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Abstract — This paper focuses on the effect of 
different machining parameter on surface 
roughness and material removal rate in turning 
SiC reinforced Al alloy composite through 
experimental analysis and response surface 
methodology (RSM) based predictive modeling 
which has been further optimized using principal 
component analysis (PCA). Experimental study 
has been carried out under minimum quality 
lubricant (MQL) condition. Palm oil has been used 
as lubricant where pressure and flow rate were 
kept at 8 bar and 120 ml/hr. The study has been 
planned using central composite design approach 
where cutting speed, feed rate and depth of cut 
has been taken as input parameters to check the 
desired resultant responses. Response model for 
surface roughness and material removal rate 
(MRR) has been developed using quadratic model. 
Correlation coefficient values of 0.99872 and 
0.99974 implies the adequacy of the model. Main 
effect plot and 3D surface plot have been used to 
assess the effects and interaction of the input 
parameter. Afterwards, machining parameters 
were optimized using PCA technique. To obtain 
favorable responses, depth of cut, cutting speed 
and feed rate need to be at 0.5 mm, 131 m/min and 
0.10 mm/rev respectively. By implementing the 
model, surface roughness of 0.989 µm and MRR of 
21111.488 mm

3
/min can be attained. 

Keywords— SiC reinforced Al alloy composite, 
Turing, Minimum Quality Lubricant, Surface 
Roughness, MRR, Response surface 
methodology, Principal component analysis  

I.  INTRODUCTION  

 Composite materials produce some combinational 
properties of two or more materials that cannot be 
achieved by either fiber or matrix when they are acting 
alone. Fiber-reinforced composites were successfully 
used for many decades for all engineering applications 
[1]. Metal matrix composites (MMC) are the new class 
of materials and are rapidly replacing conventional 
materials in various engineering applications such as 
the aerospace and automobile industries. Some of the 

typical applications are bearings, automobile pistons, 
cylinder liners, piston rings, connecting rods, sliding 
electrical contacts, turbo charger impellers, space 
structures etc. The most popular reinforcements are 
silicon carbide (SiC) and alumina (Al2O3). Aluminium, 
titanium, and magnesium alloys are commonly used as 
the matrix phase. The density of most of the MMCs is 
approximately one third that of steel, resulting in high 
specific strength and stiffness. It is possible to produce 
high-quality MMC components to near net shape 
through various manufacturing techniques, but 
additional machining is unavoidable to achieve the 
desired surface quality and dimensional tolerance for 
efficient assembly [2]. 

Clearly, the applications will also vary widely to 
reflect the balance between cost and properties 
offered by each type of MMCs. Metal matrix 
composites (MMCs) belong to a group of high-
performance engineering materials, which combine 
tough metallic matrix with a hard ceramic or soft 
reinforcement to produce composite materials. Among 
modern composites materials, particle reinforced 
MMCs are finding increased application due to their 
favorable mechanical properties and good wear 
resistance. SiC reinforced is considered widely and 
other compositions for the matrix are available 
commercially [3,4]. 

The surface finish is an important parameter in the 
machining process. Surface roughness has received 
serious attention for many years. In addition to 
tolerances, surface roughness imposes one of the 
most critical constraints for selection of machines and 
cutting parameters in process planning. In the view of 
above machining problems, the main objective of the 
present work is to investigate the influence of different 
cutting parameters on the surface roughness. To the 
best of the authors’ knowledge, little research has 
been carried out to determine the effects of cutting 
parameters on machining of hard ceramic composite 
and hybrid composite Al/SiC/Graphite particulate metal 
matrix composite. Response surface methodology 
(RSM) is utilized and for experimental planning and 
analysis during turning of SiC/Al alloy composite. The 
results are analyzed to achieve optimal surface. In 
order to know surface quality and dimensional 
properties, it is necessary to employ theoretical models 
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for prediction purpose. For prediction, the response 
surface method (RSM) is practical, economical and 
relatively easy to use. The relationships between 
response and process parameters are commonly 
found using multiple linear regression analysis 
techniques (RA), response surface methods (RSM) 
and artificial neural networks (ANN) [5,6]. 

Various machining processes such as turning, 
drilling and milling have been used to machine 
composite materials for different product requirements. 
Despite the existing experience in machining 
traditional materials such as metals, it has been a 
challenge to maintain consistent results in terms of 
machining quality for composite materials [7]. Li and 
Seah investigated machining properties of 5% SiC-Al-
MMC material using coated carbide cutting tool in 
turning operation. They applied various cutting speed 
(maximum was 88 m/min) and concluded that 
increasing cutting speed raised tool wear. They also 
noticed abrasion wear on the flank face of the tool [8]. 
Al/SiC-MMC was manufactured through stir casting 
process and turning operation was performed by 
Arokiadass et al. to study the effects on surface 
roughness. Feed rate found to be the most dominant 
parameter on the surface roughness followed by 
spindle speed and weight percentage of SiC [9]. 

An investigation focuses on the influence of 
machining parameters on the surface finish obtained in 
turning of Al-SiC particulate composites. In this work, 
the effect of machining parameters on the surface 
roughness is evaluated and optimum machining 
conditions for maximizing the metal removal rate and 
minimizing the surface roughness are determined 
using response surface methodology. A second-order 
response surface model for the surface roughness is 
developed to predict the surface roughness. The 
predicted values and measured values are fairly close 
to each other, which indicates that the developed 
model can be effectively used to predict the surface 
roughness on the machining of Al-SiC MMC 
composites with 95% confidence intervals within the 
ranges of parameters studied [10]. 

An application of response surface methodology 
(RSM) and central composite design (CCD) for 
modeling, optimization, and an analysis of the 
influences of dominant machining parameters on thrust 
force, surface roughness and burr height in the drilling 
of hybrid metal matrix composites produced through 
stir casting route. Experiments are carried out using Al 
356-aluminum alloy reinforced with silicon carbide of 
size 25 μm and Mica of size 45 μm. Drilling operation 
is carried out using carbide drill of 6 mm diameter. The 
multiple regression analysis using RSM is used to 
establish the input-output relationships of the process. 
The optimized drilling process parameters have been 
obtained by numerical optimization using RSM by 
ensuring the minimum thrust force of 84 N, surface 
roughness of 1.67 μm, and the burr height of 0.16 mm 
[11]. 3D surface plots of Response Surface 
Methodology (RSM) for AA7075-15 wt % SiC 
composite revealed that cutting speed is the most 
significant factor followed by depth of cut, feed and 
nose radius [12]. 

 Abhang and Hameedullah developed a predictive 
model using RSM for turning of EN-31 steel with 
tungsten carbide tool. The results showed that feed 
rate has the most significant effect on power 
consumption, followed by the depth of cut, tool nose 
radius and cutting speed. It was shown that the second 
order model is more precise than the first order model 
in predicting the power consumption during machining 
[13]. RSM and Taguchi’s technique was also used by 
Aggarwal et al. to investigate the effect of cutting 
speed, feed, depth of cut, nose radius, and cutting 
environment during turning of AISI P20 tool steel on 
the power consumption. Results show that the cutting 
speed is the most significant factor followed by depth 
of cut and feed rate [14]. 

To investigate the influences of machining 
parameters, the application of RSM on the hard turning 
of Hadfield steel with Al2O3/TiC mixed ceramic tool had 
carried out the mathematical models of the flank wear 
(Vbmax) and the surface roughness (Ra). For finding 
optimum value of machining parameters, the quadratic 
model of RSM associated with SAO method was 
utilized. Using the SAO method of RSM, the optimal 
setting of machining parameters is found to be cutting 
speed of 209.29 m/min, feed rate of 0.08 mm/rev., 
cutting depth of 0.25 mm and nose radius of 0.88 mm. 
For machining Hadfield steel in the hard-turning 
process, the optimal values of the flank wear (Vbmax) 
and surface roughness (Ra) represent the reduction of 
9.25% and 8.74%, which is compared to the results of 
initial machining parameters, using this optimal 
process [15]. 

Debaprasanna Puhan, Siba Sankar Mahapatra 
have investigated the multi-response optimization of 
non-conventional machining on Al-SiC/p MMC. In 
order to simultaneously optimize multiple responses, a 
hybrid approach combining principal component 
analysis (PCA) and fuzzy inference system is coupled 
with Taguchi method. In this experimental study, it is 
found that the influence of each parameter on the 
responses is established using analysis of variances 
(ANOVA) at 5% level of significance & the hardness of 
MMC is increasing with increasing weight% of SiC in 
the composite and mesh size. The conductivity of 
MMC is decreasing with increasing weight percentage 
of SiC. The optimal values of responses such as MRR, 
TWR, surface roughness and circularity are found as 
14.376 mm

3
/min, 0.018 mm

3
/min, 3.043 μm and 0.970 

respectively [16]. 

Optimization design and the effects of cutting 
speed, feed rate, depth of cut, and nose radius in 
computer numerical control (CNC) turning operation of 
a turning process performed on red mud-based 
aluminum metal matrix composites have investigated 
by S. Rajesh, D. Devaraj, R. Sudhakara Pandian & S. 
Rajakarunakaran. The taguchi-based grey analysis is 
specifically adapted to determine the optimal 
combination of turning parameters. The principal 
component analysis (PCA) is applied to evaluate the 
weighting values corresponding to various 
performance characteristics. The outcome of 
confirmation experiments reveals that grey relational 
analysis coupled with PCA can be effectively used to 
obtain the optimal combination of turning parameters & 
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useful tool to improve the turning performance of red 
mud-based aluminum metal matrix composites in CNC 
turning process [17]. 

However, not a lot of effort has been put on by the 
researchers to analyze the impact of different 
parameter under MQL cutting condition. An integrated 
RSM-PCA approach has also been rarely used by 
researchers to develop a predictive model. This 
existing study discloses the effect of different 
machining parameter in turning SiC reinforced Al alloy 
composite under Minimum Quality Lubricant (MQL) 
assisted cutting environment. In order to obtain 
examined data, coated carbide is employed after 
taking different range of cutting speed, feed rate and 
depth of cut into consideration. Main effect plot and 3D 
surface plot are used to analyze the impact of various 
parameters. An RSM based quadratic model has been 
developed while parameters are optimized using PCA. 
This presented study avails the necessity of 
incorporating RSM-PCA method to establish an 
effective predictive modeling of surface roughness and 
material removal rate. 

II. MATERIALS AND METHODS 

A. MATERIALS AND EXPERIMENTAL DETAILS 

Metal matrix composite was developed using SiC 
as reinforcement material whereas Al alloy was used 
as matrix material. Composition of Al 6061 and 
developed MMC were as follows: 

Developed MMC composition 

Al 6061-90% SiC-10% 

Al 6061 Composition 

Al - 98 %  Mg - 0.8 % Fe - 0.50 %   

Zn - 0.25 % Cr - 0.25 %   Cu - 0.2 % 

The composite was fabricated using stir casting 
process as portrayed in Fig.1. 

 

 
Fig.1: Development process of SiC reinforced Al Alloy 

composite 

Final length and diameter of the material was 
300mm and 105mm respectively. MQL assisted 
turning operation was carried out using a center lathe 
machine by using SNMG coated carbide insert. 
Experimental setup is shown in Fig. 2. During MQL 
condition, Pressure was set at 8 bar, Flow rate was at 
120 ml/hr. 

(a) 

(b) 

Fig.2: Experimental Setup (a & b) under MQL cutting 
condition 

In this work machining was initiated with different 
levels of depth of cut, cutting speed and feed rate. The 
measurements were carried out by varying three 
machining parameters: cutting speed (Vc), feed rate 
(So) and depth of cut (t) which was considered as input 
variables and assigned to different levels as shown in 
Table 1. The combinations of machining parameter 
that was designed by response surface methodology 
and observed resultant outputs (surface roughness, 
material removal rate) are shown in Table 2. 

TABLE 1: ASSIGNMENTS OF FACTORS TO DIFFERENT 

LEVEL 

Variables Units Low High -alpha +alpha 

t mm 0.25 0.75 0.25 0.75 

Vc m/min 131 329 131 329 

So mm/rev 0.1 0.14 0.1 0.14 
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TABLE 2: EXPERIMENTAL INPUT VARIABLES AND 

MEASURED RESPONSES FOR MQL CUTTING CONDITION 

Factors Responses 

t 
(mm) 

Vc 

(m/min) 
So 

(mm/rev) 
Ra 

(µm) 
MRR 

(mm
3
/min) 

0.25 131 0.1 0.96 3298.65 

0.75 131 0.13 0.98 6234.48 

0.25 329 0.1 1.37 9236.25 

0.25 329 0.13 1.30 13194.68 

0.75 230 0.16 1.00 4618.11 

0.5 131 0.16 1.14 8728.27 

0.25 230 0.1 1.20 12930.75 

0.75 329 0.1 1.29 18472.55 

0.75 131 0.13 0.98 5277.84 

0.25 329 0.1 1.25 9975.16 

0.5 329 0.1 1.42 14778.00 

0.5 131 0.1 0.98 21111.48 

0.75 131 0.13 1.03 7257.03 

0.25 131 0.16 1.17 13715.85 

0.5 329 0.16 1.22 20319.76 

0.5 230 0.1 1.32 29028.29 

0.75 131 0.13 1.07 8576.49 

0.25 131 0.16 0.95 16209.64 

0.5 329 0.1 1.24 24014.26 

0.75 230 0.1 1.55 34306.16 

B. RESPONSE SURFACE METHODOLOGY 

Response surface methodology establishes the 
relationships between several explanatory variables 
and one or more responses or outcomes. RSM is an 
empirical modeling approach for determining the 
relationship between various process parameters and 
responses for establishing the significance of these 
process parameters on the coupled responses. It is a 
combination of design of experiments, regression 
analysis and statistical inferences. RSM model can be 
utilized to state the degree of co-relation between one 
or more response and some selected control variables, 
to determine through goodness of fit-statistical 
significance of the factors connected with a particular 
response and to determine the optimum settings within 
the higher or lower level of control variables to 
minimize or maximize the response of interest [18,19]. 

Commonly used mathematical model for the 
response y and independent variables ξ1, ξ2… ξk can 
be represented as: 

y f 1,2,....,k                               (1) 

where, ε is termed as a statistical error, which is 

normally distributed by response y with mean zero 

and variance σ
2
. Then, 

E(y)E[f1,2,....,k]E()f1,2,....,k(2) 

The variables ξ1, ξ2…., ξk in Eq. (2) are called as 
natural variables, as they are expressed in the natural 
units of measurement. However, it is more convenient 
to use coded variables (x1, x2, x3...) which are 

dimensionless. The response function (ƞ) can be 

written  as 

f (x1, x2,...., xk)                                                           (3) 

It is evident from the literature that second orders 
mathematical model is mostly used due to flexibility, 
wide variety of functional forms and use of significant 
least square method. Second order quadratic model 
can be expressed as 

k      k k 
 

  0   j x j   jj x j
2 
   jj x i x j                                    (4) 

j1     j1 i j2 
 

 

where, βjs are regression coefficient and Xjs are 
coded form of independent variables 

In present work, central composite design (CCD) 
concept of RSM was adopted to design the 
experimental run. CCD design is frequently used 
together with response models of the second order. 
Statistical analysis of variance (ANOVA) is also 
connected with RSM. 

C. PRINCIPAL COMPONENT ANALYSIS  

Principal component analysis is a multivariate 
statistical method, which allows the original initial 
variables to transform into another dimensional set of 
uncorrelated variables called principal components 
(PCs). The principal components are transformed by 
calculating the Eigen-vectors of the covariance matrix 
of the original inputs. To keep some observations or 
variables from discriminating the calculations, the data 
are normalized prior to finding the principal 
components. Such data preprocessing can avoid the 
influences of the units and the relative spread of the 
data used for evaluating the multiple performance 
characteristics. The original data are converted into a 
range 0–1 with 1 counting the best performance and 0 
the worst. The transformed variables are ranked 
according to their variance reflecting a decreasing 
importance in order to capture the whole information 
content of the original dataset. The PCs, which are 
expressed as linear combinations of the original 
variables, are orthogonal to each other and can be 
used for the effective representation of the system 
under investigation [16]. 

The principal components are calculated as 

𝑷𝒋 =∑ (𝒂𝒋𝒊𝒀𝒊)
𝒓

𝒊=𝟏
   for j = 1…...k                              (5) 

Where, Yi is the normalized value of i
th 

response 
(i=1,2,…r). The coefficient aji termed as eigen vector. 
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As each principal component has its own variance 
which might not be same, in this work, variance of 
every principal component is used as weight to 
compute multi response performance index (MPI). MPI 
can be measured as 

𝑴𝑷𝑰 =∑ (𝑾𝒋𝑷𝒋)
𝒌

𝒋=𝟏
                                                       (6) 

Where, Wj is regarded as weight of the 
corresponding principal component. MPI value defines 
the response and it is regarded as the quality index. 
Hereafter, larger the MPI value insures more quality. 

III. RESULTS  

        A. ANALYSIS OF VARIANCE  

Analysis of variance for the response surface 
models were conducted in this study. Sum of squares 
(SS), degree of freedom (df), Mean Square (MS), F-
value and P-value for all the input variables along with 
their interaction terms are shown in Table 3 for MQL 
assisted cutting environment.  

   B. ANALYSIS OF VARIANCE FOR SURFACE ROUGHNESS 

ANOVA model was developed under MQL assisted 
condition The Model F-value of 18.38 implies the 
model is significant. There is only 0.01% chance that 
an F-value this large could occur due to noise. P-
values less than 0.05 indicate model terms are 
significant. Moreover, Fit summary response for 
surface roughness is shown in Table 6 where R

2
 value 

is 0.9430, which suggests a very reasonable goodness 
of fit of the model. The adjusted R

2
 value of 0.8917 is 

in reasonable agreement with predicted R
2
 value. 

TABLE 3: ANOVA MODEL FOR SURFACE ROUGHNESS 

Source SS df MS F- 
value 

p- value 

Model * 0.546 9 0.0607 18.38 <0.0001 

t 0.360 1 0.3604 109.09 <0.0001 

Vc 0.202 1 0.2027 61.35 <0.0001 

So 0.053 1 0.0538 16.29 0.0024 

t * Vc 0.171 1 0.1718 51.99 <0.0001 

t * So 0.206 1 0.2062 62.43 <0.0001 

Vc * So 0.217 1 0.2177 65.90 <0.0001 

t
2 

0.148 1 0.1487 45.01 <0.0001 

Vc
2 

0.146 1 0.1466 44.37 <0.0001 

So
2 

0.081 1 0.0811 24.54 0.0006 

Residual 0.0330 10 0.0033   

*
 
Lack of 

fit 
0.003 3 0.0010 0.235 0.8690 

Pure 
Error 

0.0300 7 0.0043   

Cor. 
Total 

0.5796 19    

* Model is significant;           Lack of fit is not significant  

 

 

 

 

TABLE 4: FIT SUMMARY RESPONSE FOR SURFACE 

ROUGHNESS 

Source Sequential 
p- value 

Lack 
of fit 
p- 

value 

Adjusted 
R

2 
Predicted 

R
2 

Linear 0.185 0.002 0.1134 0.1677 

2FI 0.020 0.011 0.4733 0.1949 

Quadratic* 0.0002 0.869 0.8917 0.8333 

Quadratic* (suggested) 

 

C. ANALYSIS OF VARIANCE FOR MRR 

Using a similar approach mentioned above, 
ANOVA analysis has been performed for Material 
removal rate (MRR) where model is found to be 
significant after incorporating linear and quadratic 
interaction effect of the input parameters. ANOVA 
analysis and fit summary response for MRR has are 
shown in Table 5 and 6 respectively. 

TABLE 5: ANOVA MODEL FOR MRR 

Source SS df MS F- 
value 

p- 
value 

Model 
* 1.2E+09 9 1.4E+08 23.90 <0.0001 

t 3.2E+07 1 3.2E+07 5.47 0.0415 

Vc 2.8E+07 1 2.8E+07 4.73 0.0546 

So 8.2E+07 1 8.2E+07 13.95 0.0039 

t * Vc 6.0E+07 1 6.0E+07 10.23 0.0095 

t * So 5.8E+08 1 5.8E+08 98.30 <0.0001 

Vc * So 6.7E+07 1 6.7E+07 11.32 0.0072 

t
2
 4.9E+07 1 4.9E+07 8.35 0.0161 

Vc
2
 1.3E+08 1 1.3E+08 22.06 0.0008 

So
2
 4.3E+07 1 4.3E+07 7.34 0.0220 

Residual 5.9E+07 10 5.9E+06   
*
 Lack of 

fit 
7.3E+06 4 1.8E+06 0.2119 0.9225 

Pure 
Error 

5.2E+07 6 8.6E+06   

Cor. 
Total 

1.3E+09 19    

*Model is significant ; Lack of fit not significant  

 

TABLE 6: FIT SUMMARY RESPONSE FOR MRR 

Source Sequential 
p- value 

Lack 
of fit p- 
value 

Adj R
2 

Predicted 
R

2 

Linear 0.3949 0.0031 0.0089 0.3040 

2FI 0.0091 0.0155 0.4827 0.0996 

Quadratic* < 0.0001 0.9225 0.9156 0.8719 

Quadratic* (suggested) 

 

D. MAIN EFFECT PLOT SURFACE ROUGHNESS AND MRR 

With respect to input parameters, measure of mean 
for surface response and MRR are studied here where 
depth of cut, cutting speed and feed rate are used as 
input parameters. Surface roughness and MRR have 
been used as resultant output can be observed in Fig. 
3 and 4. Higher depth of cut and lower cutting speed is 
recommended to obtain minimum value of surface 
roughness. However, lower feed rate and moderate 
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depth of cut-cutting speed combination is appreciable 
to induce higher material removal rate. 

Fig. 3: main effect plot for surface roughness 

Fig. 4: main effect plot for material removal rate 

E. 3D RESPONSE SURFACE PLOT 

A 3D surface plot is a three-dimensional graph that 
is useful for investigating desirable response values 
and operating conditions. It is used to see how a 
response variable relates to two predictor variables. 
Effect of the resultant outputs with respect to different 
interaction combination are shown in Fig. 5 and 6.   

.  

           (a) 

 

        (b) 

(c) 

Fig. 5: 3D surface plot of surface roughness (a) with 
respect to cutting speed and depth of cut; (b) with 
respect to feed rate and depth of cut and; (c) with 

respect to feed rate and cutting speed 

 

        (a) 
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         (b) 

 

             (c) 

Fig. 6: 3D surface plot of surface roughness (a) with 
respect to cutting speed and depth of cut; (b) with 
respect to feed rate and depth of cut and; (c) with 

respect to feed rate and cutting speed 

F. QUADRATIC MODEL BY RSM 

Quadratic model equations developed for surface 
roughness and material removal rate by using 
response surface methodology are shown in eqn. (7) 
and (8). Correlation co-efficient (R

2
) value is found to 

be 94.30% for response surface and 95.56% for 
material removal rate which indicate that articulated 
RSM value can be used to predict the surface 
roughness value. In this case, t (Depth of Cut), Vc 
(Cutting Velocity), So (Feed rate) are significant model 
terms. 

Ra =7.053 + 9.411 * t - 0.039 * Vc - 64.325 * So + 0.008 
* t * Vc - 32.608 * t * So + 0.130 * Vc * So - 5.604 * t² + 
3.469e-05 *Vc² + 208.526 * So²                                  (7) 

                                                       

MRR =
  
26970.279 + 315977.770 * t + 342.941* Vc -

1876087.473 * So - 201.642 * t * Vc -1599587.367 * t * 
So + 1116.887 * Vc * So - 69451.099 * t² - 0.804 * Vc² + 
8951917.435 * So²                                                     

 
(8)                                           

 

G. COMPARISON OF EXPERIMENTAL VALUES WITH RSM 

MODEL 

Linear regression for the both experimental and 
RSM predicted values of surface roughness for MQL 
cutting condition & for material removal rate are shown 
respectively in Figure (7) & (8). The value of 
correlation coefficient is very close to 1 which implies 
that the experimental values are fairly accurate.   

 

          (a) 

 

         (b) 

Fig. 7: Linear Regression plot for MQL cutting 
condition (a) Experimental value of surface roughness 
(R = 0.99927) and (b) RSM Predicted value of surface 

roughness (R= 0.99872) 
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         (a) 

 

          (b) 

Fig. 8: Linear Regression plot for MRR (a) 
Experimental value of MRR (R = 0.99307) and (b) 

RSM Predicted value of MRR (R= 0.99974) 

H. PRINCIPAL COMPONENT ANALYSIS 

Firstly, Experimental data of surface roughness and 
material removal rate are normalized as shown in 
Table 7. The normalized responses range is kept in 
between 0 to 1. Pearson’s correlation coefficient for 
the response is shown in Table 8. The non-zero value 
of the co-efficient indicates that the responses are 
corelated. Using MINITAB, PCA has been applied to 
eliminate the correlation between the responses. 
Details of PCA (Eigen value, eigen vector, 
accountability proportion and cumulative accountability 
proportion) are shown in Table 9. From the corelated 
responses using eqn. 5, principal components are 
obtained. To calculate MPI, accountability proportion 
has been used as individual weight of the principal 
components.  Measured values from eqn. 6 are shown 

in Table 10. Higher MPI value gives better result.  The 
factorial combination that maximizes MPI can be 
considered as most optimum combination to ensure 
low surface roughness and high MRR. From Table 10, 
it is observed that highest MPI value is 0.101683. 
Highest MPI value having the combination of depth of 
cut 0.75 mm, cutting speed 230 m/min and feed rate 
0.10 mm/rev and surface roughness value of 1.556 µm 
and MRR value of 34306.168 mm

3
/min are shown in 

Table 11.  

TABLE 7: NORMALIZED RESPONSE FOR SURFACE 

ROUGHNESS AND MATERIAL REMOVAL RATE 

Run Ra MRR 

1 0.9896 0.0962 

2 0.9606 0.1817 

3 0.6909 0.2692 

4 0.7269 0.3846 

5 0.9478 0.1346 

6 0.8272 0.2544 

7 0.7919 0.3769 

8 0.7317 0.5385 

9 0.9664 0.1538 

10 0.7600 0.2908 

11 0.6685 0.4308 

12 0.9606 0.6154 

13 0.9220 0.2115 

14 0.8075 0.3998 

15 0.7738 0.5923 

16 0.7162 0.8462 

17 0.8854 0.2500 

18 1.0000 0.4725 

19 0.7643 0.7000 

20 0.6105 1.0000 

TABLE 8: CO-RELATION TEST 

Co-relation 
between 

Responses 

Pearson 
Correlation 
coefficient 

P-Value 
 

Comment 

Ra and MRR 0.62 0.004 Co-related 

TABLE: 9 PRINCIPAL COMPONENT ANALYSIS 

 PC1 PC2 

Eigen 
value 

1.6204 0.3796 

Eigen 
vector 

0.707 
0.707 

-0.707 
0.707 

AP 0.810 0.190 

CAP 0.810 1.000 
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TABLE 10: PRINCIPAL COMPONENTS AND MPI 

Run 

Individual Principal 
components MPI 

 
P1 P2 

1 0.767616 0.631655 0.741783 

2 0.807604 0.550637 0.75878 

3 0.678818 0.298127 0.606487 

4 0.78581 0.241964 0.682479 

5 0.765254 0.57491 0.729089 

6 0.764673 0.404919 0.69632 

7 0.826338 0.293368 0.725073 

8 0.897999 0.136614 0.753336 

9 0.792034 0.574497 0.750702 

10 0.742893 0.331747 0.664776 

11 0.777213 0.168107 0.661483 

12 1.114197 0.244044 0.948868 

13 0.801429 0.502316 0.744597 

14 0.853543 0.288214 0.74613 

15 0.965845 0.128323 0.806716 

16 1.104616 -0.09184 0.877289 

17 0.802704 0.449207 0.735539 

18 1.041056 0.372944 0.914115 

19 1.035245 0.045447 0.847183 

20 1.138652 -0.27535 0.869992 

TABLE 11 OPTIMUM MACHINING PARAMETERS BY PCA 

t, Vc and So  Ra MRR MPI value 

0.5 mm; 131 
m/min; 0.1 

mm/rev 

0.989 
µm 

21111.488 
mm

3
/min 

0.948868 

 

IV. DISCUSSION  

This research work focuses on the potentials of 
accomplishing machining operation in hard to machine 
metal matrix composite under MQL condition. An 
integrated RSM and PCA technique has been used to 
develop a predictive modeling to obtain good surface 
roughness and maximum material removal rate where 
predictive modeling was done using RSM and 
machining parameters were optimized by Principal 
component analysis. The outcomes of the summaries 
can be listed as follows: 

 From ANOVA analysis for surface roughness and 
MRR, P-value is found to be at 0.001 which implies 
that the model is significant. In case of surface 
roughness, Depth of cut and cutting velocity are touted 
to play the most prominent role whereas, the 
interaction between depth of cut and feed rate is the 
most prominent factor to achieve desired MRR. 

 3D surface plot indicates that a certain amount of 
interaction effect exists among the parameters. 
Combination effect of depth of cut and feed rate  

 From the main effect plot it is appreciable that to 
generate minimum surface roughness value, higher 
depth of cut and moderate feed rate is favorable. 
However, lower feed rate and medium to higher range 
of cutting speed can induce maximum amount of 
material removal rate under certain condition. 

 Linear regression plot of experimental values of 
surface roughness and MRR shows that correlation 
coefficient values are 0.99927 and 0.99307 
respectively 

 RSM generated mathematical model can be 
successfully used to predict the resultants responses. 
Correlation coefficient value is 0.99872 for surface 
roughness and 0.99974 for MRR which is very close to 
the experimental results that clearly pinpoints the 
validity of the developed quadratic model.   

 Principal component analysis is an attempt to 
improve the results found from main effect plot due to 
its acceptance of optimizing the parameters as it 
considers individual weights of the principal 
components.  

 Considering the largest MPI value as an index, it is 
suggested that to ensure optimum conditions for both 
the responses depth of cut need to be at 0.5 mm 
followed by cutting speed of 131 m/min and feed rate 
of 0.10 mm/rev. 

 PCA recommended that by ensuring mentioned 
cutting parameters surface roughness of 0.989 µm and 
maximum MRR of 21111.488 mm

3
/min can be 

achieved   
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