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Abstract—Experimental and theoretical 
performance analysis of standalone 
solar photovoltaic (PV) module was done at 
tropical area; the influence of corrugated metal 
sheet (CMS) roof vicinity on the PV module 
performance was the focus of the study. The 
module of 100 watts was placed on a simple 
developed CMS roof structure with variable gap 
between the roof and PV panel. Electrical circuit 
with data acquisition system was designed based 
on Proteus and Arduino technologies. Solar 
irradiance, ambient air temperature and humidity, 
temperature of the panel, current and voltage were 
monitored.  
 
In the view of findings, the PVs’ extra heat was 
originating from corrugated metal sheet 
roof vicinity. The highest temperature attained by 
the PV panel when it was directly mounted on the 
roof was 74.5 °C while the ambient temperature 
was 32 °C and irradiance of 820 ± 10 Wm-2. The 
PVs’ temperature dropped by ~9 °C and output 
power increased by ~11% when the gap enlarged 
from 0 to 50 cm at the same irradiance. The 
monitored experimental parameters were used as 
the inputs for the Matlab simulation. Experimental 
and simulated I-V curves were in good correlation 
hence validating the findings. 

Keywords—PV - corrugated metal sheet gap, 
gap temperature, module temperature, short 
circuit current, open circuit voltage, maximum 
power. 

Nomenclature 
 
CMS - corrugated metal sheet 
G –  irradiance (Wm-2) 
h – length gap between PV and corrugated metal 

sheet (cm) 
ISC – short circuit current (A) 
Ta – ambient temperature (°C) 
Tg – temperature in the gap between PV and 

corrugated metal sheet roof (°C) 
Tm – module rear surface temperature (°C) 

TS – temperature of corrugated metal sheet front 
surface (°C) 

VOC - open circuit voltage (V) 
 

1. INTRODUCTION 

Rural electrification and rural development have 
largely been restricted to grid extension by utilities 
with limited coverage of decentralized electricity 
possibilities. Increased population and significant 
change in pattern of trade and financial sector; rural 
electrification by solar energy can be among crucial 
factors for a rural community’s development. Solar 
energy is one of the paramount renewable energy 
resources with minutest deleterious effects on the 
environment. It is a resource that spreads the earth as 
sunlight that exists worldwide compared to other 
renewable energy resources which are site specific. 
Sunlight reaching our environment can be 
rehabilitated into electricity directly by PV cell 
technology. Hence, using electricity produced by solar 
PV system in domestic applications, particularly in 
places which receive plentiful solar irradiance like 
Tanzania, is amongst of the paramount solution for 
rural electrification [1][2][3][4][5][6][7][8][9][10]. 
 
The performance of solar PV panel is influenced by 
excessive cell temperature and is directly proportional 
to the irradiance reaching the cell. Outdoor roof 
mounted solar PV module’s temperature varies 
depending on ambient temperature, level of sunlight, 
and roofing material [11][12]. The increase in 
module’s temperature lowers the efficiency of PVs 
[13][14]. The impacts of increased temperature on 
solar cell are exposed by the I-V and P-V curves 
[13][15][16][17]. The output of the solar PV module 
would be increased by optimizing the orientation and 
allowing free natural air movement on the rear surface 
of the PV [18][19]. Most of remote rural roof installed 
solar PV modules are done on the pitched roof 
structure whilst gaps for free air flow and proper 
orientation are not carefully experimented (Fig. 1).  
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worth to mention about challenging to carry 
experiments due to the variation of irradiance 
reaching the solar module; this observation concurs 
with Sirisamphanwong & Ketjoy [28] study.   

 

    Fig. 6: Variation of ambient temperature Ta, roof 
sheet temperature TS, and relative humidity 
Rh versus irradiance 

It is apparently that CMS roof is heat absorbing 
material. The highest were TS 62 °C, Tg 48 °C and Tm 
74.5 °C whilst Ta was ranging from 21-35 °C (Fig. 7). 
For every sudden increase in Tm also there was high 
pitched increase in TS but only insignificant escalation 
in Tg. Regarding the time of a day, lower temperatures 
TS, Tg, and Tm observed before 10:30 hours and after 
15:00 hours compared to noon time. It is obviously the 
rise of Tm was promoted by lack of air exchange on 
the rear side  because the roof material radiated 
quickly and contributed to increase in the module 
temperature Tm as the space was not well ventilated. 
This result is in accordance with the findings reported 
by [16, 28]. Fluctuations for monitored parameters 
were due change in environmental conditions caused 
by either among the following; increased or decreased 
wind speed, un-prolonged cloud cover, or irradiance 
fluctuations which was ranging from 300 -1150 Wm-2. 

 

Fig. 7: Variations of temperatures versus time of a day 

The effect of solar irradiance on the PV module 
temperature is seen in Fig. 8. The plot shows a 
definite arising trend with irregular oscillations. 
Temperature fluctuations can be attributed to 

surrounding temperature and wind speed variations. 
While ambient temperature Ta was in a range of 21- 
35 °C; the  module temperature Tm exceeded it by 17 
- 42 °C that is much higher than usually putative 
about 15 °C. This higher Tm can be attributed to 
negligible PV-roof gap that actually brings extra 
heating to the module. Similar findings were reported 
in Kaldellis, Kapsali, and Kavadias [16]; that modules 
works at diverse range of temperature whereas 70 
°C is come across and this persisted due to poor 
cooling.  

 
Fig. 8: Module’s temperature variation versus 
irradiance 

 

3.2 Solar PV performance with panel mounted 
directly on the roof 

 
The effect of solar radiation on solar PV module 
electrical performance was examined, results are 
plotted Fig. 9. The short circuit currents ISC grow 
linearly with irradiance increase whilst voltages drop 
by 0.7-1.0 V at irradiance approaching 820 Wm-2 
(Fig.9a). These results are in accord to linear relation 
of current to illumination equation (3). 

𝐼ሺ𝐺ሻ ൌ ቀ ீ

ீ௢
ቁ ሾ𝐼𝑜ሺ𝐺𝑜ሻሿ                                                         ሺ3ሻ  

where Go is 1 kWm-2 at AM 1.5, Io (Go) cell current at 
Go; and logarithmic dependence of voltage [23]. 
   
Fig. 9b shows electrical characteristic curves 
measured and displayed at distinct irradiances. 
Monitored values of maximum power obtained from 
the curves were plotted against irradiance in Fig. 9c.   
It is clear that when solar radiation escalated, the ISC 
and maximum power Pmax were snowballing due to 
improved number of photons reaching the module.  
 
One can notice the interrelation between the 
parameters that the output power is mostly influenced 
by current change and least by voltage whilst currents 
and voltages (and hence net power) were affected by 
solar irradiance and also by the module temperature 
Tm. The results accord with theoretical studies 
[15][30][31][32] that with escalating in working module 
temperature Tm, the ISC increases whilst VOC and Pmax 
decline. Generally, experimental electrical 
characteristic tests outcomes were fluctuating due to 
variation of solar radiation that varied  from morning to 
afternoon as also  observed by Sirisamphanwong and 
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Ketjoy [28]. Descent in solar insolation resulted to for 
a reduction in ISC, VOC, Tm, and Ta readouts. Alike 
observations were reported by J. C. Arjyadhara and 
Ali [33] that with the increasing solar insolation ISC 
increases, and VOC decreases, and hence electrical 
characteristic curves varies.  

 

 

 

Fig. 9: Performance of solar module at different 
irradiance; (a) Short circuit current and open 
circuit voltage versus irradiance; (b) I-V curves; 
(c) Variation of maximum power versus 
irradiance 

3.3 Impact of gap variance on PV performance 

The effects of gap size between the CMS roof and 
module on temperatures Ta, Tg, Tm, and output 
maximum power Pmax are depicted in Fig. 10. The 
monitored parameters were obtained at G = 820±10 
Wm-2 of the same day; the gap size h was varied from 
0 to 50 cm. 
 

 

Fig. 10: Temperatures and power Pmax variations 
depending on gap alteration from h = 0 to 50 cm 
at G =  820±10 Wm-2 

One can see that, the Tg and Tm decreased regularly 
while Pmax raised steadily with the gap enlargement; at 
the same time the ambient temperature Ta was not 
varying. The relationship maintained Ta < Tg < Tm 

along with the gap alteration; this result concurs with 
Dominguez, Kleissl, and Luvall [29], the gap 
temperature Tg  approached the ambient one Ta at h = 
50 cm. The Tg was decreasing as the gap rising. It 
was observed that, mounting the panel at 50 cm gap 
reduced the module temperature Tm up to 21% 
depending on solar radiation, and increased the net 
output power up to 11% compared to the module laid 
directly on the CMS roof.  
 
The measured temperature Tm can be compared to 
values obtained theoretically through equation (4) 
[23][34]. 

𝑇𝑐 ൌ 𝑇𝑎 ൅ ሺ𝑁𝑂𝐶𝑇 െ 25ሻ ൈ ൬
𝐺

𝐺𝑜
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Where  Tc is cell temperature and NOCT is the 
nominal operating cell temperature at ambient 
temperature of 25 °C, AM 1.5 and irradiance Go = 
1000 Wm-2. The computation of the cell temperature 
using equation (4), yielded the Tm in range of 48.4 °C 
to 51.7 °C depending on G and Ta. At 50 cm gap, the 
Ta was 32 °C and G was 820 Wm-2, the measured Tm 
was in a computed range. For 0 cm gap, the Tm was 
in the range of 54 °C to 60 °C; moreover it could go 
beyond that if the module is left for long time. 
Disagreement between the computed and measured 
at zero gap temperatures might be attributed due 
extra heat from roofing material and the lack of air 
exchange on the module rear side. A similar findings 
on ventilation were reported by Skoplaki and Palyvos 
[35] that, higher Tm was due to improper cooling that 
resulted from poor ventilated  module backside. 
 
The performances of solar PV are depicted in Fig. 11; 
current at maximum power Imp and open circuit 
voltage VOC are shown versus gap size h in Fig. 11a 
and I-V and P-V curves in Fig. 10b. With the gap 
expand from 0 to 50 cm, maximum power current (Imp) 
slightly ascended with the gap enlarges and VOC was 
increasing. I-V as well as P-V curves depicted in Fig. 
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Fig. 14: Simulated and experimental current-voltage 
curves (h= 0) 

 
 

4. CONCLUSION  
 
The impact of corrugated metal sheet vicinity on the 
PV module temperature and electrical characteristics 
was examined outdoor under different solar irradiance 
and gap size between the module and roof. When the 
module was laid directly on the roof, the temperature 
of the module exceeded the ambient one by 17 - 42 
°C depending on the irradiance that was much higher 
than usually accepted about 15 °C for standalone PV 
system. With the gap enlarge from 0 to 50 cm, the 
module temperature reduced by 9 °C, and the power 
output was raised by 11%. Apparently the PV extra 
heating originated from roof vicinity; in spite the roof 
temperature appeared lower by ~5-29 °C than that of 
the module. A gap between the roof surface and 
module was helpful to reduce extra heat on the 
module and increase the power; the large size of the 
gap favored better performance of the module. 
Therefore, PVs mounted at least 50 cm above the 
corrugated metal sheet could operate within nominal 
operating cell temperature and generate good power. 
Simultaneous monitoring of the module’s performance 
revealed rather synchronous behavior of temperatures 
and electrical parameters regarding change in 
irradiance or gap size that confirms reliability of the 
results obtained. Experimental and simulated I-V 
curves were in good agreement. A similar study can 
be recommended to investigate the influence of 
different roofing materials on PV performance. 
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