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Abstract - A simple methodology for gaseous injection 

simulations with KIVA-3V by repurposing the liquid injection 

subroutines is introduced and its capabilities and limitations 

are demonstrated through an in-depth mesh sensitivity study 

and compared to experimental literature results. It was shown 

that this methodology allows for the accurate simulation of 

round gaseous jets, as long as the mesh size near the injector 

and jet core is on the order of the injector radius. Even at 

greatly reduced mesh densities, the macroscopic 

characteristics are reasonably well preserved. It was found 

that the RNG k-epsilon model adequately describes the round 

jet characteristics and that no additional modification to the 

turbulence model was necessary.  

During the investigation, a significant inconsistency 

regarding the particle momentum coupling of the particle 

phase with the gas phase was discovered.  This affected both 

the gaseous injection and evaporating liquid injection 

processes within KIVA. The modifications necessary to 

address this issue are outlined in detail.  It is highly 

recommended that researchers utilizing KIVA or any KIVA 

derived codes, verify that this issue does not pertain to their 

softwares and/or resolve it accordingly. 

Keywords—Gaseous injection; liquid injection; direct 

injection; KIVA; CFD modelling 

I.  INTRODUCTION 

The ongoing push for increasingly efficient internal 
combustion engines with low emissions has led to 
significant research on advanced combustion strategies, 
including multi-fuel engines with both liquid and gaseous 
fuels, and designs utilizing exclusively compressed gaseous 
fuels such as CNG. Though not commonly found 
commercially, many such engine concepts have been studied 
and built. While liquid injection algorithms have been 
thoroughly studied and verified for both internal combustion 
and gas turbine engine simulations, and have been an 
integral part of many computational fluid dynamics (CFD) 
codes for decades, similar gaseous injection models capable 
of describing injector type compressible gaseous jets are 
often lacking. 

CFD codes can be grouped into two classes: scientific 
research type codes and engineering application type codes. 
Scientific-level codes generally utilize advanced methods 
such as Direct Numerical Simulation (DNS) to resolve all 
phases at all length scales and are inherently much more 
accurate than engineering level codes [1]. DNS requires an 
extremely fine mesh, resulting in high computational 
memory and processing power requirements and 
impractically long computational times.  Engineering level 

codes, on the other hand, rely on sub-models to describe 
phenomena not resolvable on a relatively coarse length 
scale, as well as commonly utilizing Lagrangian phase 
calculations to describe the particle phase [2].  

The motivation for this work was the need for a gaseous 
jet injection model for engineering level CFD calculations, 
that could adequately describe the macroscopic 
characteristics of a gaseous jet plume, where the injector 
nozzle is much smaller (about two orders of magnitude) than 
the computational domain. For scientific level codes, this 
disparity in scale is generally resolved by explicitly 
modelling the internal flows of the injector without much 
additional penalty, as fine mesh sizes are already required by 
such techniques. Engineering level codes may also explicitly 
model the internal flows and utilize advanced dynamic 
meshing techniques to reduce the cell count in the main 
computational domain (e.g. engine cylinder). However, the 
injector size is often on the order of less than 1 mm diameter 
and thus would require a mesh size on the order of 0.01 mm 
to accurately resolve the flow, while the cells in the engine 
cylinder is commonly on the order of 2 mm. The injector 
modelling thus presents a significant penalty on the 
computational speed due to the large number of cells 
required to explicitly model the internal flows inside the 
injector. Also, the interface between drastically different 
mesh sizes presents challenges and often leads to the 
introduction of additional error especially at the interface 
between differently sized cells [3].  

Alternatively, gaseous injection has historically often 
been achieved by manually specifying individual cell faces 
as inlet boundaries. This approach was used by Ouellette to 
study the direct injection of natural gas in Diesel engines. In 
addition to being cumbersome, this method requires perfect 
match between the inlet boundary mesh size and injector 
inlet area to be modelled to ensure correct mass flow rates 
[4], [5] and thus does not allow for changes in the mesh 
setup as would be required for mesh sensitivity studies. 

The methodology of utilizing the liquid injection 
subroutine for gaseous injections was first published by 
Hessel et. al. under the term “Gaseous Sphere Injection” [6] 
and compared to the experimental data by Witze [7], [8]. 
The gas was injected as parcels in the Lagrangian particle 
domain and prevented from converting to the mixed 
Lagrangian-Eulerian fluid or “gas phase” while near the 
injector. After a prescribed distance from the injector, the 
parcels were converted to the gas phase utilizing the KIVA 
evaporation algorithm such that the entire parcel was 
instantly added to the gas phase. Since the Lagrangian 
particles are chemically non-reactive in KIVA, this has 
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significant impacts especially on the near injector fuel 
ignition in engine simulations. Further, turbulent kinetic 
energy was artificially reduced within the jet plume 
according to the empirical relationships presented by Witze. 
These two modifications introduced several input variables, 
which required model tuning to achieve agreement with the 
experimental data. This same model was used by Choi et. al. 
for a CNG direct injection study [9].      

The gaseous injection model presented in this paper 
utilizes the same gaseous spherical injection methodology 
without the need for the artificial phase conversion delay 
and the modifications to turbulent kinetic energy, which 
were needed by Hessel to achieve agreement between the 
experimental and computational results. This paper does not 
claim to introduce an entirely model, but rather suggests a 
correction to the previous injection model, as well as 
describing the capabilities and limitations of this model in a 
novel context, i.e. its applicability to gas injections. The 
model is easy to implement, negates the need for explicit 
modelling of the internal injector geometry, is relatively 
robust against mesh changes, and correlates well with 
experimental results, while not requiring the introduction of 
any model tuning constants to achieve agreement with the 
experimental results. 

II. SIMULATION 

All simulations were performed using KIVA 3V release 
2 on a Linux personal computer. The mesh consisted of a 
3x3x6 cm volume of ambient air at 1 atm pressure and 
300K. The domain dimensions were chosen to avoid any 
wall boundary effects, as was verified by the results. 
Further, the bottom boundary was modelled as an outflow 
boundary to maintain constant pressure within the test 
volume.  

The gas was injected directly downwards from the top 
center of the volume. In this case air was injected into 
ambient air. However, within the simulation the injected air 
was treated as a separate species to differentiate it from the 
ambient air for post processing. Each simulation was carried 
out for 8 ms with gas being injected using a square wave 
injection profile for a duration of 4 ms beginning at the start 
of the simulation. The injection velocity of 103.5 m/s and 
injection mass of 0.5529 mg were defined as input 
parameters to represent the experimental and computational 
setups by Witze and Hessel respectively, negating the need 
to specify injection pressure. The injector was a single-hole, 
straight bore injector of 0.6 mm radius. The wall 
temperatures and injection temperature were both set to 
300K.  

The gaseous injection was achieved by utilizing the 
KIVA fuel injection subroutines. The injection gas is 
quantified in the fuel library based on the thermodynamic 
properties calculated by assuming volume fractions of 79% 
Nitrogen and 21% Oxygen and utilizing the thermodynamic 
data presented by Vargaftik [10]. For gaseous species, a 
“liquid density” is defined within the fuel library, which is 
largely immaterial for the injection process since the 
injection mass and velocity are specified and thus only 
influences the number of parcels injected at each time step. 
The low critical temperature of the gaseous species triggers 
an immediate and complete conversion of the gaseous 
parcels from the Lagrangian particle phase to the gas phase 
through the KIVA evaporation subroutines as soon as the 
parcel enters the computational domain. The simplicity of 

implementation of this approach compared to manually 
identifying injection cells and setting them to inflow 
boundaries is a major benefit of the method, especially when 
multiple injectors are modelled. Table I outlines the details 
of the various cases presented here. 

TABLE I.  DESCRIPTION OF CASE DETAILS 

Case Mesh size dx=dy=dz [mm] 

Nr. of Mesh 

cells 

nx/ny/nz 

1 1.5 20/20/40 

2 1. 30/30/60 

3 0.75 40/40/80 

4 0.625 48/48/96 

5 0.625 48/48/96 

   

 Computational Time [min] 
Turbulence 

Model 

1 5.32 RNG 

2 29.77 RNG 

3 131.12 RNG 

4 321.61 RNG 

5 321.30 Stnd. K-Epsilon 

 

III. ERRONEOUS RESULTS USING UNMODIFIED 

KIVA 

The attempt to recreate the experimental results by Witze 
and the corresponding computational results by Hessel using 
an unmodified version of KIVA 3V release 2, revealed 
several inconsistencies in the result. While the results for 
axial velocity utilizing the mesh size described by Hessel 
appeared promising at first, a high inverse mesh dependency 
was observed. In general, one would expect the quality of 
computational results to improve with increasing mesh 
density. However, in this case it was found that 
computational results appeared to converge only with 
increasingly coarse meshes and diverged from the 
experimental results as the mesh was refined. This is shown 
in Fig. 1, which depicts the interpolated centerline velocity 
at the first probe point 2.9 mm from the injector for various 
mesh sizes. 

 

Fig. 1: Mesh sensitivity of steady state velocity at probe point 1 
at 2.9 mm from the injector 
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Specifically, the refined mesh caused the axial centerline 
velocity to be severely overpredicted in individual cells as 
cell size was reduced below 2 mm, to the point where 
velocities near the injector significantly exceeded the 
prescribed injection velocity of 103.5 m/s. This trend 
appeared to continue in an exponential fashion as cell size 
was further reduced, producing clearly non-physical results. 
It should be noted that the values depicted in Fig. 1 are 
interpolated values for the probe point and individual vertex 
values were even higher for all cases. The apparent 
convergence at coarser mesh sizes is due to the reduced 
impact of the injected gas on the larger cell mass. 

It should further be noted that the use of centerline 
velocity in this context has severe limitations for 
comparison. Due to the nature of finite volume 
computations and similarly experimental measurements 
using hotwire anemometers, the exact peak centerline 
velocity cannot be measured due to the finite length scales 
of the mesh size and hotwire anemometer. Instead, in both 
cases an average value capturing the centerpiece of the 
Gaussian radial velocity distribution, as depicted in Fig. 2, is 
obtained. This will cause an under-prediction of the 
centerline velocity, especially when the mesh size is large 
compared to the jet radius, and in particular close to the 
nozzle where the radial velocity gradient is largest. It is thus 
expected that the calculated and measured centerline 
increases as mesh size is refined and the size of the hotwire 
anemometer reduced. However, in no case can this effect 
account for a predicted velocity larger than the jet injection 
velocity, as was produced by the unmodified KIVA code. 
These results are thus clearly erroneous and the underlying 
source of this error must be investigated.   

 

Fig. 2: Characteristic structure of an ideal axisymmetric 
turbulent jet [8]  

The results further showed asymmetrical jet behavior. 
Further investigation and overlaying of the mass fraction 
and velocity profiles clearly depicted an offset between the 
mass and momentum contour outlines, which was identified 
as the cause for the asymmetrical jet behavior. Fig. 3 
demonstrates this for the coarse mesh used in Case 1 with 
arbitrary contour levels to aid in the visualization. The left 
(red) mass fraction plume and the right (blue) velocity 
profile plume are clearly offset and originating from 
different locations, as well as differing in shape. 
Specifically, analysis of the raw data showed the mass 
plume to originate from the cell center and the velocity 
plume originated from one of the corresponding vertexes. 

 

Fig. 3: Mass (red) and Momentum (blue) Plume Offset (zoomed 
in mesh section) 

IV. CORRECTIONS TO KIVA 

To understand and correct the origin of the issue 
described above, the KIVA algorithm needs to be 
understood. KIVA utilizes Lagrangian particle tracking in 
the Cartesian coordinate system (denoted as the “particle 
phase”). Information such as location, mass, velocity, 
temperature etc. are stored in reference to each particle, and 
are not bound to any mesh cells or vertex.  

The fluid or “gas phase” is defined by a mixed 
Lagrangian-Eulerian description, where the governing 
equations are solved through a modified Arbitrary 
Lagrangian-Eulerian method (ALE). Being a finite volume 
method, the ALE method utilizes primarily cell center based 
quantities, such that mass, momentum, internal energy etc. 
are stored at each cell center. However, KIVA utilizes cell-
faced velocities, which is done to minimize parasitic 
velocity modes. Thus, unlike the cell center based quantities, 
the velocities are stored at each cell vertex. 

The gas phase is thus described by a single explicit mesh 
defined by its vertices, where each cell vertex is labeled 1 
through 8. The front left bottom vertex (i4) of each cell is 
used as the reference vertex to identify the current cell.  

Additionally, an implicit mesh of “momentum cells” is 
defined based on the regular vertices, in which 1/8th of each 
momentum cells overlaps each of the neighboring regular 
cells. The momentum cells are utilized in the differencing of 
the momentum equation, and are referenced by identifier 
“imom”, which lies at the center of the momentum cell and 
at the vertex of the regular cell. A visualization is provided 
in Fig. 4. For more detailed information, the reader is 
referred to the KIVA 2 manual [11].  
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Fig. 4: KIVA naming conventions for cell identifiers 

The issue arises in properly distributing the mass, 
momentum, and energy of the Lagrangian parcels to the gas 
phase mesh. In the unmodified KIVA process, the regular 
cell containing an evaporating parcel is identified and the 
parcel mass and internal and turbulent energy are added to 
the center of the cell.  

Similarly, the momentum cells in which the parcel is 
located is identified, and the momentum of the evaporated 
parcel is added to this momentum cell. However, the 
momentum cell and regular cell are offset from each other. 
Thus, the momentum is added to a slightly different location 
in the mesh than the corresponding mass. When the mesh 
size becomes sufficiently coarse or the mass and momentum 
become sufficiently large compared to the undisturbed gas 
phase cell, this creates notable inconsistencies in the location 
of the mass and momentum jet plumes, as well as creating 
false asymmetric behavior in the solution.   

The issue is further exacerbated by the fact that the 
velocity at each vertex is a derived quantity. KIVA tracks 
momentum by solving the momentum equation. Velocity at 
each vertex is calculated by dividing momentum by mass.  
In the unmodified KIVA code, this is achieved by defining 
an auxiliary vertex mass, mvertex, which is simply 1/8th of 
the corresponding cell mass.  

However, since the momentum was deposited at the 
momentum cell, the location of which corresponds to a 
singular of the eight vertices, a mismatch between the 
momentum and mass considered for this calculation is 
experienced.  In effect, a singular vertex receives the entire 
parcel momentum, which is then divided by 1/8th of the 
parcel mass, such that velocity, u, at that vertex i4 at time t 
is given by the momentum at the vertex, P, and the vertex 
mass, mvertex. 

𝑢𝑖4
𝑡 =

𝑃𝑖4
𝑡−1 + 𝑃𝑝𝑎𝑟𝑐𝑒𝑙

𝑚𝑣𝑒𝑟𝑡𝑒𝑥 𝑖4 +
1
8

𝑚𝑝𝑎𝑟𝑐𝑒𝑙

                                                 (1) 

                                                  

 

Thus, the velocity is highly overpredicted at this vertex. 
The other vertices of the regular cell receive no additional 
momentum contribution from the evaporated parcel, yet the 
previously existing momentum of these vertices is still 
divided by an auxiliary vertex mass that was increased by 
1/8th of parcel mass. This results in a diminishment of the 
momentum and thus velocity at these vertices. In this case, 
the velocity is incorrectly described as  

𝑃𝑖4
𝑡 =

𝑃𝑖4
𝑡−1

𝑚𝑣𝑒𝑟𝑡𝑒𝑥 𝑖4 +
1
8

𝑚𝑝𝑎𝑟𝑐𝑒𝑙

                                                (2)   

To summarize, a discrepancy between the location of 
mass and momentum contribution from evaporating parcel 
was found, as well as a discrepancy between the momentum 
and respective auxiliary vertex mass used to derive the 
vertex velocities. It is suggested that the KIVA code should 
be modified to ensure that any momentum contribution from 
evaporating parcels is attributed to the same location in the 
mesh as its corresponding mass addition to the gas phase, 
such that the velocity at each vertex of the cell containing 
the evaporating parcel is described as 

𝑢𝑖4
𝑡 =

𝑃𝑖4
𝑡−1 +

1
8

𝑃𝑝𝑎𝑟𝑐𝑒𝑙

𝑚𝑣𝑒𝑟𝑡𝑒𝑥 𝑖4 +
1
8

𝑚𝑝𝑎𝑟𝑐𝑒𝑙

                                                (3)  

                                                   
 

Fortunately, the issue is easily rectified through the 
following corrections: 

1. In subroutine pcouple the following lines (generally 
located in loop 30) must be extended for all vertices, i1 
through i8, and modified such that each vertex receives 
1/8th of the parcel momentum contribution (ru/rv/rw) in 
accordance with the mass distribution. This requires 
redefining these vertices (i1-i8) relative to i4 within the 
loop. 

 u(i4)=(u(i4)-ru (i4))*srcmv       

 v(i4)=(v(i4)-rv (i4))*srcmv 

 w(i4)=(w(i4)-rw (i4))*srcmv 

 

2. The conversion from momentum to velocity (*srcmv in 
the lines above) must be separated from the loop and 
performed separately by introducing an additional loop 
to avoid multiple applications of the conversion factor, 
since every vertex is now addressed up to eight times. 

 

3. In subroutine pmom (generally loop 30), the identifier 
imom must be changed to i4 in the lines calculating ru 
(shown below), rv, rw and suvw.  

ru(imom)=ru(imom) + partrm* (rdenr3* 

  (upt+dragdt*uprime)- radp3*upt) 

 

This will ensure that the same cell is chosen for both the 
mass and the momentum contribution. 
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It should be noted that these lines of code from the 
unmodified KIVA code are provided to aid in the 
identification of the lines of code that require changes and 
do not reflect the necessary changes mentioned above. 

It should further be noted here again, that in this study 
the injection subroutines in KIVA were utilized for purposes 
other than their intended purpose of only liquid injection. In 
gaseous injection, all parcels are immediately converted to 
the gas phase through the evaporation subroutine. Since all 
mass and all momentum are added to a single cell and parcel 
mass may no longer be much smaller than the undisturbed 
cell mass, the described effects are much more pronounced 
than ordinarily experienced in liquid injection evaporation 
processes. During liquid injection, mass and momentum 
contributions are generally small compared to cell mass and 
dense uniform sprays will likely result in each vertex 
receiving momentum contributions from parcels in the 
neighboring cells, further masking the issue. The effect of 
the described issue is thus much less pronounced in 
evaporating liquid sprays, while addressing the issue for 
gaseous injection simulations is much more crucial. 
Nonetheless, it is highly recommended to apply these 
changes for liquid injection simulations as well. 

Previous researchers, such as Nordin [12] have 
investigated more sophisticated momentum coupling 
approaches, such as weighting the momentum to the inverse 
of the distance between the parcel location and the vertices. 
Such inverse distance weighting was investigated as part of 
this research but deemed fundamentally unworkable in the 
context of the KIVA code, as any weighting of the 
momentum would also imply a non-uniform mass 
distribution within the cell, which is impossible without 
additional subgrid models.  

Abani and Reitz also investigated the momentum 
coupling spray parcels with the gas phase, but focused 
mainly on particle-particle interactions by developing a 
model based on an effective injection velocity derived from 
Helmholtz’s vortex motion analysis [13], [14]. They did, 
however, not address the momentum coupling deposit 
location issue described in this paper. 

V. RESULTS 

The velocity profiles presented in Fig. 5, Fig. 10, Fig. 11 
and Fig. 13 were obtained by interpolating the adjacent 
vertex values to obtain the quantities at the probe points. 
Each line represents the distance of the probe point from the 
injector along the centerline of the jet.  

The steady-state plateau velocities at the jet centerline in 
Fig. 5 show overall good agreement with the experimental 
results by Witze depicted in Fig. 6 and the computational 
results by Hessel et. al depicted in Fig. 7. 

The computational results show a slight over-prediction 
of axial velocity near the injector nozzle compared to the 
experimental results. This may be explained by the 
limitations of the experimental setup due to the finite size of 
the hotwire anemometer of 1 mm. In the near nozzle area, 
the probe size exceeds the jet core size, thus capturing the 
effects of diminishing velocities at the edge of the parabolic 
jet velocity profile and leading to overall reduced velocity 
readings. Further from the injector, the computational results 
axial velocities are within the experimental scatter.  

The computational results show a markedly faster 
response to the initiation and termination of the jet in the 
near-injector region than in the experimental results in Fig. 
6. The difference is easily explained by the response time of 
the opening and closing of the injector valve, which is not 
modelled here and instead represented by the immediate 
response of the modelled square wave injection profile. 

 

Fig. 5: Computational centerline Velocity Case 4, fine mesh with 
RNG model 

 
Fig. 6: Ensemble-averaged measurements of the starting-jet 
centerline mean velocities by Witze [7] [8] 

 

Fig. 7: Computational centerline velocity results by Hessel et. al. 
[6] 
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The jet penetration, as observed by the flow acceleration 
at each probe point and represented by the timing of 
increasing slopes of the velocity profile, further show good 
agreement with the experimental results, as well as a marked 
improvement over the significantly delayed values observed 
in the computations by Hessel. Further, the non-
dimensionalized jet penetration in Fig. 8, as defined by the 
time to reach 70% of the steady state velocity, shows near 
perfect agreement for Case 4, compared to the experimental 
data in Fig. 9. Here u_jdenotes the jet exit velocity in m/s, 
r_j denotes the effective nozzle radius in mm and t_j  
denotes the jet time constant. 

The coarser meshes of cases 1, 2 and 3 result in a 
reduction of jet penetration with cases 2 and 3 still being 
fairly accurate. The difference is mainly attributed to the 
reduced centerline velocity near the injector nozzle resulting 
from the averaging of the jet with the surrounding quiescent 
volume. Additionally, the coarser mesh may contribute to 
this effect, as the jet plume has to traverse an increased 
distance between vertices and it may take several time steps 
before the jet is reported at the next cell.  

 

Fig. 8: Tip penetration distance as a function of the square root 
of time elapsed from initiation of the jet 

 
Fig. 9: Jet penetration experimental results by Witze [7], [8] 

Fig. 10 depicts the same case as discussed above, except 
with a significantly coarser mesh. While the plot is 
qualitatively similar to the fine mesh case, quantitatively the 
centerline velocities are significantly under-predicted near 
the injector. However, the far field centerline velocities are 
remarkably well captured. The same trend is observed for 
cases 1 and 3. Even the extremely coarse mesh of case 1 in 
Fig. 11 manages to fairly accurately depict the far field 
velocities, especially when keeping in mind the drastically 
reduced computational time for this case, despite the large 
deterioration of the near-injector velocities. This is 
explained by the fact that the total jet momentum is identical 
for all cases despite differences in average cell velocities.  

 

 Fig. 10: Axial Velocity Case 2, coarse mesh with RNG model 

 

 Fig. 11: Axial Velocity Case 1, extremely coarse mesh with RNG 
model 

Fig. 14 and Fig. 15 depict the velocity and mass fraction 
profile cross section at the jet centerline respectively. All of 
these plots are taken at 3.5 ms after the start of injection, 
which marks a point where all probe points are at their 
respective steady-state velocity. In both the mass fraction 
and velocity plots, a severe blurring of the gradients can be 
observed with the very coarse mesh in case 1, as well as a 
slightly reduced jet penetration and correspondingly 
increased jet spreading. As expected, the correct prediction 
of these gradients are improved with the refinement of the 
mesh, to the point that case 3 and 4 are practically 
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indistinguishable. However, the macroscopic qualities of 
penetration and spreading of the jet plume show little 
variation between all cases. This smearing of the solution is 
unavoidable with coarse meshes and would also be present 
if the gas was introduced through a boundary surface. 

Finally, Fig. 12 depicts a visualization of the velocity 
profile of a fully developed jet produced in MatLab based on 
the empirical model proposed by Witze [8], which shows 
good agreement of the momentum spreading rate of the jet 
compared to case 4 in Fig. 14. It should be noted that the 
empirical model proposed by Witze assumes constant jet 
velocity within a distance of 12.5 times the injector radius, 
or 7.5 mm in this case. This explains the more pronounced 
high velocity core near the injector. Unlike the starting jets 
depicted in Fig. 14, the empirical model depicts a fully 
developed steady state jet, explaining the higher velocities in 
the far field and reaching the lower edge of the domain. 
Thus, conclusions can only be made on the spreading angle, 
while the penetration distance is not comparable with the 
other results. However, both the empirical velocity profile in 
Fig. 12 and the predicted velocity profile for case 4 in Fig. 
14 display an initial spreading angle of about 16 degrees and 
thus show excellent agreement. 

 

Fig. 12: Fully developed velocity profile according to empirical 
model by Witze [8] 

VI. EFFECT OF TURBULENCE MODEL 

The turbulent round-jet/plane-jet anomaly is a well-
known and well-documented issue describing a roughly 
40% over-prediction in spreading rate, along with the 
associated reduction in penetration length, when modelling 
round jets using the standard k-epsilon turbulence model 
[15]. Many improved turbulence models, such as the RNG-
k-epsilon model [16]& [17], which was implemented in the 
KIVA-3V code on release 2 [18], and the Realizable k-
epsilon model [19], which addresses the round jet anomaly 
particularly well, have been developed.  

While the standard k-epsilon model only accounts for 
turbulence production of a single length scale, the RNG k-
epsilon model utilizes renormalized group theory to take 
into account different length scales and only systematically 
removes the smallest length scales to achieve resolvability 
of the model, leading to improved model performance. A 
further benefit is that the model constants can be explicitly 
calculated using the RNG approach [20], thus negating the 
need for model tuning.   

 

 Fig. 13: Axial Velocity Case 5, Fine mesh with standard K-
Epsilon model 

Given the common round-jet anomaly problem, the 
discrepancies encountered due to the issues in the KIVA 
momentum coupling described above can easily be 
misinterpreted as turbulence modelling issues. Fig. 13 
depicts the axial velocity profiles using the same refined 
mesh as case 4 but utilizing the standard k-epsilon model 
instead of the RNG k-epsilon model.  

It is apparent that the axial steady state velocity is 
significantly reduced at all probe locations. Similarly, Fig. 8 
shows a significant reduction in jet tip penetration for case 5. 
Further explanation can be gleaned from the velocity cross 
section profile for case 5 in Fig. 14 and the mass fraction 
profile in Fig. 15, which clearly show a significantly 
increased spreading rate of the jet near the injector with an 
initial spreading angle of about 22 degrees, as compared to 
the 16 degree initial spreading angle of RNG simulation and 
the empirical results. The high velocities near the injector 
along with the overestimate of the turbulence values of the 
k-epsilon increase turbulent mixing and spreading rate while 
quickly diminishing the high velocity cone at the jet 
centerline, which is still present in the RNG k-epsilon cases. 

Given the presented results for cases 1-4 with respect to 
jet penetration and spreading angle, it was determined that 
the RNG k-epsilon model adequately describes the 
turbulence of the round jet in this case and that no further 
introduction of more sophisticated turbulence models or 
other means of artificial turbulence reduction, such as 
presented by Hessel, were necessary.  

VII. CONCLUSIONS 

It was demonstrated that the liquid injection subroutines 
may be utilized for gaseous injection modelling with only 
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minor modifications, which leads to a fast implementation 
time.  

It was shown that this methodology allows for the 
accurate simulation of round gaseous jets, as long as the 
mesh size near the injector and jet core is on the order of the 
injector radius, in order to capture the smallest feature of 
interest which in this case is the jet core velocity and mass 
distribution.  

The macroscopic characteristics of the jet plume, 
including jet penetration and spreading angle, were 
reasonably well preserved far from the injector even as a 
coarser mesh size was used. A coarser mesh may be utilized 
if the near injector characteristics are not of great importance 
and no chemical reactions are modelled, such that mass 
fractions are of lower significance. Thus, in many cases a 
significant reduction in computational times may be 
achieved while maintaining adequate solution quality of the 
macroscopic jet plume characteristics. 

As the mesh size becomes coarser, the high velocity and 
mass fraction gradient are lost due to smearing of the 
solution gradients. Especially for chemically reacting flows, 
the mass fraction gradient will have significant effects on the 
chemical reaction rates and thus a refined mesh near the 
injector on the order of the injector radius is necessary. 

The injection methodology described in this paper does 
have some drawbacks. The algorithm will always center the 
injector location on the injection cell. This may lead to 
difficulties accurately positioning the injector within the 
mesh, especially with very coarse meshes. This may be 
remedied by refining the mesh at the injector location. 
Additionally, if multiple injectors/injector holes are 
modelled, each injector requires all 8 vertices of the 
injection cell without overlap to other injection cells in order 
to avoid cancellation of the momentum of opposing jets.  

Modifications to distribute the parcel momentum to each 
vertex on the basis of the inverse distance-from-the-injector 
weighting instead of even distribution to all 8 vertices was 
deemed fundamentally unworkable in the context of the 
current KIVA code, as this introduces the invalid 
assumption of non-uniform subgrid mass distributions, 
which would require extensive modifications to KIVA.   

It was found that upon the correction of the momentum 
coupling process, the RNG k-epsilon model described the jet 
characteristics well and adequately addressed the round jet 
anomaly. Thus, no additional modifications to the 
turbulence model were deemed necessary. This negates the 
necessity to introduce additional tuning constants to the 
model. Further, by immediate conversion of the parcels from 
the particle phase to the gas phase, and due to the relatively 
large size of the parcel volume compared to the cell volume, 
the mass fractions in the near injector area are well captured. 

A significant flaw regarding the momentum coupling of 
the particle phase with the gas phase affecting both gaseous 
injection and evaporating liquid injection processes was 
discovered within KIVA. The simple modifications 
necessary to address this issue were outlined in detail.  It is 
highly recommended that researchers utilizing KIVA or any 
KIVA derived codes verify that this issue does not pertain to 
their softwares and/or resolve it accordingly.  

Ongoing efforts for further research are underway to 
extend this gaseous injection approach to function on a 

pressure difference basis by modelling a constant pressure 
injector in order to improve its usability and applicability for 
internal combustion engine simulations, while taking into 
account compressibility effects. 
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Fig. 14: Velocity Profiles 

 
Fig. 15: Mass Fraction Profiles 
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