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Abstract—Simulating the growth of a cell is vital 
to the successful modeling of the cell 
reproduction cycle. Availability of representative 
simulation parameters is a prerequisite to building 
these models. Fission yeast cells are good 
candidates to test these growth models since they 
are easy to manipulate and their growth data are 
readily available.  
One of the models used to simulate the growth of 
fission yeast cells assumed growth to be 
associated with the plasmolysed state of the cell 
and the elastic deformation being driven by the 
large turgor pressure. The strain rate of growth 
was assumed to depend on the elastic strain and 
a growth function. This growth function is related 
to the distribution of growth material deposited 
along the meridian. Fission yeast cells grow from 
the old and new ends with the width of the cell 
remaining constant. Also, the growth from the old 
end maintains an almost constant curvature. 
These observations were used in this paper to 
justify the application of the concept of self-
similarity of growth to the old end. 

In the calculations both a constant as well as 
variable strain distributions were assumed along 
the meridian. In addition, the simulation time step 
was varied to determine its effect on the growth 
function. 
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I.  INTRODUCTION  

Modeling systems in mechanics may be attempted at 
several levels such as: quantum, molecular and 
micro-scale [1-4]. Modeling the growth of cells could 
be complex since it encompass the consideration of 
several processes and variables. Yeast cells have the 
advantage of being relatively easy to manipulate, 
observe and measure. However, an important factor 
that distinguishes fission yeast cells from most other 
cells is their high value of turgor pressure which may 
exceed 1MPa. This pressure leads to large elastic 
deformations in plasmolysed cells with strains in the 
order of 20%. When modeling the growth of fission 
yeast cells the above two factors need to be taken into 
account [5,6].  
 

The cell cycle of a yeast cell starts after cell division, 
with growth initially from the Old End (OE) followed by 
the New End (NE), i.e., location of septation. Growth 
continues until the cell length almost doubles, as 
shown in Fig. 1.  

Fig. 1. Fission yeast cell growth cycle 
 
In modeling the growth of the cell, mechanics was 
determined to be one of two fields instrumental in 
simulating the cell growth [5-11]. The second field, 
molecular biology, and specifically the distribution 
patterns of exocytic factors, influenced the growth 
shapes [5]. Other publications assumed the 
distribution of Cdc42 as the influential factor [6]. 
 
During the growth of fission yeast, it was observed 
that the taper of the OE was sharper than a 
hemispherical taper [5]. On the other hand, the NE 
starts as being flat, then becomes hemispherical and 
finally tends to the OE shape. 
The curvature of the OE was found to remain almost 
constant with time and the expansion of the cell wall 
was limited to the tips of the cell [5]. The growth 
velocity of fission yeast cells is approximately of the 

order of 2m/hr at the OE [7]. 
In modeling the growth of fission yeast cells three 
configurations were used [5,6] :  
a) The plasmolysed configuration. 
b) The growth configuration due to material 
deposition. 
c) The elastically deformed cell configuration driven by 
the turgor pressure.  
 
The strain rate of growth was assumed to depend on 
the elastic strain and a growth function that represents 
the distribution of material deposited along the 
meridian [5,6]. 
 
Since the shape of the OE as well as the diameter of 
the cell were constant with time, the concept of self-
similarity of growth was used in this paper. This 
concept was combined with mechanics to determine 
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the distribution of the growth function along the 
meridian. The strains in the cell are assumed to have 
two components, elastic and viscous. The elastic 
strain is large due to the high value of turgor pressure. 
However, due to small time integration steps, the 
growth from the viscous strain is assumed to be small 
between time increments. 
 
Only the OE section was modeled in this work. For 
ease of presentation of the numerical integration 
scheme, the initial plasmolysed shape was assumed 
to be hemispherical. The material deposition during a 
time step is assumed to change the OE based on the 
self-similarity concept, i.e., from a hemisphere into 
another identical hemisphere plus a vertical section 
equal to the growth of the tip of the cell. 
Two strain distributions along the tip of the cell were 
used. The first one treats the cell tip as basically an 
isolated half sphere, thus neglecting the effect of the 
vertical cell wall. In this case the meridional and 
circumferential strains are equal and constant. The 
second distribution uses the strains obtained from the 
finite element modeling of the upper symmetrical half 
of the cell. This results in a higher distribution of the 
circumferential strain near the vertical wall. The 
results of both cases are presented.  
To determine the effect of changing the integration 
time step on the growth function, the results of the 
growth function from two different time steps are also 
presented. 

II. LINE MODEL TO DETERMINE THE GROWTH FUNCTION 

The following system of equations govern the 
modeling of fission yeast growth: 

The meridian and circumferential elastic strains 

(ε
e
s,ε

e
) depend on the turgor pressure P and the 

elastic material properties with ε
e
=ε

e
(P,E,) where E is 

the elastic modulus and  the Poisson’s ratio. 

The growth strain rates of wall material (dε
g
s/dt, 

dε
g
/dt)  will cause the stress-free wall of the 

plasmolysed cell to grow. The growth strain rates are 
computed using: 

d(ε
g
s)/dt=α.(s). ε

e
s       and   d(ε

g
)/dt=α.(s). ε

e
             (1) 

where  is a growth factor and (s) is the growth 
function that depends on the meridional distance, s, 

measured from the tip of the OE. The value of (s)|s=0 

is 1. 

In modeling the growth of fission yeast three 
configurations were used, as shown in Fig. 2 [5,6] :  
a) The plasmolysed configuration “0”. 
b) The elastically deformed cell configuration by turgor 
pressure “1”.  
c) The configuration where material deposition and 
growth occur within the cell under turgor pressure “2”. 
 

The plasmolysed configuration “0” when subjected to 
turgor pressure expands to configuration “1” with large 
elastic deformations. Material deposition, which 
softens the cell wall, when coupled with the turgor 
pressure lead to configuration “2”. 

 

 
Fig. 2 The three configurations of growth of a fission yeast 
cell  

Two cases were considered for the strain distribution 
along the OE of the cell.  
A. The first one treats the cell tip as basically an 
isolated half sphere, thus neglecting the effects of the 
vertical cell wall. In this case the meridional and 
circumferential strains are equal and constant.  
B. The second distribution uses the strains obtained 
from modeling the upper half of a symmetrical cell. 
This results in a higher distribution of the 
circumferential strain near the vertical wall.  
 
These two cases are presented below. 

A. Meridional and Circumferential Strains equal 
and constant 

The strains resulting from the turgor pressure as well 
as the concept of self-similarity allow us to determine 

the distribution of the growth function (s) as follows: 

Using small growth strains and a forward-Euler 
integration scheme, the meridional and circumferential 
growth strains are expressed as shown below for a 
time increment Δt from time tm to time tm+1: 

(ε
g
s)m+1= (ε

g
s)m+α.(s).ε

e
s.Δt      and    

 (ε
g
)m+1= (ε

g
)m+α.(s).ε

e
.Δt                                     (2) 

The initial hemispherical shape of radius Ro is divided 
into n elements with n+1 nodes, A1 to An+1. The self-
similarity growth principle assumes the initial 
hemispherical shape (A1,An+1) with radius Ro is 
deformed into a self-similar hemispherical shape 
(a1,an) with the wall of the cell growing vertically by 
(an,an+1) , as shown in Fig. 3. 
The deformation leading to the self-similar 
configuration is assumed to be solely due to the 
viscous growth strains. After this configuration is 
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reached, the new vertical part (an,an+1) solidifies and 
the process is repeated with conditions similar to the 
ones at the initial configuration. 
 
By enforcing the location of nodes a1 to an to be on 

the self-similar configuration, the growth function  

and growth parameter  are determined as follows: 
 
Let  Lo  be the length of segment AiAi-1 where   

Lo = 2*Ro*sin(/(4*n)).       
Since the radius of the cell is almost constant during 
growth, node An+1 is assumed fixed. 
 

1) Location of node an 

 
When  node An with coordinates (RAn, ZAn) moves to 
an(Ro,height), the radial motion ur  of An and the 
extension of (An,An+1) are given by: 
 

  ur=RAn*ε
g
θ=RAn*α*(sAn)*ε

e
θ*t=Ro-RAn  =>  

α*(sAn)=(Ro/RAn-1)/(ε
e
θ*t)                                                             (3) 

 
and, 
 

 an+1an = An+1An*(1 + [ε
g
s]av)=An+1An*(1 + α*(½)((sAn+1) 

+(sAn))*ε
e
s*t)=v*t                                                  (4) 

 
where v is the velocity of tip growth. 

Replacing (3) into (4) and noting that (sAn+1) =0, we get  

 AnAn+1*(1 + (½)*(Ro/RAn - 1)*(ε
e
s/(ε

e
θ))= v*t    or     

t =(AnAn+1/v)*(1 + (½)*(Ro/RAn - 1)*(ε
e
s/(ε

e
θ))                 (5)  

 

Fig. 3 Self-Similarity of Growth 

2) Location of node ai, i<n 

For nodes an-1 to a1 the process is continued as 
follows: 

When  node An-1 moves to an-1  the new radial location 
 of an-1 and the extension of An-1An are given by:  
 

          Ran-1=RAn-1*(1+α*(sAn-1)*ε
e
θ*t)                   (6) 

   and, 

 an-1an = An-1An*(1 + α*(½)((sAn-1)+(sAn))*ε
e
s*t)     (7) 

  
Node an-1 should lie on a circle of radius Ro with an-1an  

satisfying 
 
      (Ran-1 -Ran)

2 
+ (Zan-1 -Zan)

2
 =  (an-1an)

2    
                (8) 

  
Substituting (6) and (7) into (8) leads to the  
nonlinear equation F: 
 

F= (RAn-1(1+α*(sAn-1)*ε
e
θ*t)-Ran)

2 
+ (Zan-1-Zan)

2 

 -(AnAn-1*(1+α*(½)((sAn)+(sAn-1))*ε
e
s*t))

2 
=0          (9)     

 

To determine α*(sAn-1) given α*(sAn)  we need to 
solve the nonlinear equation using a Newton iteration  

scheme based on linearizing F about α*(sAn-1)|o, such  
as: 
 

Flinear = F|o + (α*-α*|o)*(dF/dα)|o = 0                    (10) 

Thus, 
 

α* = α*|o - (F|o )/(dF/dα)|o                                   (11) 
 

with dRan-1/d[α*(sAn-1)] and dZan-1/[dα*(sAn-1)]   
determined from (6) and the fact that node an-1 lies  

on a circle of radius Ro and center (0,v*t) ,  
respectively.     

B. Variable Meridional and Circumferential 
strains 

In case the upper half of the cell of Fig. 1(e) is 
modeled using the finite element method with 
symmetric boundary conditions, the circumferential 
strain would differ from the meridional strain in the 
hemispherical part close to the vertical cell wall. The 
above algorithm was modified to take into account the 
variations of the meridional and circumferential strains 
with the meridional distance.  

III. SIMULATION RESULTS 

Once the distribution of α*(sAi) is determined along 
the meridian, the value of the growth parameter α  

could be determined from α=α*(sAi)|i=1  since 

(sA1)=1. 

Solving the above system for Ro=2.42m, n=100,  

velocity of growth of the OE v=2m/hr and ε
e
s = ε

e

 
= 

0.1 leads to the value of  α=0.13895, 

t=1.14 minutes and the distribution (sAi) as shown  
in Fig. 4 .  
In the above simulation only one segment (A100,A101) 
became vertical with a height equal to the tip growth. 

The tip growth of the OE is 0.038m in this case.  
To determine the effect of using a different time step 
on the self-similarity of growth, the hemisphere was 
modeled using 201 nodes with only the first segment 
(A200,A201) becoming vertical. This leads to a value of 

α=0.13839 and t=0.57minutes.  The tip growth of the 

OE is 0.019m in this case. Thus, half the time for half 
the growth. 
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The distributions of the growth functions for n=100  
and n=200 are plotted in Fig.4. The relative error 
between the two growth functions, 

[(α_200(i)-α_100(i))/α_100]*100 is less than 0.4%. 
From the above results, with a time step that leads to 
small growth strains between self-similar 
configurations, the value of the time step used does 
not have a considerable effect on the growth function. 

To estimate the change in the  function due to  
variable meridional and circumferential elastic strains 
along the meridians, a plot of the growth function for a 
constant and variable meridional (ees) and 
circumferential (eet) elastic strains is shown in Fig. 5. 
This corresponds to nodes along the middle of the cell 
thickness. Twenty elements were used in the analysis 

with Ro=2.1m. The two curves are very close with an 

error relative to (1) of less than 3%. 
 

IV. CONCLUSIONS 

Several models have been devised to simulate the 
growth of fission yeast cells. One such model 
assumed growth is associated with the plasmolysed 
state of the cell and the large turgor pressure as being 
the driver of the elastic deformation. The strain rate of 
growth was assumed to depend on the elastic strain 

and a growth function .  
Using the above as a basis for the growth model, the 
paper accomplished/showed the following: 
1. Since the shape of the OE and the thickness of the 
cell were observed to be almost constant with time, 
the principle of self-similarity of growth was assumed 
to apply to the OE. 

2. The growth factor  and growth function (s) were  
determined using a line model of the cell wall. 
3. The difference between the growth functions using 
a hemispherical model and a half cell model were 
small. 
4. When the growth strains between self-similar  
configurations are small, the value of the time step  
used to simulate the growth has little effect on the  
distribution of the growth function. 
  

 
Fig 4. Distribution of growth function (sAi) due to n=100 and 
200      

 Fig. 5 Distribution of the growth function (sAi)  due to n=20 
and constant/variable elastic strains for the middle nodes  
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