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Abstract—Chaos control can eliminate chaotic 

behavior and suppress chaos to unstable 

equilibria or unstable periodic orbits. In this 

paper, a Carbon Price chaotic dynamic system 

has been studied to investigate the problem of 

controlling chaos. The time-delayed feedback 

control method is applied to the Carbon Price 

system. Based on the corresponding 

characteristic equation, the linear stability of the 

equilibrium points and the existence of Hopf 

bifurcation of the system are analyzed. Further, 

we derive the interval value of the stable(unstable) 

time delay. By establishing the appropriate time 

delay and feedback strength ranges, one of the 

unstable equilibrium points of the system can be 

controlled to be stable. Finally, numerical 

simulations are carried out to verify the 

effectiveness of the time-delayed feedback control 

method.  
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feedback control  

I.  INTRODUCTION  

Chaos has great potential applications in many 
technological and engineering disciplines [1-3]. 
However, the emergence of chaos often leads to the 
unpredictability of the development of the system, 
resulting in abnormal dynamic behavior. In many 
cases, this dynamic behavior is not what we want. 
Therefore, how to control and utilize chaos in many 
disciplines has attracted widespread attention from 
scholars [4-6].  

In recent years, the methods and techniques of 
chaotic control have made breakthroughs. Shukla and 
Sharma [7] proposed the stability and synchronization 
problems for a class of fractional order chaotic 
systems and used the backstepping strategy to explain 
the systematic step by step approach to obtain the 
control results. Mahmoud and Abood [8] demonstrated 
the adaptive complex anti-lag synchronization (CALS) 
of two indistinguishable complex chaotic nonlinear 
systems. Aghababa and Heydari [9] studied chaotic 

synchronization between two different uncertain 
chaotic systems with input nonlinearities. A robust 
adaptive sliding mode control law is designed to 
ensure the existence of the sliding motion. Córdoba 
and Eduardo [10] analyzed the stabilization of an 
unstable periodic orbit through periodic prediction-
based control. Deng et al. [11] proposed a new method 
of robust controller design and used this method to 
design new chaos robust controller, which can be used 
to control transient air-fuel ratio of the gasoline engine. 
Most of these methods are developments of two basic 
approaches: the Ott-Grebogi-Yorke method (OGY) [12] 
and time delay feedback control [13]. Chaos control is 
slowly forming a systematic theoretical system. 

Compared with the above two basic methods, the 
time-delayed feedback control method is more simple 
and convenient in controlling chaos for a continuous 
dynamical system. The OGY method is based on the 
invariant manifold structure of unstable orbits. It only 
produces small time-dependent perturbations to the 
parameters of the chaotic systems and is difficult to 
change the form of the desired unstable periodic 
orbits. The time-delayed feedback control method 
applies a feedback signal which is proportional to the 
difference between the dynamic variable and its 
delayed value. By selecting the appropriate time delay, 
this difference is almost zero as the system 
approaches the required steady state or periodic orbit, 
which means stability. Moreover, the advantage of this 
method is that the delayed control does not require a 
reference system because it generates control from 
the information of the system itself.  

Time-delayed feedback control has been used for a 
variety of applications such as biology, medicine, 
chemistry, engineering and physics. Taher et al. [14] 
proposed the time-delayed feedback control to solve 
the dangerous synchronization deviation, which is a 
useful control concept in nonlinear dynamic systems. 
Guo et al. [15] put forward a time-delayed feedback 
control method to improve collection performance of 
the multiple attractors wind-induced vibration energy 
harvester system. Guan and Qin [16] applied 
distributed delay as self-controlling feedback to realize 
the continuous control of a new butterfly-shaped 
chaotic system. Postlethwaite et al. [17] exploited the 
spatiotemporal symmetries to design non-invasive 
feedback controls to select and stabilize a targeted 
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solution branch to prevent it from bifurcating unstably. 
Zakharova et al. [18] studied the influence of time-
delayed feedback on coherence resonance chimeras. 
They showed that the chimera region may get 
enlarged or shrunk with proper tuning of the delayed 
feedback strength. Mahmoud et al. [19] investigated 
the control of chaotic Burke-Shaw system via the time-
delayed feedback control. 

In 2018, Fan et al. [20] discovered a new chaotic 
attractor for the following Carbon Price system:  
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where )(tx is the time-dependent variable of carbon 

price, )(ty , of energy price, )(tz , of economic growth; 

LMicba iii ,),3,2,1(,,,  and N are positive 

constants. When ,001.0,012.0,048.0 321  aaa

,013.0,012.0,12.0,024.0,02.0 21321  ccbbb

7.1,9.0,008.03  LMc and ,3.0N  system 

(1) has a chaotic attractor (Fig. 1). 

Fig. 1. A chaotic attractor of the Carbon Price system. 

The purpose of this paper is to study the system (1) 
using the time-delayed feedback control method. First, 
we add time-delayed force to the original Carbon Price 
system. Then, an explicit formula for determining the 
direction of the Hopf bifurcation and the stability of the 
bifurcation periodic solution is derived by analyzing the 
corresponding characteristic equations. Finally, the 
Carbon Price chaotic system is controlled to a stable 
state under the appropriate feedback intensity. The 
main contribution can be divided into three aspects. 
Firstly, this paper controls the chaotic system of 
Carbon Price via time-delayed feedback control. 
Secondly, the local stability and the existence of Hopf 
bifurcation of the system are studied by theoretical 

analysis. Thirdly, it is proved that chaos vanishes when 
the time delay reaches a certain value.  

The remainder of this paper is organized as follows: 
In Section 2, we investigate the problem of controlling 
the chaos of the Carbon Price system. We consider 
the stability of one of the equilibrium points and 
determine the ranges of delay  at which the 

equilibrium point of the chaotic Carbon Price system 
can be controlled to be stable. Section 3 carries out 
the numerical simulations to verify the theoretic 
analysis. Finally, a conclusion is given in Section 4. 

II. DELAYED FEEDBACK CONTROL METHOD FOR

CONTROLLING CHAOS

In this section, we use the time-delayed feedback 
control strategy to perform chaotic control on the 
system (1). According to [13], we add a time-delayed 

force )]()([  tytyk  ( k is a constant) to the 

second equation of the system (1), then the system (1) 
is described as: 
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where   is a positive constant and Rk . 

From the idea of Fan [20], the system (2) has three 

equilibrium points: 10 , EE  and .2E )0,0,0(0E  is 

obvious, while ),,( 1111 zyxE  and ),,( 2222 zyxE  are 

generally determined by system parameters due to the 
high nonlinearity. We just study the stability of the 

equilibrium point )0,0,0(0E , the other two equilibrium 

points can be similarly discussed. 

The linearization equation of the system (2) at the 

equilibrium point )0,0,0(0E  is  
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The characteristic equation of the system (3) is 
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where ,3112 kcbaA   1323221 bccbbaA

,)( 13131131 kaccabaca   2313110 cbacbaA

,)( 1331323322132113 kcacacbacbacbacba 

.)(,)(, 133103112 kcacaBkcaBkB  In order 

to analyze the distribution of roots of the 
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transcendental equation (4), we introduce the following 
lemma due to [21]. 

Lemma 1. Consider the transcendental equation: 
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where ),,2,1(0 mjj   and ),,2,1;,2,1,0()( nkmjp j

k    

are constants. As ),,,( 21 m   vary, the sum of 

orders of the zeros of ),,,( 1 meeP
    in the open 

right half plane can change, and only a zero appears 
on or crosses the imaginary axis.  

Equation (4) has the form when 0 : 
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By the Routh-Hurwitz criterion, all the roots of (6) have 
negative real parts if and only if:  

,))((,0,0 0011220022 BABABABABA   (H1) 

so the point )0,0,0(0E  is locally asymptotically stable 

when the condition (H1) is satisfied. 

For 0 , i  is a root of (4), then 
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Separating the real and imaginary parts, 
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Add the squares of both sides to get: 
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Then (10) has at least one positive real root. 
Without loss of generality, suppose that (10) has three 

positive roots, which are denoted as .,, )0(
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where ,,2,1,0;3,2,1  jk then ki are a pair of 

purely imaginary roots of (4) when .)( j

k   Define 
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The following results are obtained from the above 
analysis. 

Lemma 2. If the conditions (H1) and (H2) hold, then all 
the roots of (4) have a negative real part when 

),0[ 0   and (4) has a pair of purely imaginary roots 
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Assume that the following condition holds 

.02211  NMNM      (H3) 

Based on the above analysis and the results of 
Hassard and Hale [25,26], we obtain the following 
theorem.  

Theorem 1. If the conditions (H1) and (H2) are true, 

then the equilibrium point )0,0,0(0E  of the system (2) 

is asymptotically stable when ),0[ 0  . In the case 

where the conditions (H1) and (H2) are satisfied, if the 
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condition (H3) holds, then the system (2) undergoes a 

Hopf bifurcation at the equilibrium point )0,0,0(0E  

when ),2,1,0;3,2,1()(  jkj

k .  

III. NUMERICAL SIMULATIONS  

In this section, the time-delayed feedback control 
method is applied to suppress chaos to unstable 
equilibrium points or unstable periodic orbits. We 
perform numerical simulations to verify the analytical 
predictions obtained in the previous section. For the 

purpose of controlling the chaos, we take .01.0k  

Considering the following system  
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Obviously, the system (16) has an equilibrium point 

)0,0,0(E . We can get that the conditions (H1)-(H3) 

are satisfied. Let 0j and by means of Matlab 7.0 

software, we gain ,0329.00 
 

0583.900  . 

Therefore, )0,0,0(E is asymptotically stable for 

),0[ 0 
 
and unstable for 0583.900  . Fig. 2 

shows that when 
077.83   , the system chaos 

disappears and the equilibrium point )0,0,0(E  is 

asymptotically stable. When 
056.104   , the 

system (16) undergoes a Hopf bifurcation at the 

equilibrium point )0,0,0(E , i.e. a periodic solution with 

a small amplitude appears near  )0,0,0(E  when  is 

close to 
0 , which can be shown in Fig. 3.  

 
Fig. 2. The equilibrium point )0,0,0(E  is asymptotically 

stable for 0583.9077.83 0   . 

 
Fig. 3. The equilibrium point )0,0,0(E  undergoes a Hopf 

bifurcation for 0583.9056.104 0   . 

IV. CONCLUSIONS 

In this paper, a time-delayed feedback control 
method is used to control the chaotic behavior of the 
Carbon Price chaotic dynamic system. By adding a 
time-delayed force to the second equation of the 
Carbon Price system, the sufficient conditions of the 
local asymptotic stability of the equilibrium point 

)0,0,0(0E  and local Hopf bifurcation of the delayed 

Carbon Price system are obtained. It is shown that if 
the conditions (H1) and (H2) are satisfied, then the 
Carbon Price system is asymptotically stable when  

),0[ 0  and unstable when 0  ; if the conditions 

(H1)-(H3) are true, a series of Hopf bifurcations occur 

near the equilibrium point )0,0,0(0E . At this point, 

chaos disappears and chaos is suppressed. The 
chaotic system exhibits stable and bifurcation periodic 
solutions under the effect of the delayed force. 
Numerical simulations prove the correctness of the 
theoretical analysis. 

This paper provides a theoretical basis for chaotic 
control of the Carbon Price system with time-delayed 
feedback, which can increase our understanding of 
chaotic control of Carbon Price system, and control 
energy price through delayed feedback, thus slowing 
down economic growth. I hope to get a better 
conclusion in further promoting the control of other 
three-dimensional chaotic systems. Due to the nature 
and controllability of chaotic systems, it can be applied 
to radio hyperchaotic secure communication systems 
and other security systems, which makes the research 
of chaotic time-delayed feedback control rich in theory 
and application.  
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