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Abstract— In order to deal with uncertainties in 
energy prices, coming from market and natural 
conditions, electricity companies started to use 
risk metrics applied by the financial market to 
quantify the risk to which they are exposed on 
energy trading. Different risk metrics have 
respective areas of applicability and generates 
different results for the same portfolio. This paper 
highlights some risk metrics used for risk 
management in electric energy trading. It 
evaluates each metric individually and proposes 
an aggregation of metrics using linear weighted 
sum (LWS) method, for the construction of an 
aggregated risk measure, which assists in 
elaborating decisions related to the choice of 
portfolios for electricity sector companies in 
conditions of uncertainty. 

Keywords— Energy Trade, Multiobjective 
Optimization, Risk Management 

NOMENCLATURE 

This paper uses common symbols and acronyms 
for energy markets that are widely used in the 
literature. Table 1 presents the nomenclature used in 
this work. 

TABLE I.  NOMENCLATURE 

Symbol Description 

Δ𝐶 Contracting variation 

τ Reference level 

𝐴𝑢𝑥 Auxiliary contracting of the agent 

𝐶𝑇𝑚 Total bought of month 𝑚 

𝐶𝑉𝑎𝑅 Conditional value at risk 

𝐸𝑥𝑝 Exposition 

𝐺𝑆𝐹 Generator Scaling Factor 

𝑖 Confidence level 

𝑗 Objective function index 

𝐿𝑃𝑀 Lower Partial Moment 

𝐿𝑊𝑆 Linear Weighted Sum 

𝑚 Month index 

𝑝 Order of the lower partial moment 

𝑅𝑖 Revenue at confidence level 𝑖 
𝑅𝑚 Revenue for month 𝑚 

𝑅𝐶𝑚 
Revenue from all bought energy for 

month 𝑚 

𝑅𝐶𝑜𝑛𝑡𝑟𝑎𝑡𝐴𝑢𝑥𝑚 Revenue of the auxiliary contracting 

𝑅𝐸𝑠𝑝 Expected revenue 

𝑅𝑉𝑚 Revenue from all sales for month 𝑚 

𝑠𝑐 Scenario index 

𝑉𝑎𝑅 Value at Risk 

𝑉𝑇𝑚 Total sales of month 𝑚 

𝑤𝑗 
Weight coefficient for objective function 

𝑗 

I.  INTRODUCTION  

Electric power is a commodity that has high 
volatility and uncertainty in its price [1]–[3]. Due to 
factors such as large-scale storage difficulties and the 
need to balance generation and consumption, 
electricity needs structured markets to establish all its 
business relationships. With the increase in the 
number of transactions in the energy markets, 
companies began to worry about quantifying the risk 
they were exposed [4], [5]. 

The regulation initiated in 2004 in the Brazilian 
market establishes two environments for the 
commercialization of energy: Regulated Hiring 
Environment (ACR – Ambiente de Contratação 
Regulada) and the Free Hiring Environment (ACL – 
Ambiente de Contratação Livre). All agents that are 
connected in the national interconnected system (SIN 
– Sistema Interligado Nacional) are connected in either 
of these two regulatory regimes. In ACR, contracts are 
established by energy auctions. While in the ACL, 
contracts are made bilaterally often be extensively 
customizable. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 6, June - 2019 

www.jmest.org 

JMESTN42352989 10298 

When observing the energy price in the Brazilian 
market, it is perceived that it is sensitive to the amount 
of energy stored (water available for generation) in the 
reservoirs of the hydroelectric power plants, and to the 
prediction of affluent natural energy in the SIN. In order 
to avoid assuming a position that exposes the 
company to the price of energy, some risk metrics 
have been used by market agents, such as: value at 
risk (VaR) [2], conditional value at risk (CVaR) [3] and 
lower partial moments (LPM) [6]. 

Works such as [4], [7], [8] sought to answer the 
question of how to build a portfolio in order to consider 
the company's risk vision. While [9], [10] are 
concerned with the performance of each metric, and 
establish comparisons between them. 

Each metric has its own peculiarities and responds 
differently to the same problem. In particular, CVaR 
has a greater sensitivity to the tail of price distribution 
than other metrics and is thus more influenced by the 
worst-case scenario [3]. The VaR metric, on the other 
hand, is concerned with the potential loss of a present 
value of an investment, while the LPM focuses its 
analysis on the distribution format of any unwanted 
part of the revenue [2], [5], [11]. 

Considering the above, this work proposes the 
creation of a new risk metric from the aggregation of 
existing metrics, with the approach exposed in [12], in 
order to reduce the discordance between responses. 
With this metric, you can find a robust risk decision 
and thus help energy companies build their portfolio. 

This work was structured as follows. Section 2 
presents the work related to this research. Section 3 is 
devoted to the theoretical framework and 
methodology. Section 4 reflects the experiment 
associated with the aggregation of metrics and their 
results. Finally, Section 5 contains the conclusion of 
the paper and possible lines of its development. 

II. RELATED WORKS  

The portfolio optimization problem has its origin in 
the financial market [10], [14], [15]. To optimize the 
purchase and sale of shares, several methodologies 
were developed and applied in investment funds. 

Analogously to the purchase and sale of shares, 
energy trading deals with the same type of uncertainty 
in price variation. Price projections are constructed, 
and uncertainties are modeled to construct an 
optimization model in order to find optimal bids in the 
energy market, as proposed by [16]. 

Market monitoring is essential, since the position of 
other agents is key to price. Works such as [9], [17], 
[18] and [19] have used game theory and robust 
optimization to address this kind of market uncertainty. 

The diversification of the energy matrix with the 
insertion of renewable sources of generation also 
brings uncertainty to the energy price. Since this type 
of generation is intermittent due to climatic conditions, 

a new approach is needed to address this volatility, 
exposed in the works of [9] and [7]. 

To address the uncertainties, the electric sector has 
adapted some financial risk methodologies to the 
problem of energy commercialization. Works such as 
[1] and [5] presented the state of the art on the 
treatment of risk in the energy market, in addition to 
exposing some approaches used by companies in the 
electricity sector. Both papers explain, as well as the 
work of [2], why energy prices are a volatile variable, 
and justify financial engineering approaches to 
measuring risks in the energy market. 

The results presented in [2] also addressed the 
modeling of the VaR metric. They explain how the 
methodology should be used, presenting requirements 
as predictions of returns. VaR is also covered in the 
work of [5], as well as other metrics such as CVaR. In 
it, some examples and comparisons of results of the 
methods used were presented. 

The LPM approach in energy trading is carried out 
in the work of the author [20], who presented a 
methodology of maximizing the return while minimizing 
the risk, applying it in the Turkish energy market. In the 
same way as [20], other researches such as [17], [21] 
and [22] addressed the problem of multi-objective 
decision-making at risk. 

Works such as [10] and [23] focused on 
establishing comparisons between risk metrics, in 
order to establish differences between the models. 
They presented financial market applications with 
stock purchase and sale portfolios. 

To aggregate the risk methodologies, the 
methodology presented in [12], which is an a priori 
approach to deal with more than one objective. Some 
examples of the technique shown in [12] can be seen 
in [24] and [25] to solve multiobjective problems. 

The work presented in this paper also has a multi-
objective view on the portfolio construction problem. 
However, instead of establishing comparisons 
between the metrics, as done in the works of [10], it 
aims to aggregate the methodologies of risk, as 
discussed in the works of [26]–[28], for a robust view of 
risk. 

III. RISK ANALYSIS IN THE BRAZILIAN MARKET 

Risk can be generically set with a probability of an 
unexpected outcome occurring. From the point of view 
of a hydraulic generator, it is possible to classify them 
into hydrological risk and market risk [29]. 

The hydrological risk is related to the climatic 
conditions of the region. In order to a hydroelectric 
plant have generation conditions, it depends on the 
affluent natural energy and stored energy, that is, on 
the inflow to the plant, on the expected precipitation in 
the river basin, on evaporation of the reservoir, among 
others. In the event of a sudden drought, an energy 
can be sold without the power plant having generation 
capacity. In the Brazilian energy market, there are 
some agreements that reduce hydrological risk, such 
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as the Energy Reallocation Mechanism (MRE – 
Mecanismo de Realocação de Energia), which can be 
summarized as an exchange of energy between the 
hydraulic generators that decide to participate in the 
mechanism; and clauses to reduce the supply of 
energy in case of rationing. The market risks that 
usually bring exposure to energy companies are 
generally the renewals of contracts that have already 
been established with customers, and the settlement 
price of differences (PLD – Preço de Liquidação das 
Diferenças). 

Since both (hydrological and market) risks are 
strongly connected and have a direct influence on 
energy prices, agents participating in the free-hiring 
environment (e.g. energy companies) use financial risk 
metrics to plan and monitor their risks. positions in the 
short-term settlement market. From these metrics, it is 
possible to quantify the amount of revenue that can be 
lost due to uncertainties in the price of energy. 

A. NEWAVE 

In order to get a price distribution, the Brazilian 
electric sector uses NEWAVE. This program is used 
by the National System Operator to dictate as a 
steering operation, minimizing the marginal cost of 
operation of the whole SIN. 

NEWAVE consists of a periodic autoregressive 
model, where several data about the electrical system 
are considered, such as: transmission limits, stored 
energy in reservoirs, availability of power plants, load 
forecasting and inflows, among others. 

Among the responses that NEWAVE returns are 
2000 scenarios, over a five-year horizon, of energy 
prices and GSF, which are used to build the 
company's revenue forecast. 

B. Revenue modeling 

Among the uncertainties that are present in the 
revenue of a hydraulic generator are the amount of 
energy allocated by the MRE and the PLD. 
Hydrological uncertainty affects the amount of energy 
verified by the generator, by decreasing or increasing 
the physical guarantee by the generation scalability 
factor. 

In order to model the exposure and revenue of 
people, an auxiliary variable was used to increase or 
reduce the contracting of the portfolio. Thus, the 
exposure of the agent to the corresponding month can 
be represented by: 

 𝐸𝑥𝑝𝑚,𝑠𝑐(Δ𝐶) = 𝐶𝑇𝑚 + 𝑔𝐹𝑖𝑠 ∗ 𝐺𝑆𝐹𝑚,𝑠𝑐 − Δ𝐶 − 𝑉𝑇𝑚 

(1) 

the exposure to the market price (1) should be 
weighted with the amount of purchases and sales, 
according to the company's PLD forecast, since the 
impact on revenue can stand as a form of regret or 
cost. 

If the market price is expected to be below the 
sales price, it is a good choice to sell as much as 

possible to avoid being exposed, but if the price goes 
up, the best option for the generator is to increase your 
exposure. 

 𝑅𝑚,𝑠𝑐(Δ𝐶) = 720 ∗ (𝑅𝐶𝑜𝑛𝑡𝑟𝑎𝑡𝐴𝑢𝑥𝑚 + 𝑅𝑉𝑚 − 𝑅𝐶𝑚 +

(𝐸𝑥𝑝(𝑚,𝑠𝑐) ∗ 𝑃𝐿𝐷(𝑚,𝑠𝑐)))                                                

(2) 

The monthly income of the 𝑠𝑐  scenario as a 
function of auxiliary contracting is described by (2). 
The 720 coefficient in this equation is a result of the 
consideration that every month has the same number 
of hours. 

C. Value at Risk 

The paper [2] defines that VaR estimates how 
much of a set of investments can be lost, given a 

probability (α%) considering normal market conditions 
in a given period, such as day, month or year. 

This metric refers to the expectation of variation of 
market value over time. Mathematically, the VaR of a 
date with the confidence interval (1 −  α) % is defined 
as: 

 𝑉𝑎𝑅(Δ𝐶) = 𝑅𝐸𝑠𝑝(Δ𝐶) − 𝑅α(Δ𝐶)                               
(3) 

VaR originated in the late 1990s and is one of the 
most popular risk measures. However, despite being a 
consolidated metric, it has undesirable mathematical 
characteristics such as lack of subadditivity and 
convexity. 

D. Conditional Value at Risk 

This metric is defined as the expected return on a 

portfolio in the worst α% scenarios (expected deficit at 
a level 𝛼%). Also known as expected shortfall, average 
value at risk or expected tail loss, CVaR is a metric 
used to measure the market or credit risk of a portfolio 
[3], [9]. 

 𝐶𝑉𝑎𝑅(Δ𝐶) = 𝑅𝐸𝑠𝑝(Δ𝐶) −
1

α
∑ 𝑅𝑖(Δ𝐶)α

𝑖=1                      

(4) 

This metric estimates the risk of an investment in a 
more conservative way and focuses on less profitable 
situations. It is an alternative to other metrics since it is 
more sensitive to the tail shape of the distribution. 

E. Lower Partial Moments 

The LPM metric, also known as Downside Risk, 
evaluates the behavior of assets falling below an 
acceptable minimum level of return [20]. 

 𝐿𝑃𝑀𝑝(Δ𝐶, τ) = ∑ (τ − 𝑅𝑖)
𝑝τ

𝑖=1                                      

(5) 

The special case when the reference level τ  is 
equal to the mean of the distribution is called the 
central moment. The first moment around zero is the 
mean of the distribution and the second center point is 
the variance. Asymmetry is the normalized central 
moment of the third order. The fourth central moment 
is a measure of the tail weight of the distribution, 
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compared to the normal distribution of the same 
variance. 

F. Linear Weighted Sum Method 

Considering the following normalized single-
objective optimization problem [12]: 

Maximize: 

 𝑓(𝑥) = ∑ ω𝑘𝑄𝑘
0(𝑥),𝑙

𝑘=1        (6) 

Subject to: 

 𝑥 ∈ 𝑋         (7) 

where the weights 𝑤𝑖 , i = 1, ..., l corresponding to 
objective functions satisfying the following conditions: 

∑ ω𝑖 = 1,  ω𝑖 ≥ 0, 𝑖 = 1, … , 𝑙𝑙
𝑖=1       (8) 

where 𝑄𝑘
0(𝑥)  is normalized k-th objective function 

𝑄𝑘(𝑥), 𝑘 = 1, 𝑙̅̅ ̅̅ . 

For the case of the linear weighted sum with linear 
objective functions, we have the next form: 
 𝑄𝑖(𝑥) = ∑ 𝑎𝑘𝑖𝑥𝑖 ,

𝑙
𝑘=1  𝑎𝑘𝑖 ∈ 𝑅        (9) 

Consequently, normalized objective functions have 
the following forms: 

𝑄𝑘
0(𝑥) =

𝑄𝑘(𝑥)

𝑆𝑘
=

𝑎𝑘1

𝑆𝑘
𝑥1 =

𝑎𝑘2

𝑆𝑘
𝑥2 + ⋯ +

𝑎𝑘𝑛

𝑆𝑘
𝑥𝑛   (10) 

In which case the floating-point values 𝑆𝑘  are 
evaluated in the following way: 
 𝑆𝑘 = ∑ |𝑎𝑘𝑖| ≠ 0,𝑛

𝑗=1       (11) 

In most of real problems, various measure units 
represent the objective functions. For this reason, the 
objective functions normalization is required 
transforming the range on a segment between 0 and 1. 
It carry us for a programming linear problem that could 
be easily solved using the approaches detailed on [28]. 

IV. EXPERIMENT AND RESULTS 

In order to solve the multiobjective portfolio risk 
minimization problem, the linear weighed sum method 
was used to construct an aggregation of the functions 
and later the function aggregated by the method was 
minimized. 

The variation in energy contraction considered was 
−𝑔𝐹𝑖𝑠  to +𝑔𝐹𝑖𝑠 , using the auxiliary contracting 
variable. And to analyze the impact of the energy 
contracting variation on revenue, we used the risk 
metrics VaR, CVaR and LPM with the parameters 
described in Table 2. 

TABLE II.  PARAMETERS OF THE SIMULATION  

Parameter Value 

α 5% 

τ 
Expected income for 

current portfolio 

𝑝 2 

𝑤𝐶𝑉𝑎𝑅 0,33 

𝑤𝐿𝑃𝑀 0,33 

𝑤𝑉𝑎𝑅 0,33 

 

The algorithm constructed for the development of 
the proposed work is represented by the Figure 1. 

 

Fig. 1 – Algorithm 

To normalize the response of the risk functions was 
used (7), which was also employed by [28] and [30]: 

𝑓𝑝(𝑥) =
max 𝐹𝑝(𝑥)−𝐹𝑝(𝑥)

max 𝐹𝑝(𝑥)−min 𝐹𝑝(𝑥)
                                          

(7) 

Where the objective function 𝐹𝑝(𝑋) in minimized, and 

𝑓𝑝(𝑋) is the normalized value of the function. 

The experiments consisted of using the 2000 PLD 
and GFS scenarios as initial data to construct the 
revenue forecast for 48 months. With the 
implementation in MatLab, it was possible to evaluate 
the behavior of the revenue when the contracting of 
energy of the generating agent is varied. The portfolio 
used in the experiment is composed of: 

 𝑔𝐹𝑖𝑠: 100 𝑀𝑊𝑚; 

 bought 1: 70 𝑀𝑊𝑚 with 70 𝑅$/𝑀𝑊ℎ; 

 sale 1: 70 𝑀𝑊𝑚 with 150 𝑅$/𝑀𝑊ℎ; 

 sale 2: 90 𝑀𝑊𝑚 with 130 𝑅$/𝑀𝑊ℎ; 

In this work, we used the average revenue from the 
analysis horizon of each scenario for the construction 
of the revenue distribution, as shown in Figure 2. The 
purpose of the experiment is to evaluate the 
company's energy contracting for each risk metric. The 
question that is intended to answer is: what happens to 
the company's revenue at risk, when the amount of 
energy bought and sold changes? 

http://www.jmest.org/
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Fig. 2 – Histogram for 𝛥𝐶 = 0 

The risk profile for the buying and selling 
composition is represented by Figure 3, which shows 
the dispersion of the average revenues of each 
scenario by the average PLD of the scenario. In red, 

the 5% worse agent revenues are highlighted. 

 

Fig. 3 - Risk Profile 

The intrinsic risk to the energy price of the hydraulic 
generator for the considered purchase and sale 
configurations is represented in Figure 4. As this figure 
shows, each metric has its respective revenue at 
minimum risk, and indicate different contracting 
variance positions. 

The response of all the figures is similar, the agent 
is exposed to high PLD values, which indicates that he 
is very hired and there is a possibility he will sell a lot 
now and regret it. However individually, each metric 
has a respective contraction of energy in order to 
minimize the risk in revenue. The VaR metric, 
according to Figure 4, tells us that the minimum 

revenue at risk can be $ 274,000 , reducing contracting 
by 14.4 𝑀𝑊𝑚 . CVaR, in turn, estimates that the 

minimum risk is 𝑅$ 490,000 , when contracting is 
reduced by 18.2 𝑀𝑊𝑚 . While LPM returns us 

𝑅$ 191,000 minimum risk when reducing 14.9 𝑀𝑊𝑚. 

 

Fig. 4 - Intrinsic Risk 

 

Fig. 5 - Comparison of Metrics 

The aggregation of the risk metrics using the OWA 
operator, as shown in Figure 5, returns a range of 
options where the risk remained practically constant, in 

contracting variations between −15.8 𝑀𝑊𝑚  and 
−16.1 𝑀𝑊𝑚 , the level of relevance of the function 

remained constant at 0.93. 

V. CONCLUSIONS 

The paper proposed a unified view of risk, 
considering metrics already consolidated by energy 
and financial agents to measure risk. Although 
responses from all metrics indicate that the hydraulic 
generator should reduce its contracting, each 
individually indicates that it must reduce its quantity in 
order to achieve the minimum risk. The difference 
between the metrics presented by Figure 4 and 5 
results in different positions if the agent chooses an 
individual metric. 

The aggregation of risk metrics by the linear 
weighted sum method eliminates this mismatch of 
positions by allowing an analysis that considers all risk 
views, thereby validating the initial proposal. This 
integrated view, offered by the aggregation of metrics, 
returns not only a position that is not as conservative 

http://www.jmest.org/
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as CVaR but also eliminates the limitations of VaR and 
is not as weak as LPM. 

A great advantage of the proposed work is, with the 
possibility of integrating risk metrics, to be able to 
overcome uncertainties in the initial data of the 
problem when carrying out analyzes with more than 
one risk function. However, with the increase in the 
number of metrics, aggregation can result in several 
optimal position possibilities. 

A proposal for future work is the use of new metrics 
for aggregation, making possible new positions of 
contracting of energy. Another proposal is the use of 
the proposed methodology for generators of renewable 
sources such as wind power plants, for this, it is 
necessary to create generation scenarios from the 
wind velocity distributions to change the modeling of 
the revenue. It is also possible to use the work for 
portfolio analysis of free consumers. 
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