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. INTRODUCTION AND PRELIMINARY LEMMAS
Throughout this paper Q will stand for a bounded
regular domain in 0"(n>2). By a regular domain we

understand any domain of finite measure for which the
estimates (2.4) and (2.5) below for the Hodge
decomposition are satisfied, see [10], [11]. A Lipschitz
domain, for example, is regular.

Let 1 < p < n. We shall examine the boundary value
problem of the p- harmonic equation

—div(| Vu(x) |"? Vu(x)) = —divf (x), xeQ, (1.1)
u(x) =0(x), X € QL
Where 9(x)eWa(Q),q>r.
This paper deals with very weak solutions to (1.1).

Definiion1.1. A uefd+W,"(Q)
max{l, p—1 <r < p-Lis called a very weak solution
to the boundary value problem (1.1) if

function

[ 4V vu voydx=[ (f()vpdx  (12)
holds true for all p e W "/P9(q).

A function u e +W}P(Q) is called a weak solution

to the boundary value problem (1.1) if (1.2) holds true
for all »p cwiP(Q). This is natural setting of problem

(1.1). The words very weak in Definition 1.1 mean that
the integrable exponentr of Ucan be smaller than the
natural one p. We refer the readers to [1]. Theorem 1,
page602, and [3], Theorems 1 and 2, page 251.

In this paper we will need the definition of weak
Lt —spacesor Marcinkiewicz space (see [4] , Chapter 1,
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Section 2): for t>0, the weak Lt —space, L, (Q),
consists of all Measurable functions f such that

‘{XEQ:\f(x)\>s}{§§

for some positive constant k :k(f) and every s>0,
where \E\ is the N— dimensional Lebesgue measure

of E. Note that if felt , (Q)for somet>1, then
f e s (Q) foreveryl<rz<t.

Integrability is a very important property in the
regularity of nonlinear elliptic PDEs and systems, see
[5]. In [6], [7], the authors considered regularity
properties of the p —harmonic type equations

- dinVu\ ’HVu(x))z —divf,

withr sufficiently close to p, and obtained an estimate

for the operator H which carries a given vector function
f into the gradient field vu. In the present paper, we

consider very weak solutions to boundary value
problems of (1.1). The main result of this paper is the
following theorem.

Theorem 1.1. let cWa(Q),q>r . There exists
& :go(n, p)>08uch that for every very weak solution
uef+Wr(Q) , max {Lp-lj<r<p<n , to the
boundary value problem (1.1), we have

6+L%. (), forg<n,
Uef+Liea (), forg=n and any 7 <o,
0+L"(Q), forg>n,

(1.3)

provided that |p—r| < &,

Note that very weak solutionsuto the boundary
value problem (1.1) are taken from the Sobolev space
Wl:r(Q). The embedding theorem guarantees that the

integrability ofu reachesr*. Our result (1.3) improves
such integrability. We remark that the key point in the
proof of Theorem 1.1 is the choice of appropriate test
functions.
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In order to prove Theorem 1.1, we need the
following two lemmas.

Lemmal.l. For 1< p<2 and any X,Y eP , one has
(XX =YY, X =Y 2| X - Y\(Qx —Y|+ |-y \”1).
The proof of can be found in [8], Lemma 1.1.

Lemma 1.2. Let s; >0 and let ¢:(s,,o0) —[0,0) be
a decreasing function such that for every r,s with
r>s>s,,

#(r)< W(‘/ﬁ(s))ﬂ

where c,a, 8 are positive constants. Then

(1) If g>1 we have thatg(s, +d)=0,where

4" =2 g,
(2) If B<1 we have that

#s) <2/ (c )+ 25,V s, )

where u=qa/1-f.

Il. PROOF OF THEOREM 1.1

For any L >0 we take

u-0+L for u—-0<-L,
v={ 0 for —L<u-6<L, 1)
u—-06-L for u-0>1L,

so that, by our assumptions, we have veW,"(Q) and

Vv =(Vu-Vve)-1 (2.2)

{lu-6j>L}
where 1. is the characteristic function for the set E,
that is, 1. =1 if xeE and 1. =0 otherwise. We
introduce the Hodge decomposition of the vector field
W] Vv e LM-P9)(Q). Accordingly,

Vv P VW =Vo+h, (2.3)

where gis in Wl/PY(Q)andhis a divergence free

vector field of class Lr/(’*P*l)(Q,P”). The reader is

referred to [3], [1] for estimates concerning such
decomposition. We have

" ¢||r/r p+1

c(n p)wv ™ 24

and

0],y <C(M )PtV @5)

Let’'s take gas the test function in the formula, on the
left-hand side, we have

j o <|Vu| “Vu-|ve|"*vo,h > dx+ j <|ve|"’2ve,h>dx

[ V0 “V6,[vu - Ve[ (Vu - v6))d
(2.6)
Therefore, equation (1.2) can be transformed into
Lu o <|V“| Vu-|vo|"* ve,[vu-ve| " (Vu-ve)dx
ol (vu|”*Vu—-|ve|"* ve, hydx
oy (VO V6, hydx
j o <|ve| V0,[Vu—ve| " (Vu-Vve)dx

j‘ T (). VX

=L+L+1,+1,
(2.7)

Now let’s talk about two cases.

Casel :
page 72)

p>2. Since for any X,Y € P"(see [9],

220X =Y |" < X|7EX =YY, X - Y,

the left-hand side of (2.6) can be estimated as

j (vul™ ‘Vu-|[ve"?
{u-o[>L}

"P(Vu-va)dx

Vu —V&\ dx
76">L}
2.8)

We now estimate |1, |I,

“3‘ . By an elementary
inequality (see [10]): forany X,Y ePn and ¢ >0,

(1+g)QY\+\x -Y *’)x -Y| fore>0,

&

—Y[Y|<

1+s

X -y for-1<&<0,
2¢ (l+.9)
(2.9)
and using Holder inequality, (2.5) and Young

inequality, we obtain

|I1|S(p—1)_[‘u oy (VO +[Vu=ve[” *|vu—ve|h|dx
<2"2(p-1) (j‘ " |ve| * [Vu - 6| h|dx
+<[\u L) |Vu V6| |h|dx)

<27 (p-1) (Vo] [vu —Vell [h

r/(r-p+1)

+[vu=vol ]

r/(r- p+1

<2"*(p-2)c(n, p)|p—r|(|Vel}*[vu-ve| " +[vu-ve)
<2°*(p-1)C(n,p)|p-r|(C(e)|VO[; +(1+3)|Vu-ve]);
(2.10)

, we omit the

' r.{u-oj>L}
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subscript for the sake of simplicity.

Using the Holder inequality, (2.5) and Young’s
inequality again, ||2| and ||3|can be estimated as

| |2| =
< J'{‘u—ﬁ‘>L}

< "V 9| :371 ||h||r/(r—p+l)

<c(n,p)|p-r||vel*[vu-ve,
<c(n,p)|p-rl[c(e)|vel; +&[vu-ve ]

j‘u oy V" *v,hydx

Ve hdx
(2.11)

r-p+1

|1y = Hug (voI"*ve,[vu-ve| " (Vu-ve)dx

< Lu . Vel vu-ve| " d (

r-p+1

<||V9||p vu-ve;

<C(e)|ve|; +e[vu-vo;.
2.12)

Using the Holder inequality, (2.5), (2.2) and
Young'’s inequality again, “4‘ can be estimated as

||4|=

j{‘u_g‘>L}< f(x),Vgydx

(|V V|Fp Vv-— h)dx

< j{‘u—9\>L
- I{‘u—9\>L}

<C (g)[J.{u6)>L}
+C (E)J.{\u-a\»_}
<C (5) j{\u—0\>L} f (X)|p7_l dx+c- gJ.{‘u—H\>L}

<C (s)[j{uM} f (x)|p7-1 dxj +ce|[Vu-v 6’||:

v P dx+
V]

(x) |-|h|dx

{Ju-6>L}

)
)l
)
)

f (x | [Vu-ve|” P dx +_|.‘u ol x)|.|h|dx

f (x)|?—1 dxj+Cg I{\u,g\>L}|V“ ~V 6| dx

Ihf~eadx

f(x)[Ldx+c- g.[{\u-a\»_}

|h|r—+a+1dx

| yIVu- vo| dx
flo-o-L

<C(n, p.e)|Ve| +c(e ||f (2.14)

-1
+(C(n.p)|p=r|+&)[vu-ve| .
Case2:1< p<2 .Lemma 1.1 yields
Lu oL (v Vu- IVo|"*va,vu-ve| " (Vu-Vve)dx

>j‘u e vo "’ ((|Vu-va|+|v9|) —|vel” )x
This implies
J“u . \Vu VH\ dx
<y vu-vel”

<»[u oL ‘Vu‘ Vu- Ve VQ"VU_Vg‘FP(VU—VQ))dx

((\VU—VHHVH)M)dx
+j [Vu- vol " vel dx

{lu-0)>L}
SI{‘H‘)L}QVU\ Vu-|vel?ve,[vu-ve " (Vu-ve)dx

+e L‘H‘)L}\Vu -V dx+C (&) j{‘uiw\v g dx.

(2.15)
By (2.8) and (2.5), ||1| can be estimated as
E j‘u il “Vu-|ve|"* vo,hydx
< % [ R 2 016
<gorpeg VeV Tl
s%c(n, p)|p—r|[vu-va.

For the case 1<p<2, |I,|.|l; and |I,| can also be

estimated by (2.10) and (2.11). Combining (2.6),
(2.13), (2.14), (2.10) and (2.11) and (2.12), we arrive at
(2.13).Let g, =1/C(n, p) - Then for \p—r\ <g, we have

C(n, p)p-r|<1. Taking & small enough, such that
C(n, p)p—r|+&<1, then the second term on the right-
hand side of (2.13) can be absorbed by the left-hand

+cg|p- r|j{‘u79‘>L} IVu—-ve| dx side; thus we obtain
L 2.17
£)|f (2 +ce(1+p-r])[Vu-val. JayPu=volaxsc(np)vel+c(e)]f (. 240
p-1
(213) Since 9 eW(Q),q<r , by the Holder equality we
Combining (2.6)-(2.7), (2.9)-(2.12) we arrive at obtain
WWW.jmest.org

JMESTN42352910

9979


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 6 Issue 4, April - 2019

vel =, . [volox

= U{\u—e\>L}

=[vel, flu-6/> L}

r/ r
vl dxj q|{|u—49|> Ly (2.18)

a-r/q

and

r

i LEY
p-1

r

.Hm_m>LHiy (2.19)

(%)

al=
o

-1

°

by combining (2.18) and (2.19) we get

J.{\ufﬁ\ﬂ} [Vu-Vve| dx
{|u -6|> L}|%

wc(e)]f (off fflu-al> L)+

p-1

<c(np)vel,

(2.20)

Q=

r

<C(n,p)-D-[{lu-6|> L}|%,

r
a .
a
p-1

where b = [V -+ (x)

We now turn our attention back to the function
veW,(Q) By the Sobolev embedding theorem, and

using (2.2), we have

(J‘Q|V|rt dx)]/r*

gC(n,r)(J'Q|Vv|r dx)yr (2.21)

r v
=C(n,r) (J.{u9>L}|Vu—VH| dx) .

Since |v= qu -6~ |_).1{‘ , we have

u-6>L}

( fjy o lu=01- L) dxj/ri - ( [ M dx)w, 2.22)

and for [>L,

. . 2.23
(g A Y N 223

< J‘MU_QMNU —0]-L) dx< J-H\U-f?\*}\ (u-6]-L) dx

By collecting (2.16)-(2.21), we deduce that

Yr-1/q

((E - L)r,HU —9‘ > E}DW <C(n,r)- D%

Thus

ﬂu—9\> LH

{lu—6]> C}| < — L {c(n,r).Dijr [fu—ol>

(1)

(2.24)
Let

¢(5)[lu-01> sl = c=| clorpor |
B=r (Yr-1q)

and s, >0, then (2.22) becomes

(D(E)S c Q(L)ﬂy (2.25)

for L>L>0.

For the case q<n, one has g<1. In this case, if
s>1, we get from Lemma 1.2 that

Nu ~0]> SH <Cla, p,s,)st,
where t=a/(1-8)=q". For 0<s<1, one has
u-6]>sj<[Q)s”s™ <|Qfs™.
Thus ue6+L%, (Q).

For the case q=n, one has g>1. For any r<wo,
(2.22) implies

C

o) S - S
< Oy
As above, we derive
ued+L, (Q)
For the case gq>n, one has #>1. Lemma 1.2 implies
p(d)=0 for some d=d(a,pg,s,r,D) . Thus

‘ﬂu—&‘>d}‘:o, which means u—-6<d ae. in Q.

Therefore
ued+L*(Q)
completing the proof of Theorem 1.1.
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