently 
provided by other technologies, as well as measures 
that cannot be collected by existing sensing 
technologies. Examples of additional performance 
measures that can be estimated from data obtained 
through CVs include stops, acceleration and 
deceleration, shockwave speeds, detailed signalized 
intersection movement-level measures, and the 
potential for crashes, to name a few.  

Studies confirm that a relatively low market 
penetration of CV is required for estimating some 
performance measures, while other measures require 
high market penetrations to produce accurate results 
(Khazraeian et al., 2017; Iqbal et al., 2018; Khan et al., 
2017). The availability of CV data, even at small 
percentages, may be sufficient to support critical 
transportation management functions.  For example, 
such data can be beneficial in identifying abnormalities 
in data detection and processing associated with 
existing technologies.  

Hence, the recent introduction of CV technologies 
created new opportunities for the use of CV data for 
performance measurements. However, existing studies 
are limited in scope as they mainly focused on the 
generation of specific measures such as travel time, 
density and queue length estimation by using CV data 
from different sources including the Next Generation 
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Simulation (NGSIM) data set (Argote et al., 2012; Hao 
et al., 2014; Nam et al., 2017; Qiu et al., 2010) and 
safety pilot model deployment (SPMD) data set 
(Khattak et al., 2017; Liu et al., 2016; Mousa et al., 2017; 
Zheng et al., 2017).  

Overall, the literature review confirms that there is a 
lot of untapped potential in using CV data for estimation 
of performance measures. To address some of these 
issues, the objective of this study is to: (a) develop a 
methodological framework to estimate system 
performance measurements using 100% CV data to 
support transportation operations, management, and 
planning, and (b) provide a proof of concept as part of 
framework validation where performance 
measurements are compared using traditional data set 
like National Performance Management Research Data 
Set (NPMRDS) and CV data. 

The following paragraphs include a. the literature 
review that summarizes past studies related to 
transportation performance measurement using CV 
data and contribution of this study, b. discussion on the 
development of a methodological framework to 
estimate system performance measurements using CV 
data, and c. the proof of concept of the study to validate 
the proposed methodological framework is presented. 
The last section of this paper offers concluding remarks. 

II. LITERATURE REVIEW 

There are several studies in the literature focusing 
on travel time, density, traffic volume, and queue length 
estimation using CV data. Mousa et al. (2017) estimated 
travel times based on Basic Safety Messages (BSM) 
information and found that the mean absolute errors are 
13- and 20-seconds for 5- and 20-minute horizons 
respectively. These estimates were based on eXtreme 
Gradient Boosting (XGB) algorithm, and the BSM data 
came from a SPMD conducted in Ann Arbor, Michigan. 
However, this study did not account for different market 
penetration rates, which is an important consideration. 

Zou et al. (2010) estimated travel time based on 
Vehicle Infrastructure Integration Probe Data (VIIPD) 
messages according to J2735 standards and found 
average travel time error percentages of 27.6%, 12.5%, 
and 8.2% for 1%, 5%, and 10% market penetrations, 
respectively. These estimates were based on traffic 
simulations of a hypothetical network. 

Izadpanah et al. (2011) conducted a study to 
determine travel time using vehicle trajectory data from 
GPS data loggers on a freeway segment. The results 
showed that the measured and ground truth travel time 
had no significant difference.  

In another study, Argote et al. (2012) estimated 
commonly used arterial measures of effectiveness 
including average speed, the average delay per unit 
distance, average number of stops, average 
acceleration noise, and queue length based on CV data 
obtained from NGSIM data. A drawback of this study is 
that it uses the vehicle ID, but does not consider the 
change of vehicle ID during its course of travel, as 
specified in the J2735 standards. 

Studies focusing on density estimation based on CV 
data report that high market penetration of CVs is 

required in order to get accurate results.  A study by 
Khan (2015) based on simulation modeling, showed 
that the use of CV data as input into an advanced 
estimation algorithm can provide an accuracy of at least 
85% for CV penetration level of 50% or more, with the 
estimation accuracy increasing with the increase in the 
market penetration. The same study reported that 
density estimations that used an algorithm based on 
point detector data resulted in an accuracy rate between 
42.5% and 62.2%.  An incremental benefit-cost analysis 
indicated that the use of CV provides a higher return on 
investment, compared to the use of loop detectors.  
However, the study did not assess the accuracy of CV 
data utilization for low market penetration levels.  

In a later study, Khan et al. (2017) assessed the 
accuracy of CV data utilization for market penetrations 
below the 50% market penetration level and found that 
20% or more CV penetration level can provide 85% 
accuracy. Nam et al. (2017) also conducted a study to 
estimate density using probe vehicle data from the 
NGSIM dataset and found that estimated densities 
reflect ground truth density and accuracy of density 
increases with the increase of penetration rates.  

A number of studies examined the potential of using 
a low sample size of probe vehicles in combination with 
point detector data to improve density estimation 
accuracy. Al-Sobky et al. (2016) conducted research to 
determine traffic density using two smartphones inside 
two vehicles and an observer to obtain count data. The 
results showed that measured density is close to the 
actual density at the 5% significance level. The error of 
the density estimated using this method ranges from 
1.3% to 15%, with an average of 8%. However, this 
proposed system is not applicable for a high percentage 
of heavy vehicles and uninterrupted flow conditions.  

In another study, Qiu et al. (2010) combined detector 
data with probe data to estimate density and found that 
the relative error for the given periods can be improved 
from 30% based on point sensor data, and to 4% to 6% 
based on point sensor data plus probe vehicle data. 
They used two loop detectors placed 1,000 feet apart, 
with two probe vehicles driven five round trips along the 
section.  Once again, this indicates the potential of using 
CV data in combination with point detection to estimate 
density at low market penetrations of CV.  

Zheng et al. (2017) estimated traffic volumes and 
found that the Mean Absolute Percentage Error (MAPE) 
of traffic volumes is in the rage of 9-12%. This estimate 
was based on low market penetration rates ranging 
from 3 to 12%. In their study, they used two sources of 
CV data, namely the SPMD project in the city of Ann 
Arbor, MI, and vehicle trajectory data in China. 

Queue length estimation using CV data also 
requires high market penetration of CVs, as reported in 
the literature. Li et al. (2013) combined probe trajectory 
and signal timing data to estimate the queue length and 
found that the mean absolute percentage error 
decreased with the increase in market penetration. This 
estimate was based on microscopic simulation data. In 
another study, Osman et al. (2016) investigated cycle-
by-cycle queue length using Basic Safety Messages 
(BSMs) based on shockwave analysis and found 
estimation errors to be between 0 and 33%. However, 
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a study conducted by Khazraeian et al. (2017) indicated 
that a relatively low market penetration (around 3% to 
6%) for a congested freeway is sufficient for accurate 
and reliable estimation of the queue length. Even at 3% 
market penetration, the CV-based estimation of the 
back of queue identification is significantly more 
accurate than that based on detector measurements. It 
was also found that CV data allows for faster detection 
of the bottleneck and queue formation. 

Recent studies indicate that incident detection and 
collision warning can also be estimated using CV data. 
Wolfgram et al. (2018) detected the occurrence of 
incidents quickly and reliably using CV data and found 
that the availability of CV data can reduce the detection 
time, from minutes to just seconds. This finding was 
based on empirical and simulation data. In another 
recent study, Tajalli et al. (2018) investigated the vehicle 
collision problem at a signalized intersection using CV 
data and technologies based on simulation data under 
three sets of scenarios including various volumes of 
vehicles, compliance rates, and CV penetration rates. 
Analysis of results showed that the number of vehicle-
to-vehicle (V2V) conflicts decreased from 24 to 16, to 5 
and vehicle-to-pedestrian (V2P) conflicts decreases 
from 56 to 33, to 0 for increasing market penetration 
rates from 0% to 50%, to 100% respectively. 

Work zone safety can also benefit from CV 
technologies, even at a low market penetration rate. A 
study conducted by Genders et al. (2016) showed that 
market penetration rates lower than 40% increase the 
safety of the traffic network, meanwhile,  market 
penetration rates over 40% decreases the safety of the 
network. Authors also mentioned that work zone 
information through CV technologies helps to modify 
driving behavior and decay travel time. 

The review of the literature confirms that existing 
studies did not consider data that can be collected in 
accordance with the Society of Automotive Engineer 
(SAE) message sets and the expected availability of the 
data. It should be mentioned that, according to CV data 
standards, no permanent vehicle identifications are 
assigned to any vehicles. In addition, the earlier studies 
have not addressed new performance measurements 
illustrated in Fig. 1 related to national highway system 
performance, freight movement on the interstate, 
Congestion Mitigation and Air Quality (CMAQ) program 
– traffic congestion, and CMAQ – on-road mobile 
source emissions that were recently established by 
FHWA in the Moving Ahead for Progress in the 21st 
Century (MAP-21) in 2012 (FHWA 2017b) . 

To bridge these gaps, this paper addresses 
performance-based operations by estimating real-time 
performance measurement using CV data. The 
methodological framework development is proposed 
first, followed by a proof of concept based using 
simulated CV data from a study corridor in Birmingham, 
Alabama, USA. 

 

Fig. 1. MAP-21 performance measures 

III. METHODOLOGY OVERVIEW 

This section proposes a methodological framework 
to estimate the system performance measurements 
using 100% CV data. It involves several methods and 
techniques to aggregate the CV data as an input to 
estimate the performance measures at the traffic 
management center (TMC). The following section 
discusses in detail the proposed framework 
development. 

A. Framework Development 
A framework for transportation performance 

measurement system can play a vital role toward the 
improvement of the effectiveness and efficiency of the 
performance measurement analysis. Moreover, it 
provides a structured hierarchy of procedures and 
processes to guide transportation authorities, 
engineers, planners, and agencies in their decision 
making. A study by the University of Alabama at 
Birmingham leading to the work by (Islam, 2018) 
developed a novel delivery method for methodological 
frameworks for transportation performance 
measurement. Through that method, the framework is 
delivered as four components, namely (i) physical data 
flow diagram, (ii) processes and process groups 
hierarchical diagram, (iii) individual process designs, 
and (iv) logical data flow diagram.  

1) Physical data flow diagram 
The physical data flow diagram illustrates the 

physical entities of the proposed system, and the data 
flows between such system entities, as shown in Fig. 2. 
The primary challenge is to aggregate data at roadside 
units (RSUs), thus a new physical architecture of RSUs 
is also proposed in this physical data flow diagram. 

2) Processes and process groups hierarchical 
diagram 

The processes and process groups hierarchical 
diagram contains two sets of process groups: (a) data 
aggregation process groups at RSUs and (b)  

 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 2458-9403 

Vol. 6 Issue 8, August - 2019 

www.jmest.org 
JMESTN42353040 10551 

 
Fig. 2. Physical data flow diagram 

performance measurement process groups at the 
turning movement counters (TMCs). 

The first set (i.e., data aggregation process group) is 
classified into five process groups as illustrated in Fig. 3 
based on the data requirements to estimate the 
available performance measures at TMC. They include:  

 Travel Time Data Aggregation;  

 Speed and Acceleration Data Aggregation;  

 Volume and Headway Data Aggregation;  

 Sound Level Data Aggregation; and  

 Signal Group Data Aggregation.  

These process groups are further grouped by relevant 
data aggregation at each process group. 

 

 
Fig. 3. Data aggregation at roadside units (RSUs) 

Similarly, the second set (i.e., performance 
measurement process group) is classified into four 
process groups based on the available performance 
measures at TMC where each process group contains 
relevant performance measures as illustrated in Fig. 4. 
These include: 

 Travel Time Reliability;  

 Congestion Development Measures;  

 Level of Service (LOS) Performance Measures, 
and  

 Environmental Issues Measures. 

 

 
Fig. 4. Performance measurement at TMC 

3) Individual process designs 
As mentioned earlier, performance measurement 

and management are performed through sets of 
processes. Each individual process can be represented 
by its inputs, tools and techniques, and outputs. An 
algorithm is developed to estimate each process. For 
example, an algorithm to compute average travel time 
is illustrated in Fig. 5. 

 

 
Fig. 5. Pseudocode for calculating average travel time 

Details on other individual process designs, grouped 
by process groups as illustrated in the previous Fig. 3 
and Fig. 4 are available in (Islam, 2018). 

4) Logical data flow diagram 
This process is the combination of processes and 

process groups hierarchical diagram and individual 
process designs. It represents the data flow diagram 
from the data sources to process groups and 
processes. It is a holistic, comprehensive data flow 
diagram to estimate performance measures illustrated 
in Fig. 6. 
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Fig. 6. Logical data flow diagram 

IV. RESULTS AND DISCUSSION 

This section discusses in detail the proof of concept 
of the study to validate the proposed methodological 
framework. 

A. Proof of Concept Study 
In order to generate CV data for the proof of concept 

study, the VISSIM microsimulation platform was used to 
model a study corridor in Birmingham, AL. The CV data 
were obtained from VISSIM using the TCA tool and 
used to determine selected performance measures on 
the basis of the procedures described in the proposed 
methodological framework. Then performance 
measures obtained from CV data were compared with 
performance measured derived from actual field data 
that were available through the NPMRDS database for 
the study corridor. The process followed and results are 
discussed in detail in the following subsections. 

1) Study Corridor Location 
A section of I-65 in the Birmingham, AL region was 

chosen as the study corridor for the purpose of this 
study. The study corridor is almost 14.40 miles long, 
extending from exit 247 to exit 261A as shown in Fig. 7. 

2) Development of a Simulation Model 

The microscopic simulation platform VISSIM 10.00 
was used to build a simulation model of the study 
corridor. The model was run under normal traffic 
conditions and produced vehicle record data that were 
then used as an input to generate BSMs using the TCA 
tool. The output data were collected from the vehicle 
record output, which is a .fzp file containing vehicle 
speed, vehicle number, link number, lane index, 
acceleration, simulation second, and time of the day. 
The model was run for one hour from 8:00 AM to 9:00 
AM using traffic volumes obtained from the Alabama 
Department of Transportation (ALDOT). The study ran 
the simulation model three times and averaged the 
output data to calibrate and estimate the performance 
measures. 

3) VISSIM Output Data Calibration 

The VISSIM output was calibrated using field 
measurements available through National Performance 
Management Research Data Set (NPMRDS) database. 
The study used two statistical techniques for model 
calibration, namely (a) graphical techniques, and (b) 
ANOVA statistical single factor F-test. 

 
Fig. 7. Simulation test bed 

The graphical techniques used in this study 
represent two control limits, namely the upper control 
limit (UCL) (which is 15% more than the field 
measurement value), and lower control limit (LCL) 
(which is less than the 15% of field measurement 
value). The analysis of graphical techniques results 
showed that VISSIM output speed data produced by the 
simulation model were within the upper and lower 
control limits of the NPMRDS data set as illustrated in 
Fig. 8, thus confirming the reliability of the simulation 
outputs. 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 
ISSN: 2458-9403 

Vol. 6 Issue 8, August - 2019 

www.jmest.org 
JMESTN42353040 10553 

 
Fig. 8. VISSIM model calibration 

The ANOVA statistical single factor F-test was also 
used to determine whether there are any statistically 
significant differences between the field measurement 
speed data and VISSIM output speed data within a 5% 
significance level. The F-test results showed that the 
calculated F value is less than the critical value of F, as 
shown in Table 1Error! Reference source not found.. 
Hence, there is no significant difference between 
VISSIM output data and filed data, which is a desirable 
outcome. 

TABLE 1. VALIDATION OF THE SIMULATION MODEL USING ANOVA SINGLE 
FACTOR F-TEST 

Summary 
Groups Count Sum Average Variance

NPMRDS Speed    16 816.26 51.016 124.157

VISSIM 
Simulation Speed 

   16 798.91 49.931 101.769

      

ANOVA 
Source of 
Variation 

SS df MS F P-
value

F crit 

Between Groups 9.407     1 9.407 0.083 0.775     4.171

Within Groups 3388.903    30 112.963 

Total 3398.31    31         

 

2) TCA tool 
TCA software is designed to test different strategies 

for producing, transmitting, and storing Connected 
Vehicle information (OSADP, 2015). The study used the 
latest version of TCA tool [Version 2.3.3] (OSADP 
2015), developed by the FHWA to generate BSMs from 
the calibrated VISSIM output data. The study assumed 
a 100% market penetration rate and DSRC technology 
as the communication type only. A total of 14 roadside 
units (RSUs) were placed along the study corridor at 1-
mile intervals. However, TCA software is an open 
source software, and the user can select market 
penetration rate, the communication type (DSRC or 
Cellular), and also specify the roadside unit location. 

3) Comparison between performance measures 
generated using CV and NPMRDS data set 

a) Hypothesis 
The hypothesis of this study is that there is no 

significant statistical difference between a) performance 
measures calculated using the proposed framework 
and CV data considering 100% market penetration rate, 
and b) performance measures derived using 
conventional data sources such as NPMRDS. 

b) Comparison 
For illustration purposes, this study selected three 

performance measures, namely Travel Time Index 
(TTI), Planning Time Index (PTI), and Speed Normal 
Deviate (SND) to establish the proposed framework as 
a proof of concept. The study used the proposed 
algorithm to calculate average travel time, free-flow 
travel time, and 95th percentile travel time, average 
speed, and standard deviation of speed using CV 
BSMs. Then, these calculated values were used to 
estimate TTI, PTI, and SND performance measures. 
Moreover, TTI, PTI, and SND performance measures 
were also calculated by implementing the methods of 
(Sullivan et al., 2017) using NPMRDS data set and 
compared with those obtained from the CV BSMs. 

An ANOVA: Single Factor statistical F-test was 
performed to test the abovementioned hypothesis. 
From the ANOVA statistical test, it was found that there 
was no significant difference between TTI, PTI, and 
SND values produced from the proposed framework 
using CV data and those produced from traditional data 
at the 5% significance level. Comparisons of the 
calculated F value and the critical value of F confirming 
these findings for TTI, PTI, and SND performance 
measures are available in Table 2, Table 3 and Table 4, 
respectively. 

TABLE 2. VALIDATION OF TTI USING ANOVA SINGLE FACTOR F-TEST 

Summary 

Groups Count Sum Average Variance

Avg_TTI_BSMs 16 27.988 1.749 0.227 

Avg_TTI_NPMRDS 16 22.952 1.434 0.257 
  

ANOVA 

Source of Variation SS df MS F P-value F crit

Between Groups 0.793     1 0.396   1.582 0.223 3.328

Within Groups 7.266    30 0.251 

Total 8.058    31 

 

TABLE 3. VALIDATION OF PTI USING ANOVA SINGLE FACTOR F-TEST 

Summary

Groups Count Sum Average Variance

Avg_PTI_BSMs 16 20.926 1.308 0.117 

Avg_PTI_NPMRDS 16 28.168 1.761 0.722 

ANOVA

Source of Variation SS df MS F P-value F crit

Between Groups 1.639      1 1.639 3.905 0.057 4.171

Within Groups 12.591      30 0.419 

Total 14.23      31 
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TABLE 4. VALIDATION OF MAX_SND USING ANOVA SINGLE FACTOR F-
TEST 

Summary 
    

 

Groups Count Sum Average Variance  

Max_SND_BSMs 16 -54.706 -3.419 47.437  

Max_SND_NPMRDS 16 -3.648 -0.228 44.759  

 

ANOVA  

Source of 
Variation 

SS df MS F P-value  F crit

Between Groups 81.466      1 81.466 1.767 0.194  4.171

Within Groups 1382.94      30 46.098 
  

 

Total 1464.40      31 
   

 

 

Overall, the statistical analysis performed above 
confirms that there is a close agreement between the 
performance measures (i.e., TTI, PTI, and SND) 
generated from a. the proposed methodological 
framework using CV data generated by the VISSIM 
simulation platform and the TCA tool and b. actual field 
data obtained from the NPMRDS travel time data set. 
Thus, the proof of concept for the proposed framework 
is successful. 

V. CONCLUSIONS AND RECOMMENDATIONS 

Performance measurement and management are of 
great importance toward achieving operational 
effectiveness of roadways. Field or simulated data can 
be used to determine performance measures. 

Emerging vehicle technologies, including CVs, 
create new opportunities for collecting new types of 
transportation data that can improve the accuracy of 
transportation system performance measurement. The 
proliferation of CVs is also expected to increase data 
quantity and quality and enable the development of new 
performance measures.  

In light of the rapid progress in the area of CV 
technologies, this study developed and validated a 
methodological framework to estimate system 
performance measurements using CV data. The 
proposed methodological framework addressed the 
data aggregation issue and introduced data 
aggregation algorithms at RSUs to estimate 
performance measures.  

In order to validate the proposed framework, 
performance measures (i.e., TTI, PTI, and SND) were 
calculated using traditional field data and simulated CV 
data for a 14-mile long freeway study segment in 
Birmingham, AL, and compared. The findings from the 
statistical comparison indicate that there is no 
significant difference between performance measures 
generated using the CV data generated through 
simulation and the field data recorded in the NPMRDS 
database. The close agreement between the findings 
serves as a proof of concept for the proposed 
framework.  

It is recommended that the groundbreaking work 
performed in this study be followed by additional 
research to expand the scope of the work in the near 
future. At present, the study introduced twenty-four 
performance measures in the methodological 

framework. However, the framework proposed in this 
study can be further updated and expanded to 
incorporate emerging performance measures in the 
future. Another limitation of the study is the use of 
simulation data to produce CV data. Evaluation of the 
proposed framework using real-world CV data is also 
recommended. This study only considered a basic 
freeway section. Other facilities such as merging, 
diverging, and weaving sections could be considered as 
an extension of the current work. Moreover, 
consideration of different market penetration rates for 
CVs is also recommended to evaluate the proposed 
framework in future studies. 
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