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Abstract—An enormous increase of data 
sources for chemical information and biological 
science requires a new development methodology 
for mining useful information. Such data sources 
give us an opportunity to utilize computational 
tools to mine useful information and to find new 
patterns in data sets that explain scientific 
phenomena not yet known. It is also important 
that non-expert users can access the latest 
cheminformatics methodology and models to 
spread the new discoveries. We present our 
previous developments in cheminformatics 
procedures and infrastructure that provide an 
appropriate approach to mining large chemical 
datasets. We also discuss the limitation of 
previous challenge and propose a new 
infrastructure with the state-of-the-art techniques 
expected to improve the performance.  
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I.  INTRODUCTION 

Recent progress in chemistry and life sciences 
have led to a large volume of new data sources called 
Big Data. Big Data is a data set that cannot be 
proficiently handled by conventional data processing 
technics. When we classify big data, different 
principles should be considered in data mining [1]. 
Cheminformatics belongs to a multidisciplinary filed 
that integrates life science, chemistry and computer 
science. The in silico illustration of chemical structures 
employs particular formats such as XML-based 
Chemical Markup Lange (CML), SMILES, SDF, and so 
on. The data in those formats are frequently used in 
large chemical databases such as PubChem [2], 
ChEMBL [3], and BindingDB [4]. Therefore, we can 
access a large volume of chemical compounds and 
biological activities in a diversity of biological assays. 

We need to connect chemical structures to the life 
science information. For example, systems biologists 
study the complex biological systems that integrate 
microarray datasets to biological pathways, using a 
large number of other data sets to provide evidence for 
the links [5]. 

A typical method to access data is a traditional 
query to the database manage systems by a human. A 
software agent can access and process the data in a 
uniform manner without human intervention. Web 
services are techniques of aggregating and integrating 
data sources and software. They allocate software 

applications and data source to be published on the 
network, therefore making tools and data broadly 
available with a standardized interface and enabling 
the construction of application that use distributed 
resources and data to resolve complex tasks. There 
are three standards to create Web services. Web 
Service Description Language (WSDL) is an XML-
based standard for presenting Web services and their 
parameters. Simple Object Access Protocol (SOAP) 
provides the envelope existing applications to match 
abstract interfaces in WSDL to their actual executions. 
Universal Description, Discovery and Integration 
(UDDI) provokes the publishing and browsing of Web 
services by user groups. Representational State 
Transfer (REST) architectural style replaces WSDL 
since the REST-based design methodology [6] was 
emerged. In RESTful style, there is no standard such 
as SOAP and any other payload formatted in HTML, 
XML, JavaScript Object Notation (JSON), or another 
format. The aspect of connections between distributed 
resources is important because it is easy to collect 
information from a diversity of high throughput 
screening and vendor catalogues. 

The MapReduce framework [7] provides a 
programming model for parallel and distributed 
handling of batch jobs on a large number of computing 
nodes. Each job in the MapReduce divided into two 
phases –map and reduce. The map phase divides the 
input data by relating each element with a key. The 
reduce phase handles each split independently, and all 
data is processed based on key-value pairs.  The map 
function processes a certain key-value pair and 
produces a certain number of new key-value pairs. 
The reduce processes all intermediate values grouped 
by the same key into another set of key value pairs as 
output. 

A scientific workflow is a specialized form of the 
general workflow, which designed particularly to 
compose and implement a set of tasks in an order 
depending on their relations in a scientific application 
[8]. The technic of scientific workflow has been 
successfully applied to the scientific fields including 
cheminformatics and life science. Scientific Workflow 
Management System (SWfMS) is a tool to implement 
workflows and handle data sets. Several Grids 
workflow projects are developed. Triana [9], Kepler 
[10], and Taverna [11] are typical examples. Triana is 
started from a single platform but supports distributed 
services with Grid awareness.  Kepler is also started 
from a single platform and it fully supports Grid 
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environment. It is widely used in many scientific 
domains and provides graphical user interface to 
organize workflows intuitively. Taverna is part of 
myGrid project and focuses on applications of life 
science. It recognizes the importance of provenance 
and semantics by a textual language. 

A workflow scheduler is critical for the efficient 
workflow management system. Many scientific 
workflow management systems hire their own 
scheduling algorithms [12, 13]. We need to find a 
proper algorithm for a good performance.  

The rest of this paper is organized as follows. 
Section 2 describes our previous work. Section 3 
presents MapReduce framework and scheduler. We 
illustrate a new architecture for data mining of large 
data sets in Section 4. We summarize and conclude in 
the last Section. 

II. PREVIOUS WORK 

We developed an infrastructure of Web service for 
cheminformatics that simplifies the access to drug 
discovery information and the computational 
techniques that can be applied to it [14]. At that time, 
the Web services were mostly based on Java. Using 
Java allows us to deploy our Web services in a Tomcat 
application module, which allows us to easily support a 
variety of services and provide an integration with our 
execution environments. The services themselves are 
hosted on a diversity of servers and are generally 
separated from database and functionality. Therefore 
Web services that provide database functionality will 
connect to a remote database server to retrieve 
results. 

We implemented Web service wrappers for several 
free and commercial cheminformatics tools. The 
commercial tools that we were permitted to use tools 
such as Digital Chemistry Divisive K-Means for 
clustering. We had a working relationship with the 
Murray-Rust group at Cambridge University [15] that 
was one of sites that had semantic Web approaches to 
cheminformatics. We implemented several of their 
Web services such as InChIGoogle, InChIServer, 
CMLRSSServer, and OSCAR for automatic mining of 
chemical structure information from documents. We 
also implemented a large amount of the functionality of 
the Chemistry Development Kit (CDK) as Web 
services such as descriptor calculation, 2D similarity 
and fingerprint calculations, and 2D structure 
depiction. We experimented a special modified Web 
service implementation of ToxTree [16] for toxicity 
flagging. 

Web services can be used in workflow tools such 
as Taverna workbench. The tools allow the creation of 
new functionality by linking together services and other 
application and data resource into workflows. Figure 1 
illustrates an example of Taverna workbench in a 
graphical user interface. The interface encloses a list 
of processes that the user enables invoking on that 
service. After selecting an operation, the user is 
accessible with an interface for the operation, which 

enables the user to specify all the input parameters to 
the operation. And the user can invoke the operation 
on the service and obtain the output results. 

 

Fig. 1. CDK Workflow in Taverna workbench. 

III. MAPREDUCE FRAMEWORK AND SCHEDULER 

MapReduce frameworks execute much better in 
tough environments than other tightly coupled 
distributed programming frameworks such as Message 
Passing Interface (MPI) because of their fault 
tolerance capabilities [17]. They are suitable to support 
many scientific use cases, and many scientists can 
build large data-oriented applications easily under 
could computing environment. 

Apache Hadoop [18] is a framework that provides 
distributed processing of large data sets and the 
implementation is based on Google MapReduce [19]. 
The Hadoop Distributed File System (HDFS) follows 
write-one-read-many pattern and does not support 
functions to change an existing file. The HDFS is 
designed for deployment on unreliable clusters and 
succeeds in reliability by the replication of data files. 
The Hadoop minimizes data communication by 
processing computations near the place it is stored. 
The architecture consists of a master node with many 
worker nodes and uses a queue for task scheduling 
and succeeds in load balance naturally among 
computing tasks. 

A classical workflow for collecting related data and 
inserted into a local database management system 
(DBMS) before processing data. The HDFS replaces 
the local database for a temporary storage. Apache 
Hadoop framework is a promising system to store the 
extracted huge datasets from databases. 

A scheduler of scientific workflows allocate tasks 
mapping on heterogeneous and distributed resources. 
A good algorithm can make tasks allocated to the 
proper resources and arrange the best sequence of 
parallel tasks. We need to consider two groups – users 
and service providers. Users are concerned with 
reliability and the service quality. So they want the 
result within the proper time. However, the servers aim 
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at their efficiency to capture maximum revenues. We 
can consider several strategies such as execution 
time-based strategy, just-in-time strategy, linear 
scheduling, policy base strategy, virtual machine 
strategy, gossip based strategy, reservation based 
strategy, and heuristic based strategy. We need to 
optimize our scheduler among those strategies in the 
future work. 

 

IV. ARCHITECTURE FOR DATA MINING OF LARGE 

CHEMICAL DATASETS 

In our previous work [14, 20], we introduced a 
chemical mining process to collect chemical structures. 
Figure 2 presents the architecture of the process 
implemented on a supercomputer with Message 
Passing Interface (MPI). Using PHP script queries and 
PubMed ID, we collect abstracts of research papers in 
the first step. A group of the abstract text files are 
assigned to each node in a supercomputer. In a node, 
a series of batch processes extracts chemical 
compounds and their three dimensional structures. 

 

 

Fig. 2. Architecture of a chemical compound mining 
process. 

 

In the experiment, even the super computer system 
took a lot of time to process about 500,000 abstracts. 
We suggest an architecture in which the Hadoop 
MapReduce Framework replaces the super computer 
system with a simple MPI. Figure 3 illustrates a new 
architecture replacing the super computer system in 
the Figure 2. The input text files are stored in the 
database (HDFS). The server provides graphical user 
interface as a part of workflow bench such as 
Tarverna. Workers are instances of the server and are 
only accessed by a scheduler that assigns execution 
tasks for mapping or reducing. We can employ a 
SOAP library to allow consumption of Web services. 

 

Fig. 3. New architecture for mining process 

 

V. CONCULUSION 

With recent progress in chemistry and life science 
generating a large datasets forces many requirements 
on a storage and an analysis framework. We describe 
a review of distributed systems designed to process 
chemical information. We also present our Web 
service and workflow development for cheminformatics 
in the previous work. However, the case study for 
mining chemical compound demonstrates a need for 
more efficient architecture for processing large 
datasets in chemistry and life science field. Thus we 
propose a new architecture with MapReduce 
framework to expect to address the performance 
problem. 
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