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    Abstract—Recently developed Extended 
Poisson Theory with thickness-wise polynomial 
functions for analysis of plates is modified with 
possible sinusoidal functions. Use of polynomial 
functions in the analysis of bending of plates is 
completely eliminated through proper sine and 
cosine functions. In the analysis of extension 
problems, it is shown that they can be used only 
for corrective solutions to the two term 
polynomial distributions of in-plane 
displacements. 
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I INTRODUCTION 
 
 A beginning towards the development of a 
plate theory by the present author was made in the 
year 1988 through publication of a technical note [1] 
in which Reissner’s expected sixth order equation [2] 
was derived through an iterative procedure. He did 
not paid much attention about other aspects 
mentioned in the Reissner’s article due to several 
investigators including scientists of great authority 
involved in the development of plate theories. The 
interest in these aspects was revived after a gap of 
more than 12 years since retirement in the year 1995 
due to inducement from his Grand-children. 
 
  In spite of several review articles on plate 
theories reported in the literature, the present work is 
essentially due to Jemielita’s 217 page survey [3] in 
which an attempt was made to answer the general 
question, ‘To study or to create’. . In this context, 
recent development of Extended Poisson Theory 
(EPT) is presumably a significant contribution in the 
analysis of laminated composite plates with 
anisotropic plies within small deformation theory of 
elasticity. 
 
 Small deformation theory of Elasticity 
consists of three equations of equilibrium in terms of 
six symmetric stress components along with three 
surface conditions This three dimensional problem is 
converted in to three equations of equilibrium 
governing three displacements (u, v, w) using six 
stress-strain constitutive relations and six strain-
displacement relations. Alternately, these field 
equations are derived through calculus of variations 
using stationary property of relevant total potential. In 

solving this 3-D problem, a sequence of 2-D 
problems is generated by making suitable 
assumptions about thickness-wise distributions of 
displacements and/or stresses (or strains). In these 
energy methods, equations governing 2D variables 
correspond to plate element equilibrium equations 
(PEEES). 
 
 PEEES are eliminated through an adapted 
iterative procedure in the recently developed 
Extended Poisson Theory (EPT) of plates [4]. In EPT, 
however, it appears that one cannot avoid initial 
solutions of displacements with two and one term 
representation of in-plane displacements (u, v) with 
transverse (vertical) displacement w from z-
integration of constant and linear εz(x, y) with respect 
to z-coordinate in extension and bending problems, 
respectfully. Displacement w is used as face variable 
in these problems and domain variable in the 
associated torsion problems. 
 
 Extended Poisson theory (EPT) appears to 
be most suitable theory to overcome lacuna in the 
classical theories of primary plate problems. 
Disadvantage in the application of EPT is in the 
development of software for generation of polynomial 
fk(z) functions necessary for analysis of plates with 
thickness ratio varying up to unit value. New theories 
of plates are proposed here to overcome this 
problem of software development replacing fk(z) 
functions with Fourier series in terms of proper 
sinusoidal functions. 
 
 Analysis of plates with different geometries 
and material properties under different kinematic and 
loading conditions does not provide much scope for 
development of new theories other than those with 
the analysis of primary problems of a square plate. 
As mentioned by Ghugal and Shimpi in their review 
article [5], the development of refined structural 
theories for laminated plates (made up from 
advanced fiber reinforced composite materials) has 
their origins in the refined theories of isotropic plates. 
Hence, analysis is confined here to primary problems 
of isotropic square plates. 
 
 II. PRELIMINARIES 
 
 A square plate bounded within 0 ≤ X, Y ≤ a, 
−h ≤ Z ≤ h with reference to Cartesian coordinate 
system (X, Y, Z) is considered. Material of the plate is 
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homogeneous and isotropic with elastic constants E 
(Young's modulus), ν (Poisson's ratio) and G (Shear 
modulus) that are related to one other by E = 2(1+ ν) 
G. For convenience, coordinates X, Y, Z and 
displacements (U, V, W) in non-dimensional form x = 
X/a, y = Y/a, z = Z/h and half-thickness ratio α = (h/a) 
are used. 
 
 With the above notation, equilibrium 
equations in terms of stress components are: 
  
 α (σx,x + τxy,y) + τxz,z = 0     (1a) 
 α (σy,y + τxy,x) + τyz,z = 0     (1b) 
            α (τxz,x + τyz,y) +  σz,z = 0                   (2) 
 
in which suffix after ',' denotes partial derivative 
operator. 
 
 In displacement based models, stress 
components are expressed in terms of 
displacements, via, six stress-strain constitutive 
relations and six strain-displacement relations. These 
relations within the classical small deformation theory 
of elasticity are: 
 
Strain-stress and semi-inverted stress-strain 
relations: 
 
 E εx = σx − ν (σy + σz)     (3a) 
 E εy = σy − ν (σx+ σz)     (3b) 
 E εz = σz − ν (σx+ σy)     (3c) 
 G [γxy, γxz, γyz] = [τxy, τxz, τyz]      (4) 
 σx = E'(εx + ν εy) + μ σz     (5a) 
 σy = E'(εy + ν εx) + μ σz     (5b) 
 εz = – μ e + (1− 2 ν μ) σz /E      (6) 
 
Here, e = (εx + εy), E' = E /(1− ν2) and μ = ν / (1− ν). 
 
Strain-displacement relations: 

 
 [εx, εy, εz] = [α u,x , α v,y, w,z]   (7a) 
 γxy = α (u,y +  v,x)     (7b) 
 [γxz, γyz] = [u,z + α w,x , v,z + α w,y]     (8) 
 
 In-plane equilibrium equations in terms of 
displacements are 
 

E' [α2∆u − ½(1+ ν) α2 (v, xy – u, yy)] + 
   + μ α σz, x + τxz, z = 0        (9a) 

E' [α2∆v + ½(1+ ν) α2 (v, xx – u, xy)] + 
 + μ α σz, y + τyz, z = 0                  (9b) 
 
Prescribed upper and bottom face conditions along 
with edge conditions can be modified such that even 
functions f2n(z) and odd functions f2n+1(z) in the z-
distribution of (u, v) are for analysis of extension and 
bending problems, respectively. 
 
 Correspondingly, vertical displacement w(x, 
y, z) is odd in extension and even in bending 
problems due to transverse shear strain-
displacement relations. 

 
 III INITIAL SETS OF SOLUTIONS IN PRIMARY 
PLATE PROBLEMS FROM EPT 
 
 In EPT of primary plate problems, in-plane 
displacements [u, v] require two term representation 
in extension problems and one term representation in 
bending (or associated  torsion)  problems.  
Prescribed conditions at each of x = constant edge 
(with analogous conditions along y = constant edge) 
in the primary problems are 
 
 u = un(y)   or   σxn(y) = Txn(y)              (10a) 
 v = vn(y)   or   τxyn (y) = Txyn (y)              (10b) 
 
in which ‘n’ is ‘0’ in extension and ‘1’ in bending 
problems. Similarly, prescribed transverse stresses 
along z = ± 1 faces of the plate are [Txz(x, y), Tyz(x, 
y), Tz(x, y)]n. Due to odd and  even z-distribution, 
however, [Txz1, Tkyz1, Tz0] correspond to extension 
problems and vice versa in bending problems. 
 
 In auxiliary problems in EPT, transverse 
shear stresses in bending and extension problems 
are expressed as 
 
 [τxz, τyz]0b = − α [ψ0,x , ψ0,y]              (11a) 
 [τxz, τyz]1e = − α [ψ1,x , ψ1,y]              (11b) 
 
Note that α2 Δ ψ0 = q1(x, y)/2 in bending problems 
and Δ ψ1 = 0 in extension problems 

 In the classical plate theories, w is linear in 
‘z’ in extension problems whereas εz is linear in 
bending problems. Here, we consider expansion of z 
in Fourier sine series in the form, with λ2n−1 = 2/[(2n-
1)π], 
 
 z = ∑ A2n-1 sin (z/λ2n-1)    (sum on n)   (12) 
 
in which 
 

 A2n-1 = ∫ sin
1

0
(z/λ 2n-1) z dz = λ2n-1

2   (13) 

 
Successive integrations of f1(z) = z gives 
 
 f2k-1(z) = ∑ λ2n-1

2k  sin (z/λ2n-1)   (14) 
 f2k(z) = − ∑ λ2n-1

2k+1 cos (z/λ2n-1)   (15) 
 
 In bending problems, displacements [u, v] 
and εz, thereby, w are assumed in the form 
 
     [u, v, εz]b =∑ [u, v, εz]2n-1λ2n-1 

2 sin (z/λ2n-1)   (16) 
 wb = w0 − ∑ w2n λ2n-1

3 cos (z/λ2n-1)   (17) 
 
In extension problems, 
 
 we = ∑w2n-1λ2n-1 

2 sin (z/ λ2n-1)    (18) 
    [τxz, τyz]e = ∑[τxz, τyz]2n-1λ2n-1 

2sin (z/λ2n-1)   (19) 
 
Correspondingly, σz and in-plane displacements [u, v] 
are 
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         σze = σz0 + ∑ σz2n λ2n-1

3 cos(z/λ2n-1)                (20) 
   [u, v]e = [u, v]0 − ∑[u, v]2n λ2n-1

3 cos(z/λ2n-1)          (21) 
 
Note that σz0 does not participate in the equilibrium 
equations but contributes in the semi-inverted stress-
strain relations neglected in the classical theories. 
 
 In the case of bending problems, transverse 
shear stresses [τxz, τyz] and σz are 
 
 [τxz, τyz]b = [τxz, τyz]0 λ2n-1 cos (z/λ2n-1) + 
  + ∑ [τxz, τyz]2n λ2n-1 

3 cos (z/λ2n-1)               (22) 
 σzb = [σz1 λ1

2 sin (z/λ2n-1)] – 
 − ∑ σz2n-1 λ2n-1

4 sin (z/λ2n-1)              (23) 
 
One should note that the first term σz1 in σzb is due to 
in-plane stresses from constitutive relations and 
second term is due to equilibrium equation in z-
direction. 
 
 IV ANALYSIS OF FLEXURE (BENDING) 
PROBLEM 
 
From face load condition, 
 
 [σz1 λ1

2 sin (z/λ1)]z=1 = λ1
2 q0(x, y)   (24) 

 
Static equilibrium equations governing [u, v]2n-1 are 
 
 λ2n-1 

3 E’α2 Δu2n-1 + μ λ2n-1
2 α σz2n-1 = 

   = λ2n-1
3 τxz2n                (25) 

λ2n-1
3 E’α2 Δv2n-1+ μ λ2n-1

2 α σz2n-1,y = 
   = λ2n-1

3 τyz2n                       (26) 
 
We have from z direction-equilibrium equation 
 
 λ2n-1

2 α2Δ [E’e2n-1+μσz2n-1] = λ2n-1
4σz2n-1   (27) 

 
With [u, v]2n-1 = − α [ψ2n,x− φ2n, y,  ψ2n,y + φ2n, x], the 
above equation  becomes 
 
 λ2n-1

2 α2∆[E' λ2n-1
2 α2Δψ2n – μ σz2n-1] = 

   = λ2n-1
4 σz2n-1                (28) 

 
For n=1, 
 
 E' λ1

4 α4Δ ∆ψ2 – μα2∆q0 = λ1
2q0(x, y)   (29) 

 
Above equation (29) has to be solved along with ∆ φ2 
= 0 subjected to edge conditions 
 
 ψ2 = 0 if ψ0 = 0    or    τxz2 = 0                (30) 
        u1 = 0    or   σx1 = Tx1(y)            (31a) 
         v1 = 0    or   τxy1 = Txy1(y)          (31b) 
 
 Due to transverse stresses from auxiliary 
problem, in-plane displacements [u, v]1 are 
determined from satisfying both static and z-
integrated equilibrium equations. 
 

 In higher order corrections, σz2n+1 (n≥1) has 
to be a free variable. For this purpose, we modify the 
term σz2n+1 λ2n+1

4 sin (z/λ2n+1) in the form σz2n+1 λ2n+1
4 

[sin (z/λ2n-1) + sin (z/λ2n+1)]. 
 
 Corresponding in-plane displacements and 
transverse shear stresses are 
 
 [u, v] = [(λ2n+1

4/ λ2n-1
2) sin (z/λ2n-1) + 

  + λ2n+1
2 sin (z/λ2n+1)] [u, v]2n+1   (32) 

 [τxz, τyz] = [(λ2n+1
4/ λ2n-1) cos (z/ λ2n-1) + 

    + λ2n+1
3cos (z/ λ2n+1)] [τxz2n+1, τxz2n+1]       (33) 

 
It is to be noted that the role of σz2n+1 λ2n+1

4 sin (z/λ2n-

1) is in rectifying error in the semi-inverted stress-
strain laws in static equilibrium equations and does 
not participate in the  integrated equilibrium 
equations. 
 
With [u, v]2n+1 = − α [ψ2n+2,x− φ2n+2, y,  ψ2n+2,y + φ2n+2, x], 
equation governing ψ2n+2 becomes 
 
 α2∆ [E' α2Δ ψ2n+2 – μ σz2n-1] = σz2n+2   (34) 
 
Above equation (34) has to be solved along with ∆ 
φ2n+2 = 0 subjected to edge conditions 
 
 Ψ2n+2 = 0 if ψ0 = 0   or   τxz2n+2 =0              (35) 
  u2n+1 = 0   or   σx2n+1 = 0              (36a) 
  v2n+1 = 0   or   τxy2n+1 = 0             (36b) 
 
 V ANALYSIS OF EXTENSION PROBLEM 
 
 In a primary extension problem, the plate is 
subjected to symmetric normal stress σz0 = q0(x, y)/2, 
asymmetric shear stresses [τxz1, τyz1] = ± [Txz1(x, y), 
Tyz1(x, y)] along top and bottom faces of the plate. 
Here, σz0 = q0/2 satisfying face condition does not 
participate in equilibrium equation of transverse 
stresses and the corresponding specified face shears 
[Txz1, Tyz1] are gradients of a given harmonic function 
ψ1 so that [Txz, Tyz] = α [ψ1,x, ψ1,y]. Transverse shear 
stresses and normal stress satisfying face conditions 
are [τxz, τyz] = α z [ψ1,x ,  ψ1,y] and σz0  = q0(x, y)/2. 
With the inclusion of the above gradients of the 
known ψ1 in the normal stresses, in-plane equilibrium 
equations are, with (v0, x – u0,y) = 0, 
 
 (E'/3) α2∆[u, v] + μ α [σz0,x , σz0,y] = 0   (37) 
. 
in which [u, v] = [u, v]0 + [ψ1,x/G , ψ1,y /G].  We have 
from constitutive relation 
 
 εz0 = – μ e0 + (1− 2 ν μ) q0/2E   (38) 
 
We have w = z εz0 so that w(x, y, z) in sinusoidal 
series is 
 
 w = ∑w2n-1λ2n-1

2 sin (z/λ2n-1)    (39) 
 
with corresponding corrective transverse shear 
stresses 
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 [τxz, τyz] = ∑ [τxz, τyz]2n-1λ2n-1

2 sin(z/λ2n-1)   (40) 
 
Here, displacements [u, v]e and σze take the form 
 
       [u, v] = [u, v]0 − ∑ [u, v]2n λ2n-1

3 cos(z/λ2n-1)  (41) 
 σz = σz0 + ∑ σz2n λ2n-1

3 cos (z/λ2n-1)   (42) 
 
It is to be noted that series in eq. (41) is due to ∫[τxz, 
τyz]dz whereas series from [τxz, τyz],z is not a complete 
set due to absence of constant term. Hence, one 
needs [τxz, τyz]2n-1λ2n-1

4 sin (z/ λ2n-1) to satisfy static 
equilibrium equations with [u, v] in eq.(41). 
 
 In view of the above observation, sinusoidal 
representation of solutions in primary extension 
problems is possible only as corrective solutions to 
analysis with two term polynomial representation of 
in-plane displacements, viz., 
 
 [u, v] = [u, v]0 – 1

2
 (1 –z2) [u, v]2                (43) 

 
 Corresponding analysis with the above 
displacements is presented earlier [6]. It involves 
solutions for [τxz1, τyz1, σz2] and [τxz3, τyz3, σz4] which are 
coefficients of polynomial functions f3(z) = ½(z – z3/3) 
and f4(z) = (5− 6z2 + z4)/24. Here, errors in the 
analysis are due to f3(z) associated with [τxz3, τyz3] 
and f4(z) associated with σz4. To rectify these errors, 
one proceeds with sinusoidal series for transverse 
stresses in the form ∑ [τxz, τyz]2n-1λ2n-1

4 sin (z/λ2n-1) and 
∑ σz2n-1λ2n-1

5 cos (z/λ2n-1). Here, 
 
 [u, v] = [u, v]0 − 1

2
 (1 –z2) [u, v]2 – 

  − ∑ [u, v]2n+2 λ2n-1
3 cos (z/λ2n-1)  (44) 

 [τxz, τyz] = [τxz, τyz]1 + f3(z) [τxz, τyz]3 + 
  + ∑ [τxz, τyz]2n+3 λ2n-1

4 sin (z/λ2n-1)   (45) 
 σz = σz0 + 1

2
 (1 –z2) σz2 + f4(z) σz4 – 

  − ∑ σz2n+4 λ2n-1
5 cos (z/λ2n-1)   (46) 

 
Then, equations governing [u, v]2n+2 satisfying both 
static and z-integrated equilibrium equations are, with 
(v0,x – u0,y) = 0, 
 
 (E'/3) α2 ∆ [u, v]2n+2 + μ α[σz4,x , σz4,y] = 
    = [τxz, τyz]2n+3   (47) 
 α [τxz2n+3,x + τyz2n+3,y] = σz2n+4    (48) 
 
Equation governing ψ2n+3, with [u, v]2n+1 = − α [ψ2n+3,x− 
φ2n+3, y,  ψ2n+2,y + φ2n+3, x], becomes 
 
 α2∆ [E' α2Δ ψ2n+3 – μ σz2n+2] = σz2n+4   (49) 
 
Above equation (49) has to be solved along with ∆ 
φ2n+3 = 0 subjected to edge conditions 
 
 Ψ2n+3 = 0 if ψ1 = 0   or   τxz2n+3 = 0             (50) 
  u2n+2 = 0    or   σx2n+2 = 0            (51a) 
  v2n+2 = 0    or   τxy2n+2 = 0            (51b) 
 
(It is to be noted that the equations in [6, 7] 
corresponding to the equations in the above analysis 

of primary extension problems need proper 
modifications) 
 
 VI    CONCLUDING REMARKS 
 
 Utility and effective approximation through 
EPT of a text book problem of bending of a square 
isotropic plate has been demonstrated in the earlier 
publications [4, 7 – 9].The plate with ν = 0.3 and 
thickness ratio 2α = 1/3 is subjected to asymmetric 
load σz = ± (q0/2) sin (πx/a) sin (πy/a) and zero shear 
stresses along z = ±1 faces. Analysis involves 
solution of second order auxiliary problem for 
transverse stresses, a fourth order system governing 
[u, v]1 and a fourth order supplementary problem to 
distinguish neutral plane and face plane 
deformations. It is difficult to generate software for 
higher order approximations, in particular, for 
thickness ratio varying up to unit value. 
 
 Above difficulty in application of EPT through 
the use of polynomial functions is eliminated in the 
present analysis through the use of trigonometric 
functions. Here, second order auxiliary problem is 
natural part of the procedure. In-plane displacements 
[u, v] are determined at each stage of approximation 
governed by a fourth order (sixth order with inclusion 
of a harmonic function φ) system by satisfying both 
static and z-integrated equilibrium equations coupled 
only through σz obtained in the preceding step to 
account for error in the semi-inverted constitutive 
relations. Moreover, there is no need for 
supplementary problem. 
 
 In the case of extension problem, it is to be 
noted that the present analysis through trigonometric 
functions is applicable only as corrective solutions for 
solutions obtained through two term polynomial 
representation of [u, v] = [u, v]0 − 1

2
 (1 –z2) [u, v]2 
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