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Abstract - A simple methodology for gaseous injection
simulations with KIVA-3V by repurposing the liquid injection
subroutines is introduced and its capabilities and limitations
are demonstrated through an in-depth mesh sensitivity study
and compared to experimental literature results. It was shown
that this methodology allows for the accurate simulation of
round gaseous jets, as long as the mesh size near the injector
and jet core is on the order of the injector radius. Even at
greatly reduced mesh densities, the macroscopic
characteristics are reasonably well preserved. It was found
that the RNG k-epsilon model adequately describes the round
jet characteristics and that no additional modification to the
turbulence model was necessary.

During the investigation, a significant inconsistency
regarding the particle momentum coupling of the particle
phase with the gas phase was discovered. This affected both
the gaseous injection and evaporating liquid injection
processes within KIVA. The modifications necessary to
address this issue are outlined in detail. It is highly
recommended that researchers utilizing KIVA or any KIVA
derived codes, verify that this issue does not pertain to their
softwares and/or resolve it accordingly.

Keywords—Gaseous injection; liquid injection; direct
injection; KIVA; CFD modelling

l. INTRODUCTION

The ongoing push for increasingly efficient internal
combustion engines with low emissions has led to
significant research on advanced combustion strategies,
including multi-fuel engines with both liquid and gaseous
fuels, and designs utilizing exclusively compressed gaseous
fuels such as CNG. Though not commonly found
commercially, many such engine concepts have been studied
and built. While liquid injection algorithms have been
thoroughly studied and verified for both internal combustion
and gas turbine engine simulations, and have been an
integral part of many computational fluid dynamics (CFD)
codes for decades, similar gaseous injection models capable
of describing injector type compressible gaseous jets are
often lacking.

CFD codes can be grouped into two classes: scientific
research type codes and engineering application type codes.
Scientific-level codes generally utilize advanced methods
such as Direct Numerical Simulation (DNS) to resolve all
phases at all length scales and are inherently much more
accurate than engineering level codes [1]. DNS requires an
extremely fine mesh, resulting in high computational
memory and processing power requirements and
impractically long computational times. Engineering level

codes, on the other hand, rely on sub-models to describe
phenomena not resolvable on a relatively coarse length
scale, as well as commonly utilizing Lagrangian phase
calculations to describe the particle phase [2].

The motivation for this work was the need for a gaseous
jet injection model for engineering level CFD calculations,
that could adequately describe the macroscopic
characteristics of a gaseous jet plume, where the injector
nozzle is much smaller (about two orders of magnitude) than
the computational domain. For scientific level codes, this
disparity in scale is generally resolved by explicitly
modelling the internal flows of the injector without much
additional penalty, as fine mesh sizes are already required by
such techniques. Engineering level codes may also explicitly
model the internal flows and utilize advanced dynamic
meshing techniques to reduce the cell count in the main
computational domain (e.g. engine cylinder). However, the
injector size is often on the order of less than 1 mm diameter
and thus would require a mesh size on the order of 0.01 mm
to accurately resolve the flow, while the cells in the engine
cylinder is commonly on the order of 2 mm. The injector
modelling thus presents a significant penalty on the
computational speed due to the large number of cells
required to explicitly model the internal flows inside the
injector. Also, the interface between drastically different
mesh sizes presents challenges and often leads to the
introduction of additional error especially at the interface
between differently sized cells [3].

Alternatively, gaseous injection has historically often
been achieved by manually specifying individual cell faces
as inlet boundaries. This approach was used by Ouellette to
study the direct injection of natural gas in Diesel engines. In
addition to being cumbersome, this method requires perfect
match between the inlet boundary mesh size and injector
inlet area to be modelled to ensure correct mass flow rates
[4], [5] and thus does not allow for changes in the mesh
setup as would be required for mesh sensitivity studies.

The methodology of utilizing the liquid injection
subroutine for gaseous injections was first published by
Hessel et. al. under the term “Gaseous Sphere Injection” [6]
and compared to the experimental data by Witze [7], [8].
The gas was injected as parcels in the Lagrangian particle
domain and prevented from converting to the mixed
Lagrangian-Eulerian fluid or “gas phase” while near the
injector. After a prescribed distance from the injector, the
parcels were converted to the gas phase utilizing the KIVA
evaporation algorithm such that the entire parcel was
instantly added to the gas phase. Since the Lagrangian
particles are chemically non-reactive in KIVA, this has
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significant impacts especially on the near injector fuel
ignition in engine simulations. Further, turbulent kinetic
energy was artificially reduced within the jet plume
according to the empirical relationships presented by Witze.
These two modifications introduced several input variables,
which required model tuning to achieve agreement with the
experimental data. This same model was used by Choi et. al.
for a CNG direct injection study [9].

The gaseous injection model presented in this paper
utilizes the same gaseous spherical injection methodology
without the need for the artificial phase conversion delay
and the modifications to turbulent Kkinetic energy, which
were needed by Hessel to achieve agreement between the
experimental and computational results. This paper does not
claim to introduce an entirely model, but rather suggests a
correction to the previous injection model, as well as
describing the capabilities and limitations of this model in a
novel context, i.e. its applicability to gas injections. The
model is easy to implement, negates the need for explicit
modelling of the internal injector geometry, is relatively
robust against mesh changes, and correlates well with
experimental results, while not requiring the introduction of
any model tuning constants to achieve agreement with the
experimental results.

Il.  SIMULATION

All simulations were performed using KIVA 3V release
2 on a Linux personal computer. The mesh consisted of a
3x3x6 cm volume of ambient air at 1 atm pressure and
300K. The domain dimensions were chosen to avoid any
wall boundary effects, as was verified by the results.
Further, the bottom boundary was modelled as an outflow
boundary to maintain constant pressure within the test
volume.

The gas was injected directly downwards from the top
center of the volume. In this case air was injected into
ambient air. However, within the simulation the injected air
was treated as a separate species to differentiate it from the
ambient air for post processing. Each simulation was carried
out for 8 ms with gas being injected using a square wave
injection profile for a duration of 4 ms beginning at the start
of the simulation. The injection velocity of 103.5 m/s and
injection mass of 0.5529 mg were defined as input
parameters to represent the experimental and computational
setups by Witze and Hessel respectively, negating the need
to specify injection pressure. The injector was a single-hole,
straight bore injector of 0.6 mm radius. The wall
temperatures and injection temperature were both set to
300K.

The gaseous injection was achieved by utilizing the
KIVA fuel injection subroutines. The injection gas is
quantified in the fuel library based on the thermodynamic
properties calculated by assuming volume fractions of 79%
Nitrogen and 21% Oxygen and utilizing the thermodynamic
data presented by Vargaftik [10]. For gaseous species, a
“liquid density” is defined within the fuel library, which is
largely immaterial for the injection process since the
injection mass and velocity are specified and thus only
influences the number of parcels injected at each time step.
The low critical temperature of the gaseous species triggers
an immediate and complete conversion of the gaseous
parcels from the Lagrangian particle phase to the gas phase
through the KIVA evaporation subroutines as soon as the
parcel enters the computational domain. The simplicity of

implementation of this approach compared to manually
identifying injection cells and setting them to inflow
boundaries is a major benefit of the method, especially when
multiple injectors are modelled. Table I outlines the details
of the various cases presented here.

TABLE I. DESCRIPTION OF CASE DETAILS
Nr. of Mesh
Case Mesh size dx=dy=dz [mm] cells
nx/ny/nz
1 1.5 20/20/40
2 1. 30/30/60
3 0.75 40/40/80
4 0.625 48/48/96
5 0.625 48/48/96
Computational Time [min] Tug/tl):(;(ea?ce
1 5.32 RNG
2 29.77 RNG
3 131.12 RNG
4 321.61 RNG
5 321.30 Stnd. K-Epsilon

I1l.  ERRONEOUS RESULTS USING UNMODIFIED
KIVA

The attempt to recreate the experimental results by Witze
and the corresponding computational results by Hessel using
an unmodified version of KIVA 3V release 2, revealed
several inconsistencies in the result. While the results for
axial velocity utilizing the mesh size described by Hessel
appeared promising at first, a high inverse mesh dependency
was observed. In general, one would expect the quality of
computational results to improve with increasing mesh
density. However, in this case it was found that
computational results appeared to converge only with
increasingly coarse meshes and diverged from the
experimental results as the mesh was refined. This is shown
in Fig. 1, which depicts the interpolated centerline velocity
at the first probe point 2.9 mm from the injector for various
mesh sizes.

Mesh Dependence using
unmodified KIVA algorithm
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Fig. 1: Mesh sensitivity of steady state velocity at probe point 1
at 2.9 mm from the injector
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Specifically, the refined mesh caused the axial centerline
velocity to be severely overpredicted in individual cells as
cell size was reduced below 2 mm, to the point where
velocities near the injector significantly exceeded the
prescribed injection velocity of 103.5 m/s. This trend
appeared to continue in an exponential fashion as cell size
was further reduced, producing clearly non-physical results.
It should be noted that the values depicted in Fig. 1 are
interpolated values for the probe point and individual vertex
values were even higher for all cases. The apparent
convergence at coarser mesh sizes is due to the reduced
impact of the injected gas on the larger cell mass.

It should further be noted that the use of centerline
velocity in this context has severe limitations for
comparison. Due to the nature of finite volume
computations and similarly experimental measurements
using hotwire anemometers, the exact peak centerline
velocity cannot be measured due to the finite length scales
of the mesh size and hotwire anemometer. Instead, in both
cases an average value capturing the centerpiece of the
Gaussian radial velocity distribution, as depicted in Fig. 2, is
obtained. This will cause an under-prediction of the
centerline velocity, especially when the mesh size is large
compared to the jet radius, and in particular close to the
nozzle where the radial velocity gradient is largest. It is thus
expected that the calculated and measured centerline
increases as mesh size is refined and the size of the hotwire
anemometer reduced. However, in no case can this effect
account for a predicted velocity larger than the jet injection
velocity, as was produced by the unmodified KIVA code.
These results are thus clearly erroneous and the underlying
source of this error must be investigated.

{1 DEVELOPED
- REGION

..‘

- TRANSITION
: - REGION -

Fig. 2: Characteristic structure of an ideal axisymmetric
turbulent jet [8]

The results further showed asymmetrical jet behavior.
Further investigation and overlaying of the mass fraction
and velocity profiles clearly depicted an offset between the
mass and momentum contour outlines, which was identified
as the cause for the asymmetrical jet behavior. Fig. 3
demonstrates this for the coarse mesh used in Case 1 with
arbitrary contour levels to aid in the visualization. The left
(red) mass fraction plume and the right (blue) velocity
profile plume are clearly offset and originating from
different locations, as well as differing in shape.
Specifically, analysis of the raw data showed the mass
plume to originate from the cell center and the velocity
plume originated from one of the corresponding vertexes.

Fig. 3: Mass (red) and Momentum (blue) Plume Offset (zoomed
in mesh section)

IV. CORRECTIONS TOKIVA

To understand and correct the origin of the issue
described above, the KIVA algorithm needs to be
understood. KIVA utilizes Lagrangian particle tracking in
the Cartesian coordinate system (denoted as the “particle
phase”). Information such as location, mass, Vvelocity,
temperature etc. are stored in reference to each particle, and
are not bound to any mesh cells or vertex.

The fluid or “gas phase” is defined by a mixed
Lagrangian-Eulerian description, where the governing
equations are solved through a modified Arbitrary
Lagrangian-Eulerian method (ALE). Being a finite volume
method, the ALE method utilizes primarily cell center based
guantities, such that mass, momentum, internal energy etc.
are stored at each cell center. However, KIVA utilizes cell-
faced velocities, which is done to minimize parasitic
velocity modes. Thus, unlike the cell center based quantities,
the velocities are stored at each cell vertex.

The gas phase is thus described by a single explicit mesh
defined by its vertices, where each cell vertex is labeled 1
through 8. The front left bottom vertex (i4) of each cell is
used as the reference vertex to identify the current cell.

Additionally, an implicit mesh of “momentum cells” is
defined based on the regular vertices, in which 1/8th of each
momentum cells overlaps each of the neighboring regular
cells. The momentum cells are utilized in the differencing of
the momentum equation, and are referenced by identifier
“imom”, which lies at the center of the momentum cell and
at the vertex of the regular cell. A visualization is provided
in Fig. 4. For more detailed information, the reader is
referred to the KIVA 2 manual [11].
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four such faces in all.

(Zijks Yijkr Zijk)

Front View of regular
cell (solid) and 2 momentum
cells (dashed)

i4 Vertex imom

Uy S

Fig. 4: KIVA naming conventions for cell identifiers

The issue arises in properly distributing the mass,
momentum, and energy of the Lagrangian parcels to the gas
phase mesh. In the unmodified KIVA process, the regular
cell containing an evaporating parcel is identified and the
parcel mass and internal and turbulent energy are added to
the center of the cell.

Similarly, the momentum cells in which the parcel is
located is identified, and the momentum of the evaporated
parcel is added to this momentum cell. However, the
momentum cell and regular cell are offset from each other.
Thus, the momentum is added to a slightly different location
in the mesh than the corresponding mass. When the mesh
size becomes sufficiently coarse or the mass and momentum
become sufficiently large compared to the undisturbed gas
phase cell, this creates notable inconsistencies in the location
of the mass and momentum jet plumes, as well as creating
false asymmetric behavior in the solution.

The issue is further exacerbated by the fact that the
velocity at each vertex is a derived quantity. KIVA tracks
momentum by solving the momentum equation. Velocity at
each vertex is calculated by dividing momentum by mass.
In the unmodified KIVA code, this is achieved by defining
an auxiliary vertex mass, mvertex, which is simply 1/8th of
the corresponding cell mass.

However, since the momentum was deposited at the
momentum cell, the location of which corresponds to a
singular of the eight vertices, a mismatch between the
momentum and mass considered for this calculation is
experienced. In effect, a singular vertex receives the entire
parcel momentum, which is then divided by 1/8th of the
parcel mass, such that velocity, u, at that vertex i4 at time t
is given by the momentum at the vertex, P, and the vertex
mass, mvertex.

t-1
t _ Pi4 + Pparcel 1
ul, = ? @
Myertex i4 + § mparcel

Thus, the velocity is highly overpredicted at this vertex.
The other vertices of the regular cell receive no additional
momentum contribution from the evaporated parcel, yet the
previously existing momentum of these vertices is still
divided by an auxiliary vertex mass that was increased by
1/8th of parcel mass. This results in a diminishment of the
momentum and thus velocity at these vertices. In this case,
the velocity is incorrectly described as

t—1
Pl = at T 2)
Myertex ia t §mparcel

To summarize, a discrepancy between the location of
mass and momentum contribution from evaporating parcel
was found, as well as a discrepancy between the momentum
and respective auxiliary vertex mass used to derive the
vertex velocities. It is suggested that the KIVA code should
be modified to ensure that any momentum contribution from
evaporating parcels is attributed to the same location in the
mesh as its corresponding mass addition to the gas phase,
such that the velocity at each vertex of the cell containing
the evaporating parcel is described as

1
Pit4_1 +3P arcel
uf, = £ 3)
Myertex ia T §mparcel

Fortunately, the issue is easily rectified through the
following corrections:

1. In subroutine pcouple the following lines (generally
located in loop 30) must be extended for all vertices, i1
through i8, and modified such that each vertex receives
1/8th of the parcel momentum contribution (ru/rv/rw) in
accordance with the mass distribution. This requires
redefining these vertices (i1-i8) relative to i4 within the
loop.

u(i4)=(u(id)-ru (i4))*srcmv
V(i4)=(v(i4)-rv (i4))*srcmv
w(id)=(w(id)-rw (i4))*srcmv

2. The conversion from momentum to velocity (*srcmv in
the lines above) must be separated from the loop and
performed separately by introducing an additional loop
to avoid multiple applications of the conversion factor,
since every vertex is now addressed up to eight times.

3. In subroutine pmom (generally loop 30), the identifier
imom must be changed to i4 in the lines calculating ru
(shown below), rv, rw and suvw.

ru(imom)=ru(imom) + partrm* (rdenr3*
(upt+dragdt*uprime)- radp3*upt)

This will ensure that the same cell is chosen for both the
mass and the momentum contribution.
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It should be noted that these lines of code from the
unmodified KIVA code are provided to aid in the
identification of the lines of code that require changes and
do not reflect the necessary changes mentioned above.

It should further be noted here again, that in this study
the injection subroutines in KIVA were utilized for purposes
other than their intended purpose of only liquid injection. In
gaseous injection, all parcels are immediately converted to
the gas phase through the evaporation subroutine. Since all
mass and all momentum are added to a single cell and parcel
mass may no longer be much smaller than the undisturbed
cell mass, the described effects are much more pronounced
than ordinarily experienced in liquid injection evaporation
processes. During liquid injection, mass and momentum
contributions are generally small compared to cell mass and
dense uniform sprays will likely result in each vertex
receiving momentum contributions from parcels in the
neighboring cells, further masking the issue. The effect of
the described issue is thus much less pronounced in
evaporating liquid sprays, while addressing the issue for
gaseous injection simulations is much more crucial.
Nonetheless, it is highly recommended to apply these
changes for liquid injection simulations as well.

Previous researchers, such as Nordin [12] have
investigated more sophisticated momentum coupling
approaches, such as weighting the momentum to the inverse
of the distance between the parcel location and the vertices.
Such inverse distance weighting was investigated as part of
this research but deemed fundamentally unworkable in the
context of the KIVA code, as any weighting of the
momentum would also imply a non-uniform mass
distribution within the cell, which is impossible without
additional subgrid models.

Abani and Reitz also investigated the momentum
coupling spray parcels with the gas phase, but focused
mainly on particle-particle interactions by developing a
model based on an effective injection velocity derived from
Helmholtz’s vortex motion analysis [13], [14]. They did,
however, not address the momentum coupling deposit
location issue described in this paper.

V. RESULTS

The velocity profiles presented in Fig. 5, Fig. 10, Fig. 11
and Fig. 13 were obtained by interpolating the adjacent
vertex values to obtain the quantities at the probe points.
Each line represents the distance of the probe point from the
injector along the centerline of the jet.

The steady-state plateau velocities at the jet centerline in
Fig. 5 show overall good agreement with the experimental
results by Witze depicted in Fig. 6 and the computational
results by Hessel et. al depicted in Fig. 7.

The computational results show a slight over-prediction
of axial velocity near the injector nozzle compared to the
experimental results. This may be explained by the
limitations of the experimental setup due to the finite size of
the hotwire anemometer of 1 mm. In the near nozzle area,
the probe size exceeds the jet core size, thus capturing the
effects of diminishing velocities at the edge of the parabolic
jet velocity profile and leading to overall reduced velocity
readings. Further from the injector, the computational results
axial velocities are within the experimental scatter.

The computational results show a markedly faster
response to the initiation and termination of the jet in the
near-injector region than in the experimental results in Fig.
6. The difference is easily explained by the response time of
the opening and closing of the injector valve, which is not
modelled here and instead represented by the immediate
response of the modelled square wave injection profile.

Axial Velocity: Case 4
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Fig. 5: Computational centerline Velocity Case 4, fine mesh with
RNG model
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Fig. 6: Ensemble-averaged measurements of the starting-jet
centerline mean velocities by Witze [7] [8]
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Fig. 7: Computational centerline velocity results by Hessel et. al.

(6]

WWWw.jmest.org

JMESTN42352813

9428


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403
Vol. 6 Issue 1, January - 2019

The jet penetration, as observed by the flow acceleration
at each probe point and represented by the timing of
increasing slopes of the velocity profile, further show good
agreement with the experimental results, as well as a marked
improvement over the significantly delayed values observed
in the computations by Hessel. Further, the non-
dimensionalized jet penetration in Fig. 8, as defined by the
time to reach 70% of the steady state velocity, shows near
perfect agreement for Case 4, compared to the experimental
data in Fig. 9. Here u_jdenotes the jet exit velocity in m/s,
r_j denotes the effective nozzle radius in mm and t j
denotes the jet time constant.

The coarser meshes of cases 1, 2 and 3 result in a
reduction of jet penetration with cases 2 and 3 still being
fairly accurate. The difference is mainly attributed to the
reduced centerline velocity near the injector nozzle resulting
from the averaging of the jet with the surrounding quiescent
volume. Additionally, the coarser mesh may contribute to
this effect, as the jet plume has to traverse an increased
distance between vertices and it may take several time steps
before the jet is reported at the next cell.

Jet Penetration at 103.5 m/s (70%

SS Velocity)

60
=
=50
3
8
< 40
S
[%2]
A 30 Case 1
=)
A=) —&— Case 2
= 20
5 —8—(Case 3
% 10 —>—(Case 4
A —&— Case 5

o

0 10 20 30
Square-root of Time -SQRT(t/tj)

Fig. 8: Tip penetration distance as a function of the square root
of time elapsed from initiation of the jet
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Fig. 9: Jet penetration experimental results by Witze [7], [8]

Fig. 10 depicts the same case as discussed above, except
with a significantly coarser mesh. While the plot is
qualitatively similar to the fine mesh case, quantitatively the
centerline velocities are significantly under-predicted near
the injector. However, the far field centerline velocities are
remarkably well captured. The same trend is observed for
cases 1 and 3. Even the extremely coarse mesh of case 1 in
Fig. 11 manages to fairly accurately depict the far field
velocities, especially when keeping in mind the drastically
reduced computational time for this case, despite the large
deterioration of the near-injector velocities. This is
explained by the fact that the total jet momentum is identical
for all cases despite differences in average cell velocities.

Axial Velocity: Case 2
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Fig. 10: Axial Velocity Case 2, coarse mesh with RNG model
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Fig. 11: Axial Velocity Case 1, extremely coarse mesh with RNG
model

Fig. 14 and Fig. 15 depict the velocity and mass fraction
profile cross section at the jet centerline respectively. All of
these plots are taken at 3.5 ms after the start of injection,
which marks a point where all probe points are at their
respective steady-state velocity. In both the mass fraction
and velocity plots, a severe blurring of the gradients can be
observed with the very coarse mesh in case 1, as well as a
slightly reduced jet penetration and correspondingly
increased jet spreading. As expected, the correct prediction
of these gradients are improved with the refinement of the
mesh, to the point that case 3 and 4 are practically
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indistinguishable. However, the macroscopic qualities of
penetration and spreading of the jet plume show little
variation between all cases. This smearing of the solution is
unavoidable with coarse meshes and would also be present
if the gas was introduced through a boundary surface.

Finally, Fig. 12 depicts a visualization of the velocity
profile of a fully developed jet produced in MatLab based on
the empirical model proposed by Witze [8], which shows
good agreement of the momentum spreading rate of the jet
compared to case 4 in Fig. 14. It should be noted that the
empirical model proposed by Witze assumes constant jet
velocity within a distance of 12.5 times the injector radius,
or 7.5 mm in this case. This explains the more pronounced
high velocity core near the injector. Unlike the starting jets
depicted in Fig. 14, the empirical model depicts a fully
developed steady state jet, explaining the higher velocities in
the far field and reaching the lower edge of the domain.
Thus, conclusions can only be made on the spreading angle,
while the penetration distance is not comparable with the
other results. However, both the empirical velocity profile in
Fig. 12 and the predicted velocity profile for case 4 in Fig.
14 display an initial spreading angle of about 16 degrees and
thus show excellent agreement.
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Fig. 12: Fully developed velocity profile according to empirical
model by Witze [8]

VI. EFFECT OF TURBULENCE MODEL

The turbulent round-jet/plane-jet anomaly is a well-
known and well-documented issue describing a roughly
40% over-prediction in spreading rate, along with the
associated reduction in penetration length, when modelling
round jets using the standard k-epsilon turbulence model
[15]. Many improved turbulence models, such as the RNG-
k-epsilon model [16]& [17], which was implemented in the
KIVA-3V code on release 2 [18], and the Realizable k-
epsilon model [19], which addresses the round jet anomaly
particularly well, have been developed.

While the standard k-epsilon model only accounts for
turbulence production of a single length scale, the RNG k-
epsilon model utilizes renormalized group theory to take
into account different length scales and only systematically
removes the smallest length scales to achieve resolvability
of the model, leading to improved model performance. A
further benefit is that the model constants can be explicitly
calculated using the RNG approach [20], thus negating the
need for model tuning.

Axial Velocity: Case 5

100 - = =29mm
E 80 7.9 mm
é. 13 mm
> 60
g - =181

mm
§ 40
=
5
Z 20
0 SES % -
7 8

Fig. 13: Axial Velocity Case 5, Fine mesh with standard K-
Epsilon model

Given the common round-jet anomaly problem, the
discrepancies encountered due to the issues in the KIVA
momentum coupling described above can easily be
misinterpreted as turbulence modelling issues. Fig. 13
depicts the axial velocity profiles using the same refined
mesh as case 4 but utilizing the standard k-epsilon model
instead of the RNG k-epsilon model.

It is apparent that the axial steady state velocity is
significantly reduced at all probe locations. Similarly, Fig. 8
shows a significant reduction in jet tip penetration for case 5.
Further explanation can be gleaned from the velocity cross
section profile for case 5 in Fig. 14 and the mass fraction
profile in Fig. 15, which clearly show a significantly
increased spreading rate of the jet near the injector with an
initial spreading angle of about 22 degrees, as compared to
the 16 degree initial spreading angle of RNG simulation and
the empirical results. The high velocities near the injector
along with the overestimate of the turbulence values of the
k-epsilon increase turbulent mixing and spreading rate while
quickly diminishing the high velocity cone at the jet
centerline, which is still present in the RNG k-epsilon cases.

Given the presented results for cases 1-4 with respect to
jet penetration and spreading angle, it was determined that
the RNG k-epsilon model adequately describes the
turbulence of the round jet in this case and that no further
introduction of more sophisticated turbulence models or
other means of artificial turbulence reduction, such as
presented by Hessel, were necessary.

VII. CONCLUSIONS

It was demonstrated that the liquid injection subroutines
may be utilized for gaseous injection modelling with only
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minor modifications, which leads to a fast implementation
time.

It was shown that this methodology allows for the
accurate simulation of round gaseous jets, as long as the
mesh size near the injector and jet core is on the order of the
injector radius, in order to capture the smallest feature of
interest which in this case is the jet core velocity and mass
distribution.

The macroscopic characteristics of the jet plume,
including jet penetration and spreading angle, were
reasonably well preserved far from the injector even as a
coarser mesh size was used. A coarser mesh may be utilized
if the near injector characteristics are not of great importance
and no chemical reactions are modelled, such that mass
fractions are of lower significance. Thus, in many cases a
significant reduction in computational times may be
achieved while maintaining adequate solution quality of the
macroscopic jet plume characteristics.

As the mesh size becomes coarser, the high velocity and
mass fraction gradient are lost due to smearing of the
solution gradients. Especially for chemically reacting flows,
the mass fraction gradient will have significant effects on the
chemical reaction rates and thus a refined mesh near the
injector on the order of the injector radius is necessary.

The injection methodology described in this paper does
have some drawbacks. The algorithm will always center the
injector location on the injection cell. This may lead to
difficulties accurately positioning the injector within the
mesh, especially with very coarse meshes. This may be
remedied by refining the mesh at the injector location.
Additionally, if multiple injectors/injector holes are
modelled, each injector requires all 8 vertices of the
injection cell without overlap to other injection cells in order
to avoid cancellation of the momentum of opposing jets.

Modifications to distribute the parcel momentum to each
vertex on the basis of the inverse distance-from-the-injector
weighting instead of even distribution to all 8 vertices was
deemed fundamentally unworkable in the context of the
current KIVA code, as this introduces the invalid
assumption of non-uniform subgrid mass distributions,
which would require extensive modifications to KIVA.

It was found that upon the correction of the momentum
coupling process, the RNG k-epsilon model described the jet
characteristics well and adequately addressed the round jet
anomaly. Thus, no additional modifications to the
turbulence model were deemed necessary. This negates the
necessity to introduce additional tuning constants to the
model. Further, by immediate conversion of the parcels from
the particle phase to the gas phase, and due to the relatively
large size of the parcel volume compared to the cell volume,
the mass fractions in the near injector area are well captured.

A significant flaw regarding the momentum coupling of
the particle phase with the gas phase affecting both gaseous
injection and evaporating liquid injection processes was
discovered within KIVA. The simple modifications
necessary to address this issue were outlined in detail. It is
highly recommended that researchers utilizing KIVA or any
KIVA derived codes verify that this issue does not pertain to
their softwares and/or resolve it accordingly.

Ongoing efforts for further research are underway to
extend this gaseous injection approach to function on a

pressure difference basis by modelling a constant pressure
injector in order to improve its usability and applicability for
internal combustion engine simulations, while taking into
account compressibility effects.

REFERENCES

[1] G. Tryggvason, R. Scardovelli and S. Zaleski, "Direct Numerical
Simulations of Gas-Liquid Multiphase Flows,” Cambridge
University Press, 2011.

[2] J. Dukowicz, "A particle-fluid numerical model for liquid sprays,”
Journal of Computational Physics, vol. 35, no. 2, pp. 229-253, 1980.

[3] G. Micklow and W. Gong, “Investigation of the grid and Intake
Generated Tumble on the In-Cylinder Flow of a Direct Injection
Compression Ignition Engine," Journal of Automotive Engineering ,
vol. 222, no. 5, pp. 775-788, 2008.

[4] P. Ouellette, "Direct Injection of Natural Gas for Diesel Engine
Fueling," Ph.D. Thesis, University of British Columbia, 1996.

[5] P. Ouellette and P. Hill, "Turbulent Transient Gas Injections,”
Journal of Fluids Engineering, vol. 122, p. 743, 2000.

[6] R.P.Hessel, N. Abani, S. M. Aceves and . D. L. Flowers, "Gaseous
Fuel Injection Modeling Using a Gaseous Sphere Injection
Methodology," in Powertrain & Fluid Systems Conference &
Exhibition, Toronto, Canada, 2006.

[7] P. O. Witze, "Hot-Film Anemometer Measurements in a Starting
Turbulent Jet," AIAA Journal, pp. 308-309, 1983.

[8] P. O. Witze, "The impulsively Started Incompressible Turbulent Jet,"
Sandia Laboratories Energy Report, pp. SAND80-8617, 1980.

[9] M. Choi, S. Lee and S. Park, “Numerical and experimental study of
gaseous fuel injection for CNG direct injection,” Fuel, vol. 140, pp.
693-700, 2015.

[10] N. Vargaftik, Tables on the Thermophysical Properties of Liquids
and Gases, New York: Halsted Press, 1975.

[11]A. Amsden, P. O'Rourke and T. Butler, "KIVA-II: A Computer
Program for Chemically Reactive Flows with Sprays,” Los Alamos
Report LA-11560-MS, 1989.

[12]N. Nordin, “Complex Chemistry Modeling of Diesel Spray
Combustion," PhD Dissertation, Chalmers University of Technology,
Gothenburg, Sweden, 2001.

[13] N. Abani and R. Reitz, "A Model to Predict Spray-tip Penetration for
Time-varying Injection Profiles,” in ILASS Americas, 20th Annual
Conference on Liquid Atomization and Spray Systems, Chicago, IL,
May 2007.

[14]N. Abani and R. Reitz, "Unsteady turbulent round jets and vortex
motion," Physics of Fluids, vol. 19, no. 12, 2007.

[15] S. Pope, "An explanation of the turbulent round-jet/plane-jet
anomaly," AIAA Journal, vol. 16, no. 3, pp. 279-282, 3 1978. Z. Han
and D. Reitz, "Turbulence Modeling of Internal Combustion Engines
Using RNG k-epsilon Models,” Combustion Science and
Technology, vol. 106, pp. 267-295, 1995.

[16]z. Han and D. Reitz, "Turbulence Modeling of Internal Combustion
Engines Using RNG k-epsilon Models," Combustion Science and
Technology, vol. 106, pp. 267-295, 1995.

www.jmest.org

JMESTN42352813

9431


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403
Vol. 6 Issue 1, January - 2019

[17]s. Lam, "On the RNG theory of turbulence,” Physics of Fluids A,
vol. 4, no. 5, pp. 1007-1017, 1992.

[18]A. Amsden, "KIVA-3V: A Block-Structured KIVA Program for
Engines with Vertical or Canted Valves," Los Alamos Report LA-
13313-MS, 1997.

VIII.

Casel Case 2 Case 3
Fig. 14: Velocity Profiles

Casel Case 2 Case 3
Fig. 15: Mass Fraction Profiles

[19]T. shih, A. Shabbir, Z. Yang and J. Zhu, "A New k-epsilon Eddy
Viscosity Model for High Reynolds Number Turbulent Flows -
Model Development and Validation,” NASA  Technical
Memorandum, vol. 1994, 106721.

[20] V. Yakhot, S. Orszag, S. Thangam, T. Gatski and C. Speziale,
"Development of turbulence models for shear flows by a double
expansion technique," Physics of Fluids A, vol. 4, no. 7, pp. 1510-
1520, 1992.

APPENDIX

b

cm/s vel

9000
8500
8000
7500
7000
6500
6000
5500
5000
4500
4000
3500
3000
2500
2000
1500
1000
500

Case 4 Case 5

N
3
?’
N-<

| ENNRNNEENEEES
[=N=Ne )
g&&(ﬂ

Case 4 Case 5

WWWw.jmest.org

JMESTN42352813

9432


http://www.jmest.org/

