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Abstract—Studies on two band superconductors 
have previously been described through one band 
model; this approach has not adequately 
addressed microscopic mechanisms that allow 
superconductivity to occur at high temperature. 
We reverted to canonical two band BCS 
Hamiltonian containing a fermi surface of p- and 
d- bands, followed by Bogoliubov-Valatin 
transformation equations, to obtain energy gap 
and specific heat for MgB2 superconductor. We 
proposed a phonon-mediated attraction and 
coulomb repulsion to act differently on energy 
band states and stabilizing superconductor phase 
for MgB2. Results were compared to the approach 
of a sum of two independent bands using 
Bardeen, Cooper and Schrieffer like π- and α- 
model expressions for the specific heat, entropy 
and free energy. We developed electron-phonon 
interaction model Hamiltonian for 
superconducting MgB2 and its energy, obtaining 
expression for variation of thermodynamic 
properties of high Temperature superconductors 
in two band model system. We obtained ground 
state energy of 0.122264eV and Specific heat 
capacity as 0.1042551eV/K of MgB2 and calculated 
TC= 45.00088251K. The research demonstrated the 
physical and empirical meaning of the sum over 
the contribution of the two bands, where band 
parameters tend to agree with the previous 
determinations of band structure calculations and 
experiments. 

Keywords—Two-band model, Hamiltonian, 
Bose-Einstein Condensation, electron –phonon, 
cooper pair, Magnesium Diboride 

1. INTRODUCTION  

Mathias and Hulum (1950) pioneered the search 
for the high Tc superconductors in transition metal 
alloys and compounds. This led to independent 
discovery of superconductivity in thin films of the A12 
compound Nb3Ge at 23K. Superconductivity has been 
discovered in several other classes of materials such 
as the cheveral phases AxMO6X8 that are mostly 

tenary transition metals chalcogenides, heavy fermion 
systems, organic superconductors and more recently 
diborides. 

According to Akimitsu(Akimitsu 2001), intermetallic 
MgB2 has the highest Tc at ambient pressure among 
all superconductors with exception of cuprates.  

 

Figure 1.2 Structure containing B layers separated 
by hexagonal packed layers of Mg for MgB2. 

Magnesium diboride is an inorganic compound and 
a water-insoluble solid. It differs strikingly from most 
superconductors of comparable Tc, which feature 
transition metal. Using BCS theory and the known 
energy gaps of the pi and sigma bands of electrons 
(2.2 and 7.1 meV, respectively), the pi and sigma 
bands of electrons have been found to have two 
different coherence lengths (51 nm and 13 nm, 
respectively). The corresponding London penetration 
depths are 33.6 nm and 47.8 nm. This implies that the 
Ginzburg-Landau parameters are 0.66±0.02 and 3.68, 

respectively. The first is less than 
1

√2
 and the second is 

greater, meaning that the first indicates marginal type 
I superconductivity and the second, type II 
superconductivity.  

It has been predicted that when two different bands 
of electrons yield two quasiparticles, one of which has 
a coherence length that would indicate type I 
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superconductivity and one of which would indicate 
type II, then in certain cases, vortices attract at long 
distances and repel at short distances. In particular, 
the potential energy between vortices is minimized at 
a critical distance. As a consequence there is a 
conjectured new phase called the semi-Meissner 
state, in which vortices are separated by the critical 
distance. When the applied flux is too small for the 
entire superconductor to be filled with a lattice of 
vortices separated by the critical distance, then there 
are large regions of type I superconductivity, a 
Meissner state, separating these domains.  

Experimental confirmation for this conjecture has 
arrived recently in MgB2 experiments at 4.2 Kelvin. 
There are indeed regimes with a much greater density 
of vortices. Whereas the typical variation in the 
spacing between Abrikosov vortices in a type II 
superconductor is of order 1%, there is a variation of 
order 50%, in line with the idea that vortices assemble 
into domains where they may be separated by the 
critical distance. In our current work, we consider a 
two-band approach to calculating ground state energy 
and heat capacity of MgB2. 

 1.1. Model Hamiltonian for two band model 
MgB2 isotope. 

We introduced two types of Bogoliubov 
quasiparticles associated with the two p and d bands 
of the normal pairing mechanism in each of the two 
separate bands as well as inter-band pairing between 
cooper pairs formed in different bands. According to 
BCS theory, a system admits a precursor phase of 
cooper pair triplets that undergo a phase locking 
transition at critical temperature. We considered a 
canonical two band Hamiltonian that contain a Fermi 
surface of p and d bands for effective Hamiltonian, 
which is BCS reduced Hamiltonian whose formulation 
is described for our system of Magnesium Diboride. 

We defined operators 


kC  as creation operator for 

single electron state, operator kC  as destruction 

operator for single electron state, Vdd and Vpp as 
pairing interaction, Vpd pairing interchange between 

the two bands p and d and k as particle energy for 

attractive pairing strength. We also considered two 

types of quasiparticles,  

 pp
CC  and 



 dd
CC  

associated with the two p and d bands. The normal 
phonon pairing mechanism in each of the two 
separate bands as well as interband pairing between 
Cooper pairs was formed at different bands, giving 
effective Hamiltonian below as adopted by Thomas 
Thiguel (2011). 

 1.1intHHHH pd   

Where Hd, Hp are given as
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 Hd and Hp denotes free electron and interaction 
energy in d and p bands respectively. In equations 

(1.2) and (1.3), psds and 
 

are the kinetic 

energies of p and d bands, measured to relative Fermi 

level with spin (s)   or , where k is the block value 

and 11 dkkpkk
VandV  are the inter-band phonon 

mediated interaction matrices.
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Hhint denote the interaction between the p and d 
bands .and the combined form for inter-band 
interaction with phonon mediated matrix element 
Vdpkk

1 
. 

This interaction is part of the electron interaction, 
here; we have ignored all other types of interaction. 
This turns out to be a good approximation because 
this interaction is the key which induces the pairs 
unlike other interactions that have effective energies, 
ie hopping effective energies. 

1.2 Mean Field Approximation 

In BEC, we introduced order parameter  C , 

where the pair of electrons forms the BEC state, so 
that the order parameter can be written as 

  






k

kk
CC

 and in condensed phase 

0 





 kk
CC  hence;
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 We also defined pdX
 and 



pdX
 as 

 7.1 









kkpd CCX
  

 8.1
 kkpd CCX

  

 We defined and formulated the fluctuation term as 
below, 
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 After substitution, the fluctuation term was 
generated as below. 
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We wrote the interaction terms of the values 


pdpd XandX
 as fluctuations. The last term of 

equation (1.11) is fluctuations times fluctuations. The 

result is too small, hence ignored. We introduced gap 

parameters for p and d bands respectively. 
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 Hence equations (1.2) and (1.3) are subjected to 

fluctuation term in equation (1.11) and gap 

parameters in equation (1.18),(1.19), (1.20) and 

(1.21)to get equation (1.22) and (1.23) 
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And for interaction term Hpd, after fluctuation 

operation, 
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The Hamiltonian for to band system of MgB2 

reduces to equation (1.25) 
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 Each band has its proper pairing interaction Vpp 
and Vdd, while the pair interchange between the two 
bands is assured by Vpd term.

 
1.4 Bogoliubov-Valatin Transformation 

Equation (1.25) is the adopted superfluid quadratic 
Hamiltonian for MgB2 system which is diagonalized to 
obtain the elements of a Hamiltonian which 
corresponds to the stationary states when the system 
is in equilibrium. We described the superconducting 
states at T>0, and developed independently 
Bogoliubov-Valatin Canonical transformation 
equations whose description is more appropriate as 
follows;

  

The research is dealing with large number of 
particles, the fluctuation about the average of 

 
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C
would be small. We redefined number 

operators below to conform to B.V.T status as;
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We substitute equation (1.26) into the interaction 
term in equation (1.24), to get; 
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We ignore the last term on the right hand side of 
equation (1.27) because it’s small due to large 
number of particles. We subject equation (1.27) to a 
constraint defined as; 
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We also define the parameter 
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The same operation is done on equation (1.22) and 

(1.23) for Hd and Hp respectively. 
 

The total Hamiltonian after the above operations 

becomes bilinear form, hence diagonisable by 

Bogoliubov-Valatin transformation equations. 
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Noting that the operators in equation (1.31) appear 
in bilinear form, they can be written in a diagonal form 
by appropriate transformations using C operators as 
shown in Bogoliubov and Valatin. We consider new 

operators   and constants 
k

vand
k

u  which 

satisfy the relation;
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We also defined quasiparticles 
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We now substitute equations (1.34), (1.35), and 
(1.36), into equation (1.22.), (1.23) and (1.24) for Hp, 
Hd and Hpd respectively. When the coefficients of 
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  vanish and we collect like 

terms together, we obtain; 
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 Putting all terms together in equations (1.37),(1.38) 
and (1.39) , the model Hamiltonian for magnesium 
diBoride for phonon-mediated attraction and coulomb 
repulsion reduces to ;

 

 40.1

















kkkkkkkkkk
pd

kkkk

kkkkkkk
pd

kkkk
d

kkkkkk
pM

vu

v

H







 

The operators obey the bosonic anti-commutation 

relationships as per equation below 
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Hence equation (1.40) reduces to;
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 Then model Hamiltonian in (1.42) is the 
diagonalized equation by Bogoliubov-Valatin 
transformation equations. 

2.6 Ground state energy 

We now calculate the energy that is required 
during the interaction using the normalized wave 

function Ψ. 

Mn HE 
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Where the vacuum state is represented by 0  has 

three distinct spaces i.e 10,0,00
kkk (1.44)

 

By doing expansion on terms in the equation and 
performing the bra-ket operation on each term in the 
bra-ket, followed by factorization, we set equation 
(1.44) for normalization case by rewriting it as in 
equation (1.45) 
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Hence we rewrite equation (1.45) as 
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Noting that 

01,00,10   and , then 

equation (1.46) is simplified to;  
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If  49.1pddp  
 

then 
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pdg uvvuE   

Equation (1.50) is the ground state energy of two 
band model, the case of magnesium diBoride. It 
differs from energy of one band model due the 

additional 


k

pd terms of energy showing the 

lowest energy achieved in the p and d bands at 
vacuum state, indicating formation of the bands at 
lowest energy in the system. 

The two band model possess lower energy at 

vacuum state compared to one band model 

superconductor, hence bosons can be formed at 

lowest energy of magnesium diboride. In relating the 

above energy with temperature, we multiply equation 

(1.50) with thermal activation factor. 

 
 

So that;
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Therefore the energy of the system of magnesium 
diBoride at any temperature T is given as ; 

     53.1
100/22

22 Tkuvvu

kkkkkpdn
BkkkkkpdeuvvuE









 

2.7 Specific heat capacity. 

We now obtain the expression for specific heat 
capacity of the two band system for magnesium 
diBoride. As a standard procedure, specific heat 
capacity of a system at constant volume is obtained 
from the temperature derivative of energy of the 
system. 
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And substitute equation (1.55) into equation (1.54) 
to get ; 
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The equation (1.59) is the specific heat formula. 

 

 

2.8 Electronic specific heat (Ces) 

The electronic specific heat is heat perelectron of a 
superconductor and it is determined from the relation 

(For p bands); 
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Where  is the energy of pi band and u is the 

common chemical potential. Substituting 



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and changing the summation over p into an 

integration by using the relation    p

p

dN 0  

we obtained; 

   

  

 
 61.1

21exp

exp02

22

2

2

22

1

2

2

22

0 
























ppppppp

pp

p

p

es

TT
d

N

N
C

p 






 

Using the above equation after simplification and 

replacing
kT

1
 , we obtained 
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Changing the phonon energy variables as

dydy pppp    , and taking 0 , we 

obtain 
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For sigma band, we write the expression;  
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The variation of electronic specific heat with 
temperature (T) for pi and sigma bands is shown with 
good agreement with experimental data. 

Using the above equation and putting   = 1 𝑘𝑇⁄  

after simplification, we obtain
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2.9 Results and discussion 

2.9.1 Variation of electronic specific heat with 
temperature  

 Fig 1: Variation of electronic specific heat in 
mJ/mol/K and temperature in Kelvin. 

The variation of electronic specific heat Ces with 
temperature shows nonlinear increase in electronic 
specific heat with increase in temperature. In 
conformity with experimental data, is very low at low 
temperatures in the range of 0K-15K. Above 15K, the 
growth of Ces with temperature is exponential and 
asymptotic as it approaches 40K. We compare our 
result with Schriefer J.R (2013) shown in figure 2 

 

Figure 2: Variation of Electronic specific heat 
with temperature for both p and d bands adopted 
from Schriefer J.R (2013). 

We also see nonlinear increase, Ces with 
temperature but optimized at 35K, where there is a 
sharp nonlinear fall in electronic specific heat. 

  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 7, July - 2019 

www.jmest.org 

JMESTN42352999 10368 

2.9.2 Energy verses temperature 

 

Figure 5.6. Variation of energy verses 
Temperature. 

The trend is linear. The graph describes thermal 
energy between molecules within magnesium diboride 
system and is a measure of change and a property 
possessed by the system in a short time. While 
temperature describes the average kinetic energy of 
molecules within magnesium diboride system, and it is 
a measurable property of the system also known as a 
state variable. 

The trend deviates slightly from that shown by 
Cuprates (Rapando et. al 2015). Which shows low 
growth rate of energy in the temperature range of 0K-
100K but a high growth rate between 100K and 300K. 
Beyond 300K the cuprates exhibit very reduced 
increase in energy with temperature. The difference 
could be as a result of the ‘abnormal’ behavior of 
MgB2. Its behavior at transition is more of a metallic 
superconductor than a cuprate. While in Cuprates, 
energy is drastically reduced at transition because of 
phonon-mediated pairing with both both electrons in 
the Cooper pair having similar properties, in the MgB2 

the two electrons that pair have different properties. 
The electron in the sigma bonding is found to be 
strongly superconducting while the one in the Pi 
bonding is less superconducting- more of normal 
electron. This gives MgB2 more metallic properties. 

 Conclusions. 

In the search for a suitable method of explaining 
microscopic mechanisms that allow superconductivity 
to occur at high temperature, we have shown 
superconducting in MgB2 by canonical two band BCS 
Hamiltonian containing Fermi surfaces of p and d 
bands. The envisaged interaction of phonon mediated 
attraction and coulomb repulsion was proposed to act 
differently on energy band states and stabilizing 
superconductor phase for MgB2 to unearth the 
mystery of microscopic mechanisms that allow 
superconductivity to persist at such high 
temperatures. 

 Following Bogoliubov -Valatin technique method, 
we obtained expressions for electron-phonon 
interaction model Hamiltonian for two band model 
isotope, expression for variation of thermodynamic 
properties with temperature and, which were the 
objectives of the study. Using the values of various 

parameters for a system MgB2, we have made study 
of various physical properties and wherever possible, 
compared our results with available experimental 
data. 

1. The statistical thermodynamics of high TC 
superconductors in two band model considered 
interaction of phonon mediated attraction and 
coulomb repulsion and achieved its objectives by 
formulating an effective Hamiltonian diagonalized by 
B.V,T, energy of the MgB2 system, specific heat 
capacity equation and its value.  

2. The temperature dependent on two 
superconducting gaps ∆p and ∆d corresponding to p 
and d bands for MgB2 was found. The two gaps 
structure is perfectly in agreement with experimental 
observations and values. 

3. The specific heat behavior obtained from our 
model verses Temperature is in satisfactory 
agreement with experimental results, although the 
theoretical values are slightly higher than the 
experimental values which are attributed to mean field 
approximations. 

4. The density of states behavior is similar to BCS 
weak coupling superconductors. This reveals that 
MgB2 superconductors resembles to that of high TC 
cuprates but the density of states for the system MgB2 
is quite high. 
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