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I.  INTRODUCTION  

The obstacle problem is, roughly speaking, solving 
a partial differential equation with the additional 
constraint that the solution is required to stay above a 
given function, the obstacle. This leads to a variational 
inequality. From a minimization point of view, the 
problem is to find a minimizer with fixed boundary 
values in the set of functions lying above the obstacle 
function. 

Let : [ , )      be a function, called an obstacle; 

let    pW ,1  be a function which gives the 

boundary values. Define 

   
       

,

1, 1,

0{ : ,  ,  . .  }

p

p p
u W u W u a e in





 



 



       

K

 

To avoid trivialities, we always assume that the set 
   , p




K  is not empty. Note also the interpretation of 

the boundary values: u  having the boundary values 

given by   means that 
   pWu ,1

0 , i.e. u  has 

zero boundary values. 

In this paper we deal with the single obstacle 
problems associated to quasi-linear elliptic equations 

    2
,

p x
div x u div F F


   A

             
 (1.1) 

with non-standard structural conditions, where 

       1p

locLxF  for a small 0 . These conditions 

involve a variable growth exponent  p . 

In this article, we always assume that  p  is log-

Hölder continuous with    pp1  and that   is a 

bounded open set in 
nR .We need the following 

assumptions, with strictly positive constants   and  , 

to hold for the operator : n n A R R  

(H1)  ,x x A  is measurable for all ,n R  

(H2)  ,x A  is continuous for almost all ,x  

(H3)  
 

,
p x

x     A for almost all x  and for 

all ,n
R  

(H4)  
  1

,
p x

x   


A for almost all x  and for 

all .n
R  

We may assume that    by choosing   larger if 

necessary. These are called the structure conditions 

of .A  

The above structural conditions imply that we can 
define solutions in the weak sense in the 

space
   1,

.
p

W



 
More precisely, a function 

   1, p
u W


   is a weak solution to  

    2
,

p x
div x u div F F


   A  

if 

     
( ) 2

, ,  ,
p x

x u dx F x F x dx 


 
    A  

for all test functions  0C   . 

Definition 1.1 We say that a function 
   , p

u





 K  

is a solution to the obstacle problem 
   , p




K  if 

  

   

 
( ) 2

, ,

F( ) F( ),
p x

x u v u dx

x x v u dx







  

  





A

   
     (1.2) 

for every    , p
v






 K . 

In recent years there has been a growing interest 
in nonlinear equations with nonstandard growth, which 

are related in a natural way to spaces  p
L

 with 

variable exponent. The first investigations of such 
problems were by the Italian school and had as their 
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starting point the calculus of variations; see, e.g., [1, 
2]. Recently, several authors have approached the 
same problem more in the spirit of nonlinear 
differential equations, e.g. in [3, 4, 5, 6, 7, 8]. 

The current paper aims at prove local higher 
integrability of the gradient of the solutions to the 
single obstacle problem with respect to continuous 

perturbations in the growth exponent ( )p x . 

Theorem 1.2 Let u be the solution to the 
   , p




K  

obstacle problem. If B2 is an open subset, 

where    1,
,

p
W 


  and     1p

L


 
 

   ，  for a 

small 0  . Then exist a constant C  depending only 

on ,n p and , ,M  in Lemma 2.3,     1p
u L

 
    for 

some 0  , we have 

        

  

1
1 1
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1

2
                            1 .
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B B B
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u dx C u dx dx

dx


 








 




    

  


  



 

II. PRELIMINARY KNOWLEDGE AND LEMMAS 

In this section, we introduce some notation, and 
lemmas. 

We call a bounded measurable function 

 : 1, , 2np n  R
 
a variable exponent. We denote 

   inf  and sup ,E E
x E x E

p p x p p x 

 

   

where E  is a measurable subset of n
R . We assume 

that 1 p p 

     , where   is an open, bounded 

subset of .n
R  We abbreviate : np p 

R
 and 

+ +: np p
R

. 

The variable exponent Lebesgue space 
   p

L


  

consists of all measurable functions f  defined on   

for which 

 
.

p x

dx


   

The Luxemburg norm on this space is defined as 

 

 
 

inf 0 : 1 .

p x

p

x
dx


 

 

 
 

   
  


 

Equipped with this norm 
   p

L


  is a Banach space. 

It is well known that regularity results for problems 
of  p  -growth require some assumption on the 

function  p  . We make the standard assumption 

on  p  , the so called logarithmic Hölder continuity 

condition. Indeed, the condition turns up quite 
naturally in the estimates of the De Giorgi and Moser 
methods, and there are very few regularity results that 
do not assume logarithmic Hölder continuity. 

An interesting feature of variable exponent Sobolev 
spaces is that smooth functions need not to be 
dense.This was observed by Zhikov in connection 

with Lavrentiev phenomenon; see [9]. However, when 
the exponent satisfies a logarithmic Hölder continuity 
property, or briefly “ p  is log-Hölder continuous”, then 

the maximal operator is bounded and consequently 
smooth functions are dense; see [10]. Recall that the 

log-Hölder condition means that, : R Rn n   is a 

nondecreasing continuous function, vanishing at zero, 
which represents the modulus of continuity of p : 

            .p x p y x y  

               

(2.1) 

We will assume that  satisfies the following condition: 

             1
0

1
limsup log ,
R

R
R




 
  

 

               (2.2) 

thus in particular, without loss of generality, we may 
assume that 

              
1

1 logR L R


                      (2.3) 

for all 1R  and yx,  
with 1/ 2x y  . Under this 

condition smooth functions are dense in variable 
exponent Sobolev spaces and there is no confusion in 
defining the Sobolev space with zero boundary values, 

   1,

0

p
W


 , as the completion of  0C   with respect to 

the norm 
 1, p 

  ,see [11].
 

We will use the following criterion to verify that 

various functions below belong to 
   1,

0

p
W


 . See [12].

 

Lemma 2.1 Suppose that a function v  belongs to 
   1,p

W


 . If there is a function 
   1,

0

p
u W


   such that 

v u  a.e. in  , then 
   1,

0

p
v W


  . 

Remark 2.2 Let us notice that, by replacing   by 

 1 max ,   ， we may assume that the boundary 

value function  satisfies   in  . Indeed 

 1   


    and since  

 
       1,

00 ,
p

u W  
  

       

the function   


 , and hence 
1u   belongs to 

   1,

0

p
W


  by Lemma 2.1. 

We consider the higher integrability for the single 
obstacle problem. More precisely, we show that under 
some natural assumptions, the solution u to the 

   , p




K  obstacle problem, of which we a priori only 

know that  
 1 ,

p
u L


   actually satisfies 

  
 

1 1p
u L

 
   , for a small 0  , assuming that the

 

boundary values and the obstacle are sufficiently 
regular. This result can be used to study the 
corresponding stability yields a reverse Hölder 
inequality. Higher integrability then follows from a 
suitable version of Gehring’s lemma. See [13]. 

For all balls  0 ,B B x r  centered at
0x and radius r . 

This condition is widely used in regularity theory, and 
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it is also fairly weak. 

Lemma 2.3 Let    1,

1, ,
p

u W 


  and , ,u  
 

    ,
p

L


   then there has a number M  such that 

   
( ) ( ) ( )

,  ,  .
p x p x p x

u dx dx dx M 
  

         (2.4) 

Proof Let’s take    max , =v     


   as an 

admissible function, for    ,
;

p
v






 K Indeed, v   

and        1,

0

p
v u W   

  
       . Then by (1.1), 

we get 

   

 
 

   
2

, ,

, .
p x

x u v u dx

F x F x v u dx
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That is 

   

     
( ) 2
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A A
 

On the left-hand side of this inequality, we have 

 
 

, , .
p x

x u u dx u dx
 

    A  

On the right-hand side of this inequality, by using 
Young inequality, we have 
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Hence,we have 

       ,
p x p x p x

u dx C dx M 
 

        

so any M  larger than the right hand side will do.
 

Lemma 2.4 Assume that  p x  constant and 

 1 21 p x    , then 

  
 

   

2 2
| | ,

diam

p x
p x

u

B B

u c
dx C u dx C

B




 

    
 

 
        (2.5) 

where C  only depends on 
1 2 1, , , ,n L M  . 

Proof We fix 1
min ,

n
p

n
 

 
   

 

; and we take 

0 /16R R where
0R is small enough to have

 

 08 1.nR   By 
2 ,Bp p  we get 2 1,Bp

p







  and 

by 

     2 1 1 1 02 2 8 1Bp p nR nR nR           

and 

2 2 1,
1

B B
p p p p

p


   



 
    

we get 

2 2 1
1 .B

p n
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By using the usual constant exponent Sobolev- 
Poincaré inequality and log-Hölder continuity, it yields 
that  
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where    
 

 

  
 

22

1
2

1

BB
p p x np p x

p x p x p x

B
M C u dx R

 

  

   and 

by (2.3), 

  
 

2 Bp p x n

p x
R



 

 is bounded. 

III. THE PROOF OF THEOREM 1.2 

Proof  Let 
0B  be a ball with 

0

1

2
B  . Due to Remark 

2.2, we can assume that there exists a compact set 

K  such that    in K\ . Let  0 : ,r dist K  . 

Let  , , ,B B x r x  and assume that 
0

1
0

4
r r   and 

02 BB  . Now let’s think about case B2 . 

Let  0 2C B   be a cut-off function such that 

1  in B , 10   and  / diamC B  . We would 

like to test (1.2) with 

  2: ,Bp

u uv u c u c c 


       

where 
uc  and  

c  denote the mean value of the 

functions u  and   respectively in B2 , i.e.  

2 2

1
:  :  

| 2 |
u

B B
c u dx u dx

B
  

 
2 2

1
:  :   

| 2 |B B
c dx dx

B
      

To this aim, we need to show that v  is an 

admissible test function, for a suitable obstacle 
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problem. We notice that  ,
,u

u

c p

cv




 

K
 

     1,

0

p

uv c W


   
 
because  0C   . 

Since 
uc c  we obtain 
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Since 
ucu   is a solution to the  ,u

u
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K  obstacle 

problem and v  is a test function, we have  
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where, in the last line, we used the structure 
conditions on A. Simplifying and using again the 

structure conditions of A, we have 
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On the other hand, using Young’s inequality, for some 

suitable  0,1  , we get 
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(3.1)

 

In the estimation of 4 5 6,  and I I I , we also adopted 

the method of Young’s inequality, 
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Observe that we used the definition of 2 Bp
 to get
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and to estimate 2Bpp 


  in the second inequality. 

Now, we choose , which depends on , , , , ,n p p     

small enough to absorb the gradient of u  to the left 

hand side in (3.1). We connect all the previous 

estimates and take the mean values, and get the 

Caccioppoli type inequality 
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where C  only depends on  ,,,,  ppn .  

By using lemma 2.4, we get 
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From this we can deduce the following reverse 
Hölder estimate 
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with ( , , , , , )C C n p p M   whenever 02B B is 

sufficiency small. Now we can use a standard version 
of Gehring’s lemma (see for example [14], Chap. V, or 
[15], Theorem 6.6), and find a number 0   and a 

constant C  such that 
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Hence，the proof of Theorem 1.2 is completed. 
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