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Abstract— Spin transport characteristics of 
single layer ferromagnetic graphene superlattice 
nanostructure is explored with application of 
external magnetic field and induced infrared (IR) 
ac-field with certain optimal value of frequency. 
The transfer matrix methods have been used to 
calculate the tunneling probability through the 
proposed nanostructure and Landuar Buttiker 
equation for conductance of both different spin 
alignments. Conductance of these spin 
alignments is used to declare the spin polarization 
and giant magneto-resistance. The Fano factor for 
the explored nanostructure has been computed 
for both spin alignments. Results show oscillatory 
manner with high selectivity form at certain 
ranges of transmission control parameters for the 
conductance and Fano factor for both spin 
alignments. These oscillations might be because 
of the induced proximity effect of gating of EuO 
which leads to spin filtering. Also results show 
that spin polarization attains 100% at certain value 
of gate voltage. So the present exploration of spin 
transport through single layer ferromagnetic 
graphene superlattice might have a scientific 
potential in the design and understanding of 
graphene superlattice based spin filters by 
optimizing the different parameters studied in this 
paper. 
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I. INTRODUCTION  

Conventional electronics utilize the charge transport 
degrees of freedom only, while spintronics aims at 
utilizing the spin degrees of freedom alternative to or 
with the older degrees of freedom. The devices based 
on spintronics have merits over the conventional 
semiconductor devices in data processing speed, 
integration densities, nonvolatile data storage and 
power consumption [1-4]. The information technology 
field has been enhanced by a new era that opened up 
by the understanding of spin dependent electronic 
transport [5-10]. The basic code of data based on 
binary system (‘1’) ‘ON’ and (‘0’) ‘OFF’ for the logic 
gates, the spin state ‘up’ may be used for (‘1’) and the 

spin state ‘down’ may be used for (‘0’) in addition to 
the mixed states are promising in encoding, 
manipulating information and the new topics of 
quantum information applications. 
One of the carbon allotropes is the graphene which is 
a single layer of carbon atoms arranged in a 
honeycomb like lattice that consists of two 
nonequivalent sublattice A and B with two atoms per 
unit cell [11, 12]. The half-integer quantum Hall effect 
[13], ultrahigh carrier mobility [14], optical effect 
[15,16], finite minimal electrical conductivity 
[13,17,18], special Andreev reflection [19] and some 
other properties are novel properties exhibited by 
graphene because of its special dispersion relation 
which makes its electrons behave like a massless 
relativistic particles. Recently, many systems of 
graphene have been investigated like effects of 
photon and phonon effects on different graphene 
nano-composites[20-23],  the spin polarized transport 
in diluted magnetic semiconductors [24], 
ferromagnetic monolayer graphene barrier [25-27], a 
double ferromagnetic monolayer graphene barrier 
[28], and ferromagnetic monolayer graphene 
superlattice [29-31] have been explored which 
contribute to interesting results. Long spin lifetimes 
are expected in graphene because of its intrinsically 
low spin-orbit interaction and hyperfine couplings, also 
its adjustable carrier concentration make graphene a 
promising nanomaterial for spintronic applications [32-
34]. 
The technique of superlattice is commonly used for 
modulation of band structures and some other 
physical properties of different materials [35-37]. 
Recently, graphene superlattices have been very 
interesting topic to explore a various quantum 
phenomena [38–41]. In the past few years, utilizing 
graphene-based magnetic superlattices [29-31, 42, 
43] to enhance spin polarization became very 
attractive in spintronic applications. 
The shot noise power which is the time-dependent 
current fluctuations due to the discreteness of the 
electrical charges, provides further information about 
the physics of an electronic system other than 
transport quantities such as the conductance [44,45]. 
The shot noise characterized by the dimensionless 
quantity Fano factor, F, defined as the ratio of the 
between noise power to average current [44]. Many 
authors investigated shot noise and Fano factor in 
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different semiconductor, graphene and silicene 
superlattices [46-52].  
This paper aims at the exploration of both the spin 
polarization transport characteristics and spin 
dependent Fano factor of single layer ferromagnetic 
graphene superlattice in the presence of both applied 
IR ac-field and external magnetic field. This paper is 
formed from four sections, first of all was the 
introduction, in Section 2, the proposed model and its 
theoretical formalism have been introduced. The 
numerical results for the spin transport characteristics 
of single layer graphene superlattice are presented in 
Section 3. Finally, the conclusion with a summary 
presented in Section 4. 

II. THEORY OF THE PROPOSED MODEL 

The next step is to deduce a formula for the 
conductance for the proposed spintronic 
nanostructure. This nanostructure is modeled based 
on the good possibility for developing novel spintronic 
nanostructure with single layer graphene superlattice 
above substrate (SiO2) since it can be changed into a 
ferromagnetic graphene. This can be achieved by 
depositing a series of ferromagnetic insulator, EuO,  
strips on the top of the graphene superlattice sheet 
with metallic gate above it ( Fig.1); magnetic 
exchange energy of 5 meV can be induced into this 
single layer graphene superlattice sheet [26, 27]. Also 
these strips cause a proximity effect splitting of the 
electronic states in graphene superlattice [29- 31, 53] 
which originates a superlattice with a spin-dependent 
potential profile. The two source and drain leads are 
normal single layer graphene.  
The spin polarization transport is conducted in the 
presence of an induced IR ac-field and magnetic field, 
B. Photon-assisted conduction channels could be 
introduced by the oscillating ac-field that can be 
adjusted by the gate voltage to set it in the conduction 
window of that nanostructure [54,55]. The applied 
magnetic field produces Zeeman splitting with the 
contribution from the photon-assisted channels make 
the transport different for the different spin alignments 
resulting in photon-assisted spin polarized 
conductance. 

Now starting derive the conductance, G, for 
both spin alignments also, the giant magneto-
resistance (GMR) and the spin polarization (SP) 
corresponding to the conductance shall be derived as 
follows: 
The proposed model of single layer graphene 
superlattice nanostructure designed as N superlattice 
period that consists of (2N-1) normal graphene strips 
with 2N ferromagnetic strips interlock.  

Dirac equation is used to solve for  with Hamiltonian 
H [28-31, 53] as: 

H = E                                                                   (1)                                                                                                                                                                 
where,  

0v . cosF z acH i h U eV t            

(2)                                                                                                                 
   

 
Fig.1.Schematic diagram of graphene superlattice spintronic 
nanostructure. 

1

2
b sd g BU V eV eV g B                      (3)                                                                                                      

where ħ is the reduced Planck’s constant, vF- Fermi 

velocity,  x,y,z refer to Pauli matrices,  h0 is the 
exchange energy of the ferromagnetic graphene, Vac 
and  Vb represent the peak value of  induced IR ac-
field and the barrier height respectively, Vsd and Vg 
represent  bias and gate voltages respectively, B 
represents the magnetic field strength, g - Lande g-

factor and B-Bohr magneton. Solving Eq.1, the 
following eigenfunctions are: 
The eigenfunction in the left single layer graphene 
lead is: 
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And the eigenfunction in the right single layer 
graphene lead is: 
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And the eigenfunction for certain j
th
 strip of single layer 

ferromagnetic graphene is: 
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where, in Eq.(6)  is the incident angle on certain j
th
 

interface,   (Eqs.(4,5)) is the incident angle on the left 
and right graphene leads and the parameters r and t 
(Eqs.(4,5)) are the reflection and transmission 

amplitudes. The parameter  (Eqs.(4,5)) is : 

vF Fk                                                          (7)                                                                                                                                                                                     

where, kF represents the Fermi wave vector. Also the 

parameter j is: 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 6 Issue 6, June - 2019 

www.jmest.org 

JMESTN42352969 10192 

 
v

j

j

F j

j
F

E E U h n 


   
            (8)                                                                                                          

In Eqs. (4,5,6)  
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 is the 
thn -order of 

first kind Bessel function [45,46]. Eqs. (4, 5, 6) 
solutions have to be obtained by the existence of 

various minibands n  in a single layer graphene 

superlattice nanostructure, these solutions combined 

with exp( )in t  phase factor [54, 55]. Now 

applying boundary conditions at different interfaces 
using transfer matrix method [18, 19, 28-31]: 
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 (9)                                                                                                                      

In present nanostructure, the same length, L, for both 
normal and ferromagnetic strips is considered.  
The parameter T (Eq.9) is: 
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where, kx is:   

 kx= kF sin()                                                           (11)                                                              
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where, xk   is: 
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and, 
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The tunneling probability, (E), is given by the 
following equation as: 
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The conductance, G, is obtained by the Landauer–
Buttiker formula as [24, 56 ]: 
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represents the first derivative of Fermi-Dirac 
distribution, in which kBT is the thermal energy effect ( 
kB is Boltzmann constant and T is the temperature) , 

FE  is the modulated  Fermi energy by the potential of 

ferromagnetic insulator strips, W  is the junction width 
along y-direction. 
Now, the spin can be manipulated and detected by 
determination of giant magneto-resistance, GMR, and 
spin polarization, SP. These parameters are 
calculated in terms of conductance, G, with the 
different spin alignments through the following 
equations [25-27]: 
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where, G


 represents conductance when alignments 

of spin are in the same direction and G


 represents 

the conductance when the alignments of spin are in 
opposite directions. 
The Fano factor, F, is given by [44,45,57,58]: 
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where 

( ) ( )FD L FD Rf and f  are the left and right 

Fermi-Dirac distribution functions: 
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III. NUMERICAL CALCULATIONS AND RESULTS  

Numerical calculations are made for the present spin 
based nanstructure as: the conductance in the two 
different cases of spin alignments, G, (Eq.17), spin 
polarization, SP, (Eq.19), giant magneto-resistance, 
GMR, (Eq.20) and Fano factor, F, (Eq.21). The 
computations are made by taking N=1, (Eq.10). That 
is this nanostructure is normal graphene 
lead/ferromagnetic graphene/normal graphene/ 
ferromagnetic graphene/normal graphene lead. The 
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values of the following parameters are [18, 19, 26, 29-

31, 41-43,53, 59]: L=10 nm, W=100 nm, vF  10
6
 m/s, 

barrier height, Vb, (Eq.3) equals 50 meV , Lande g-
factor equals 4 and temperature, T= 50K. The 

modulated Fermi energy, FE , (Eq.18) is calculated in 

terms of the carrier density of quasiparticle Dirac 
fermions, n, through the following equation [60]: 

vF FE n                                                 (24)                                                                      

Since the parameter n is tuned by proximity 
effect of the single layer ferromagnetic graphene 
[60,61]. Then, the parameter, n, is calculated using 
density function theory in order to get the optimum 

value of
FE .  

The IR range is expected to be the most 
suitable range to enhance both of the spin 
polarization, SP, and giant magnetresistance, GMR, 
of the present junction[54,55], as will be shown in the 
figures below, the value of the frequency of the IR ac-
field was taken as an optimum value equals 100THz. 

 
 

 
(a) 

 
(b) 

Fig.2. The behavior of  G


 (a) & G


 (b) with Vg, at 

various values of B in terms of (e
2
/h) for Vg = [-1,1]V. 

-Figs.(2a, 2b) show the behavior of , G, with , Vg, in 
case of the two different spin alignments at various 
values of the applied magnetic field, B. 
-Figs.(3a,b) show the behavior of the conductance in 
case of the two different spin alignments with 
magnetic field, B, at  various values of gate voltage, 
Vg which is selected at peaks of the conductance in 
case of the two different spin alignments as shown 
from results in Fig.2. 

 
(a) 

 
(b) 

Figs.3. The behavior of the conductance (a) in case of 
parallel  and (b) in case of anti-parallel spin alignments with 
magnetic field, B, at selected value of Vg at which the peaks 
occur. 

Figs.(2, 3) show oscillatory manner of conductance 
for the two different cases of spin alignments with 
different peak heights and also different periods. 
Also it is noticed that from these figures that the 
magnitudes of conductance for the different cases of 
spin alignments are different. These results show 
that the two different spin alignments are predicted to 
play important role for encoding and manipulating 
digital quantum information processing. Also, these 
results show that the spin-dependent potential in high 
THz range (optimum value of frequency is 100THz) 
of the induced IR ac-field and certain range of the 
applied magnetic field is achieved by a set of strips 
made of ferromagnetic insulator material (eg. EuO) 
deposited above the top of graphene, and these 
strips will affect the spin states in graphene by 
splitting it because of the proximity effect. The 
structure of the proposed graphene superlattice 
nanostructure might serve as spin filters. These 
predicted results show that single layer graphene 
superlattice is a promising nanomaterial for spin 
filtering [28- 31]. 

-Fig.(4) shows the behavior of , SP, versus , Vg, at 
various values of magnetic field, B. 

 
Fig.4. The behavior of SP versus Vg, at various values of B. 

The spin polarization, SP, is found (see 
Fig.(4)) to exhibit oscillatory behavior and this trend 
depends on the values of magnetic field. The highest 
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value of oscillating amplitude for SP% attains 100% 
under the conditions studied in the present paper. The 
above results means that design of the present 
spintronic nanostructure can be used to filter the spin 
states. Also, it is clear that the spin dependent 
parameters ( ,G G

 
 & SP) have been enhanced 

because of the applied gate voltage, exchange field of 
ferromagnetic graphene superlattice, the applied 
magnetic field and applied IR ac-field. These present 
results for spin polarization are found in agreement 
with those in the literature [30, 31, 55, 62, 63]. 
-Fig.(5) shows the behavior of , GMR, versus , Vg, at 
various values of  B. 

 
 

Fig.(5). The behavior of GMR versus Vg, at various values 
of B. 

The giant magneto-resistance, GMR, exhibits certain 
peaks (see Fig.(5)) at certain values of gate voltages 
with certain values of the applied magnetic field. This 
result might be used for sensing magnetic fields [55, 
59, 60] under the condition considered in our paper. It 
is noticed that the values of giant magneto-resistance, 
GMR, are very high, this might be to enhancements 
due to the parameters studied in the present paper 
[55, 63- 65]. 
-Figs.(6a, 6b) show the behavior of , F, with , Vg, in 
case of the two different spin alignments at various 
values of the applied magnetic field, B. 

 
(a) 

 

 
(b) 

Fig.6. The behavior of F


 (a) & F


(b) with Vg, at various 

values of B. 

 
 

 
Fano factor for both spin alignments (Figs.6a,b) 
exhibits an oscillatory behavior. Also results show that 

the values of both &F F
 

 (Figs.6a,b) equal, 

approximately, to one which are corresponding to full 
Poissonian type and less than one for Sub-Poissonian 
type of transport [48-53]. The minimum in the Fano 
factor (Figs.6a,b) is associated with the maximum in 
the conductance (Figs2a,B) [48-53].  Also these 
results show that the value of Fano factor is a tool for 
distinguishing the behavior of transport that is why this 
kind of information cannot be extracted from the 
conductance [48-53]. 

IV. CONCLUSION 

The spin-dependent transport property of single layer 
ferromagnetic graphene superlattice nanostructure is 
explored under influence of external magnetic field 
and induced IR ac-fields with certain optimum value of 
frequency.  
Dirac equation is used to calculate conductance of the 
proposed nanostructure and tunneling probability 
through such nanostructure is deduced using transfer 
matrix method. Results show oscillatory manner for 
both the conductance and Fano factor with the two 
spin alignments and also oscillations trend of spin 
polarization. The highest value of spin polarization 
might be achieved and tuned by gate voltage and the 
two fields. These present results confirm that the spin 
transport property is coherent so as the weak spin-
orbit coupling of electrons in single layer graphene 
nanostructure leads to an extraordinarily long spin-
coherence length [66].This research is very important 
for ferromagnetic graphene superlattice based spin 
logic applications, quantum digital information 
processing and magnetic sensors in different 
electronic nanodevices. The proposed design of 
graphene superlattice nanostructure could be 
experimentally realizable in field of nanotechnology for 
spintronic nanodevices. These results motivate to 
explore spin transport properties of ferromagnetic 
graphene superlattice based nanostructure for the 
case of different sized superlattices and also for the 
effect of defects and applied strain to the graphene. 
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