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Abstract— We study mixed fractional derivative in 
Marchaud form of function of two variables in 
Hölder spaces of different orders in each 
variables. We consider Hölder spaces defined 
both by first order differences in each variable and 

also by the mixed second order difference, the 
main interest being in the evaluation of the latter 
for the mixed fractional derivative in the cases 
Hölder class defined by usual Hölder condition. 
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I.  INTRODUCTION (Heading 1) 

The classical result of G.Hardi and 
D.Littlewood (1928, see [1, §3]) is known that the 

fractional integral        10,11  





   xftxfIa

maps isomorphically the space  ]1,0[0

H of Hölder 

order  1,0 functions with a condition   00 f on a 

similar space of a higher order    provided that 

1 . Further, this result was generalized in 

various directions: a space with a power weight, 
generalized Hölder spaces, spaces of the Nikolsky 
type, etc. A detailed review of these and some other 
similar results can be found in [1]. 

In the multidimensional case, the statement 
about the properties of a map in Hölder spaces for a 
mixed fractional Riemann – Liouville integral was 
studied in [2] - [7]. 
Mixed fractional derivatives form Marchaud 
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  (1) 
were not studied in the Hölder space. This paper is 
devoted to the study of the properties of a map in 
Holder spaces, defined by the usual Hölder condition 
for functions of two variables. 

Consider the operator (1) in a rectangle 

  dybxyxQ  0,0:, . 

For a continuous function ),( yx  on 
2R  we 

introduce the notation  
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Everywhere in the sequel by 21 ,, CCC  etc we 

denote positive constants which may different values 
in different occurences and even in the same line. 

Definition 1.Let ]1,0(,  . We say that  QH  , , if 

    
 2122112211 ,, yyCxxCyxyx   (3) 

for all     Qyxyx 2211 ,,, . Condition (3) is equivalent to 

the couple of the separate conditions 
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uniform with respect to another variable. 
Note that  

   ,, Hyx   
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, where 

]1,0[ . (5) 

By  QH  ,

0  we define a subspace of functions 

 QHf  ,

0 , vanishing at the boundaries 0x  and 

0y of Q. 
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A one –dimensional statements 
 The following statements are known [1]. We 
use the schemes of the proofs to make the 
presentation easier for two-dimensional case. 

Lemma 1. If    ],0[ bHxf  and 10,0   , 

then 
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 and  

HH
fCg , 

where C doesn’t depend from  xf . 

Proof. Let ],0[,;0 bhxxh  . We consider the 

difference 
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Since Hf , we have 

           xCfxfhCxfhxf 21 0, . 

Using these inqualities we obtain 
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 For G1 we have 
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Let’s estimate G2, here we shall consider two cases: 
hx   and hx  . In the first case, we use inequality 

 212121 , 
   and obtain 
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In second case, using   0,11  ttt 


 we have 
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which completes the proof. 
The Marchaud fractional differentiation operator has a 
form: 
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where 10  .  

Theorem 1. If     10,],0[    bHxf , that 
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where    ],0[ bHx    and   00  , thus 
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Proof. We present (6) as 
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receive equality (7), where 
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Here    ],0[1 bHx    by Lemme 1. It is enough to 

show    ],0[2 bHx   . 

Let ],0[,;0 bhxxh  . Let’s consider the difference 
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Since  ],0[ bHf  , then we have for I1 

   hCdthtChI

x

1

0

1

1  
 . 

Let’s estimate I2. We have 
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For I3, 
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Finally, it remains to note that   002  , since 
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Main result. 

 Lemma 2. Let ),(),( , QHyxf   

11,   .  Then for the mixed fractional 

differential operator (1) the representation  
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Proof.  Representation (8) itself is easily obtained by 

means of (2). Since  QHf  , , inequalities (9) are 

obvious. Estimate (10) is obtained by means of (5), 
i.e. 
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Theorem 2. Let     1,1,, ,

0   QHyxf . 

Then the operator  ,

0,0D  continuously maps  QH  ,

0

into  QH   ,

0 . 

Proof. Since    QHyxf  ,

0,  , by (8) we have  

      yxyxfyx ,,D, ,

,00     . 

Let ],0[,;0 bhxxh  . We consider the difference 
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Since    QHyxf  ,

0,   we have 
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where  

  




y
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Using estimations G1, G2 of the proof of Lemma 1 and 
estimations I1, I2, I3 of the proof of the Theorem 1, it is 
easily possible to receive an estimation 

      Chyxyhx ,, . 

Rearranging symmetrically representation (11), we 
can similarly obtain that 

      Cyxyx ,, . 
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