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Abstract— A p-version of the collocation 

method for the numerical solution of the Fredholm 
integral equations of the second kind has been 
proposed and implemented. In the given 
implementation, the possibilities have been 
realized for the variation of the polynomial degree 
in the polynomial representation of the 
approximate solution of equations and the 
variation of the number of nodes of the employed 
Gauss quadrature formula to affect the solution 
accuracy. The influence of the number of 
collocation points used for the solution 
approximation and of the number of nodes of the 
Gauss quadrature formula on the condition 
number of the system of linear algebraic 
equations to the solution of which the 
construction of the approximate solution reduces, 
and on its accuracy has been investigated by 
numerical solution of the examples, which include 
the examples presented in well-known 
publications. The proposed algorithm has been 
implemented in the language of the program 
package Mathematica. In all considered examples, 
the proposed version of the collocation method 
has enabled us to reach the accuracy of the 
solution of equations, which is close to the level 
of the machine rounding errors. The computer 
code implementing the proposed p-version has 
proved to be compact, and the method turned out 
economical: the machine time required for the 
solution of problems considered in the work did 
not exceed 3 seconds of the CPU time of a 
personal computer. The algorithm has been 
described, which makes it possible to assess the 
accuracy of the approximate solution by the 
proposed p-version of the method in the cases 
where the exact solution of the integral equation 
is unknown. 

Keywords—Fredholm integral equation of the 
second kind, collocation method, condition 
number, Gauss quadrature. 

I.  INTRODUCTION 

At present, the integral equations have gained 

widespread acceptance at the investigation and 
solution of many problems in physics 
(electrodynamics [1, 2], superconductivity [3], solid 
state physics [4]), geophysics (gravimetry, seismic 
prospecting [5, 6]), computerized tomography [7], 
chemistry [8], mathematical biology [9], digital image 
processing [10], etc.  

Until now, several numerical methods were 
developed and analyzed for solving the Fredholm 
integral equations of the second kind: these are, for 
example, various versions of the Galerkin methods 
[11, 12, 13, 14, 15, 16, 17], meshless methods [18]. In 
addition, the methods of resolvent, degenerate 
kernels, Fourier transform, and several other [19] are 
the conventional methods applied mainly at the 
solution of the integral equation of the second kind.  

The methods for solving the integral equations 
differ from one another primarily by a technique for 
approximating the solution and by the corresponding 
discretization technique — the passage from the 
infinitely dimensional functional space, in which the 
exact solution of the equation is located, to a finite-
dimensional functional space in which its 
approximation (the approximant) is sought for. 

The collocation method is used in practice, first of 
all, for solving the ordinary differential equations [20, 
21] and the one-dimensional integral equations. This 
method was served as a basis at the development of 
the COLSYS program package for solving the 
systems of ordinary differential equations [22], which 
is also at present a good tool for obtaining high-
accuracy solutions of differential equations and is 
used for solving applied problems. The collocation 
method is applied also for the numerical solution of 
the Fredholm integral equations of second kind [19, 
23, 24, 25, 26]. 

One of the advantages of the collocation method is 
the simplicity of its computer implementation and the 
possibility of reaching in a sufficiently simple way a 
high approximation order of the equations. This 
enables one, respectively, to reach high solution 
accuracy. In addition, this method possesses a 
possibility to describe the boundary conditions for the 
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approximate problem directly at the points lying at the 
region boundary when solving a multi-dimensional 
boundary-value problem in an irregular region [27]. 
This circumstance is very important for the goal of 
reaching a high accuracy of the solution. 

As a rule, the condition number of a system of 
linear algebraic equations (SLAE) to be solved 
increases with the increasing size of the SLAE arising 
as a result of the original problem discretization at the 
solution of differential and integral equations by 
numerical methods, and this is a shortcoming of the 
collocation method too. The possibilities of the 
numerical solution of such problems are extended 
significantly when the collocation method is combined 
with the method of least squares. This has been 
shown in [27, 28, 29, 30, 31] and in a number of other 
works. 

One can also extend the capabilities of the 
collocation method by using a “gridless” version — the 
p-version of the method in which, in contrast with the 
(grid) h-version, the entire region of the numerical 
solution of the problem consists of a single interval or 
of a single cell as in the spectral method. Therefore, 
such versions of the methods are frequently termed 
also pseudo-spectral methods. 

In the p-version of the collocation method, a high 
accuracy of the approximation is realized fairly simply 
by increasing the number of basis elements of the 
employed functional space. In the case of the solution 
of integral equations, the accuracy of the solution 
approximation, which depends on the smallness of the 
error of the employed quadrature formula, also 
increases owing to the use of high-accuracy 
quadrature formulas, for example, the Gauss formula. 
It will be shown in the following that the both above 
factors are easily implemented on computer in a 
compact program.  

The following fact is substantial here: with the 
increasing number of basis elements and nodes of the 
quadrature formula, the size of the corresponding 
SLAE of the approximate problem grows more slowly 
than in its grid version — h-version at the grid step 
refinement. One can efficiently use this property of the 
p-version. 

The application of the collocation method for the 
numerical solution of integral equations has been 
known for a long time [19, 32], however, its 
possibilities for obtaining high-accuracy solutions are 
far from exhausted, and this is shown below in this 
article. 

In the present work, a realization of the p-version 
of the collocation method for the numerical solution of 
the Fredholm integral equations of the second kind in 
the environment of the Mathematica system [33] is 
described. In this version, the solution is sought in the 
form of a polynomial of a sufficiently high degree in 
the case of using polynomial spaces. 

It is shown by the examples that one can obtain by 

the proposed numerical method the numerical solution 
of problems with an error close to the error of the 
arithmetic operations on computer. 

The method has been implemented in a computer 
code written in the language of the program package 
Mathematica. In the p-version of the algorithm, the 
entire computational interval represented a “single 
cell” of the computational grid in which the solution 
was sought in the form of a polynomial of a sufficiently 
high degree. 

It is known that in the case of the approximation of 
smooth curves by polynomials, the location of 
approximation nodes in the roots of orthogonal 
polynomials (of Chebyshev, Legendre, etc.) often 
yields a much smaller error than in the case of an 
equidistant location of nodes (collocation points). In 
this connection, the Gauss quadrature formula with 
the number of nodes from 6 to 45 was employed in 
the developed Mathematica program at the 
computation of the integral entering the integral 
equation. This program used the zeroes of the 
Legendre polynomials as the nodes. Besides, the 
collocation points were also specified in the roots of 
the Legendre polynomials the degree of which 
depended on the degree of the polynomial 
approximating the solution. 

The corresponding program in the language of the 
Mathematica system has proved to be fairly compact 
also owing to the fact that this system has such 
convenient built-in functions as the function for solving 
a system of linear algebraic equations, the function for 
calculating all eigenvalues of the matrix, and many 
other functions which are useful at the realization of 
numerical methods. The program makes provision for 
varying the number of basis elements in the 
polynomial space in which the approximate solution is 
constructed and varying the number of nodes of the 
employed Gauss quadrature formula. By varying the 
above parameters at the use of the program one can 
reach an increased accuracy of the solution of 
equations under consideration. In the case when the 
user does not need increased solution accuracy there 
is a possibility of choosing the values of these 
parameters, which ensure the needed accuracy. A 
reduction of the values of these parameters leads to a 
reduction of the solution accuracy and a speed-up of 
the program work. It is, however, well known that in 
many cases, besides other tools and means 
employed by the researchers, a high accuracy of 
computations, devices, and measurements 
contributed to new discoveries and the general 
progress of science. For example, U.J.J. Le Verrier 
had discovered the planet Neptune with the aid of an 
increased accuracy of computations. It is, therefore, 
important to have a possibility of solving the problems 
with an increased accuracy. 

The results of numerical experiments with the p-
version of the algorithm are presented below in the 
tables and by the graphs from the analysis of which 
one can judge about the capabilities of the proposed 
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method. To understand the behavior of the solution 
error depending on the condition number of the SLAE 
to the solution of which the solution of the given 
equation has been reduced the tables contain also a 
column presenting the condition number values. 

II. DESCRIPTION OF THE COLLOCATION METHOD FOR 

THE NUMERICAL SOLUTION OF INTEGRAL EQUATIONS 

We will consider both the linear and nonlinear 
Fredholm equations of the second kind. The linear 
second-kind Fredholm equation has the following 
form: 

       ( , ) ( ) , , .

b

a

g x u x K x s u s ds f x x a b     (1) 

The functions f(x) and g(x) are assumed analytic in 
the interval [a, b]. The kernel K(x, s) is assumed 
analytic in the region [a, b]×[a, b]. The parameter λ 
and the interval [a, b] are assumed given. It is also 
assumed that –∞ < a < b < ∞. The existence and 
uniqueness results for (1) may be found in [32, 34]. 

The nonlinear second-kind Fredholm equation has 
the following form: 

     ( , , ( )) , , .

b

a

u x G x s u s ds f x x a b             (2) 

The function G(x,s,u(s)) is assumed analytic in the 
region [a, b]×[a, b]. The assumptions for f(x), the 
parameter λ, and the interval [a, b] are the same as in 
the case of (1). The existence and uniqueness results 
for (2) may be found in [35, 19, 32, 4]. 

Let us describe the p-version of the algorithm for 
solving (1) by the collocation method. Let cx  be the 

center of the interval [a, b] that is xc = (a + b)/2, and let 

h = (b – a)/ 2. It is convenient, by analogy with [2, 3], 
to introduce the new independent variable y by 

formula y = (x – xc)/h. It is obvious that  1,1y   at 

 ,x a b . Let U(y) = u(xc + hy). Let us make in (1) the 

substitution x = xc + hy. As a result, (1) takes the 
following form: 

          
1

1

, , ,c c c cg x hy U y h K x hy x h u x h U d F y    


       

(3) 

where  1,1y  , F(y) = f(xc + hy). 

The approximate solution of (3) is sought in the 
interval –1 ≤ y ≤ 1 in the form of a polynomial: 

                           1

1

,
n

k
k

k

U y b y 



                              (4) 

where bk are the unknown coefficients and n is a given 
number of the degrees of freedom. It is assumed that the 

degree of polynomial (4) Np = n – 1 > 0. Substituting 
expression (4) in (3), we obtain an algebraic equation 
containing n unknown coefficients b1,…,bn. To find 
these coefficients let us specify Nc = n collocation 
points yj in the interval [-1,1], ], j = 1,…,Nc.  

In the case of using the roots of the Legendre 
polynomials as collocation points we at first specify 
two collocation points at the boundaries y = –1 and y = 

1, and the remaining Nc – 2 collocation points are 
found as the zeroes of the Legendre polynomial of the 
degree Nc – 2. It is also possible to specify the 
collocation points in the nodes of a uniform grid yj = –1 
+ 2(j – 1)/(Nc – 1), j = 1,…,Nc. Fig. 1 shows the case 
when Nc = 11. 

After the substitution of numerical values of the 
collocation point coordinates in the collocation 
equations, they become linear algebraic equations. In 
this way, the following SLAE is obtained for 
determining the solution vector column X = (b1,…,bn)  

                                        AX = Φ,                              (5) 

where A is an n×n matrix. In the present work, this 
system was solved by using the built-in function 
LinearSolve[A,Φ] of the system Mathematica. The 

performance of the developed compact program of 
the p-version of the collocation method is 
demonstrated in the following by several examples. 

III. RESULTS OF NUMERICAL EXPERIMENTS 

Example 1. In the cases when it is necessary to 
elucidate the capabilities and the limits of the 
applicability of a new numerical method for solving the 
problems under study it is useful to use smooth 
solutions for the method verification, which are 
obtained by the method of “manufactured solutions” 
(MMS), which was originally developed by Salary and 
Knupp [36]. An excellent overview of the method is 
given in [37]. The motivation for MMS lies in the 
difficulty of obtaining analytical solutions to the 
governing equations in many physical contexts. MMS 
proposes that instead of attempting to find a solution 
to the governing equation, one modifies the equation 
to match a solution of ones choosing. 

We consider here a fairly simple test example of 
(1), for which we set g(x) = 1 and K(x,s) = 1. 
According to the MMS let us specify the exact solution 
in the form 
 

                       u(x) = x
5
e

x
,       x ∈ [a, b].                       (6) 

 

and set a = –1, b = 1. In this case, as we will see 
below, there is no need in the developed p-version of 
the method to take a large number of nodes in the 
Gauss formula. To find the corresponding right-hand 
side we substitute solution (6) in (1). We obtain the 
following expression for f(x):  

  5 326
44 .xf x x e e

e


    

The computations by the collocation method were 
done in the Mathematica system at λ = 1 in (1). In this 
case, xc = 0, h = 1. 

 
Fig. 1. Locations of collocation points. 
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The goal of the series of computations the results 
of which are presented in Table I was the investigation 
of the influence of the parameters n and NGauss on the 
accuracy of the result, where NGauss is the number of 
nodes of the Gauss quadrature formula for 
approximate computation of the integral. The tables of 
the numerical values of the nodes xi  and weights wi,  
i = 1,…, M for M = 2,…,64 are available on the site 
https://pomax.github.io/bezierinfo/legendre-
gauss.html. The site also contains the Mathematica 
program for calculating the xi and wi. The symbol * 
marks in Table I a row with the result, which is the 
best in terms of accuracy. 

The condition number κ(A) of the matrix A was 
computed by the formula κ(A) = 

 
0.5

max / min ,i i
i i

i

  where λi, i = 1,…,n are the 

eigenvalues of the matrix A
T
A, where the superscript 

T denotes the transposition operation. 
All numerical computations described in the 

present work were done on a desktop computer with 
an Intel processor with tact frequency 3 GHz. The 
extreme right column of Table I presents the CPU 
time for each run on the above computer. 

The dash in the third column of Table I means that 
in this numerical experiment, the integral entering (3) 
was calculated exactly by using the antiderivative. In 
all such cases when it is possible to calculate the 
integral in a closed analytic form in the software 
system Mathematica, there is no need to use the 
approximate quadrature formula. However, as one 
can see in Table I, without the use of the quadrature 
formula (row 1 in Table I), the CPU time was required, 
which proved to be 25 times larger than at the use of 

the Gauss quadrature formula (row 6  in Table I). This 

is explained by that the closed form of integral 
entering (3) involves an analytic expression whose 
length exceeds several times the integrand size. As a 
result, the computation of the closed-form expression 
requires the execution of a large number of arithmetic 
operations, which exceed significantly the number of 
arithmetic operations in the given case in comparison 
with the Gauss quadrature. A situation has occurred 
that from the viewpoint of minimizing the CPU time, an 
analytic expression for the integral requires a much 
larger CPU time than the application of the numerical, 

approximate procedure for computing the value of the 
integral. 

It follows further from a comparison of rows Nos. 6* 
and 7 of Table I that at the use of the Gauss 
quadrature formula, the collocation solution error 
proved to be by the factor of about 8 less than in the 
case of the application of the analytic formula for the 
integral entering (3). This means that the error of the 
quadrature formula at chosen parameters of the 
formula is close to the rounding errors on computer, 
and the error in both cases of the integral computation 
is determined by the number of arithmetic operations 
needed for computing its value. Thus, we arrive at a 
conclusion that from the viewpoint of the speed of the 
problem solution and the accuracy of the approximate 
solution, it is recommended to apply the Gauss 
quadrature formula to reach a high solution accuracy, 
including the case of an error close to the rounding 
errors on computer independently of the possibility of 
computing the integral in (3) in closed analytic form. It 
is natural that when the above solution accuracy is not 
required one can restrict oneself to a small number of 
the nodes and weights in the quadrature formula and 
a small number of collocation points, and as a result, 
the CPU time will then be smaller. One can also note 
that the condition number of the SLAE to be solved 
grows with the increasing number of unknowns n  in 

the polynomial representation (4) of the approximate 
solution. However, its growth proves to be non-fatal to 
impede the solution obtaining with an error of the 
order 10

–14
 even at n = 20. For example, in Table I, 

the SLAE size has increased by a factor of nearly two 
at a passage from the first row to the row No. 6, and 
the solution accuracy has increased by a factor of 
more than 10

10
. A similar conclusion may be drawn 

from the analysis of the solutions of the second and 
third examples presented below. 

The computations in the arithmetic of floating-point 
machine numbers are used in the program package 
Mathematica, which has been implemented in the C 
language. This package employs the machine 
numbers having the length “long double”'. This length 
is somewhat larger than the length “double precision”. 
This circumstance contributes to the feasibility of 
obtaining very small solution errors. At the use of the 
“double precision” numbers, the solution accuracy 
attainable on computer will differ from the accuracy 
reached here nearly by two decimal orders. This is 
practically not so essential at such small magnitudes 
of the error, which were achieved here. 

We have also carried out a numerical experiment, 
in which the collocation points were placed at n = 20 
in the nodes of a uniform grid in the interval [–1, 1]. 
The error ||u – uh|| = 2.630e

–13
 was obtained, which is 

by the factor of 23 larger than in the case of placing 
the collocation points in the nodes of a non-uniform 
grid lying in the zeroes of the Legendre polynomial of 
the 16th degree (cf. row No. 6* of Table I). 

Finally, a series of computation was done in which 
the endpoints y = –1 and y = 1 of the equation solution 
interval were eliminated from the set of collocation 

TABLE I. ERROR ||U – UH||C  AS A FUNCTION OF PARAMETERS  

N AND NGAUSS IN EXAMPLE 1. 

 

No. n NGauss ||u – uh||C κ(A) CPU 
time, 
sec. 

1 9 6 4.969e–4 4.578e2 0.19 

2 11 8 4.010e–6 2.684e3 0.23 

3 14 16 9.753e–10 3.902e4 0.38 

4 15 10 4.864e–11 9.200e4 0.39 

5 15 16 4.864e–11 9.200e4 0.45 

6 *  20 16 1.155e–14 7.746e6 0.22 

7 20 — 9.132e–14 7.737e6 5.64 
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points, and all collocation points were computed as 
the roots of the Legendre polynomial of the nth 
degree, see Table III. In Table II, yL are the roots of 
this polynomial, which are the closest to the endpoints 
y = ±1. In Table III, ||u – uh||C,w.e.p. is the approximate 
solution error, which was obtained without using the 
endpoints in the set of collocation points, δ = ||u – 
uh||C,w.e.p. /||u – uh||C. One can see that in the interval 9 
≤ n ≤ 20, the error ||u – uh||C,w.e.p. decreases, but still 
remains higher than the error ||u – uh||C. In addition, 
the quantity δ decreases in the interval 14 ≤ n ≤ 30. 
This effect is explained by that with increasing degree 
of the Legendre polynomial, its roots closest to the 
endpoints of the equation solution interval tend to 
these points, see the fourth column in Table II. One 
can draw the following general conclusion from this 
table: if the values n and NGauss are not very large, 
then it is advisable to include the endpoints y = ±1 in 
the set of collocation points to obtain an increased 
accuracy of the result. However, starting from some 
sufficiently high values of n and NGauss, the presence 
of endpoints in the set of collocation points does 
already not lead to an increase in the accuracy of the 
numerical result obtained by the proposed collocation 
method. 

It is reasonable to specify the collocation points 
with the elimination of endpoints in the cases when 
the kernel K(x,s) has a singularity at one or the both 
endpoints. 

Fig. 2 shows the results of the computations by the 
collocation method at n = 20 and NGauss = 16. The 
exact solution u(x) is depicted by the solid line in Fig. 
2, (a), and the numerical solution uh is plotted by a 
dotted line. As is seen in Table 1 and in Fig. 2, (b), ||u – 
uh||C does not exceed 1.2·10

–14
. 

Example 2. Consider (1) at the following 
expressions for functions g(x), K(x,s), and f(x): 

     1, , sin ,

1, 1, 1,

sg x K x s se x s

a b 

  

   

         2sin { [2cos sin 2 2cos 2 ]
16

xf x e x e x x x


        

     2[3sin 2 6cos 2cos 2 ]}.e x x x      

The exact solution has the following form: u(x) = 
e

x
sin(x). Table IV presents the value of the error norm 

||u – uh||C, which was computed by using 1000 points 
distributed uniformly in the region –1 ≤ x ≤ 1. It follows 
from a comparison of Tables I and IV that at the same 
values of n and NGauss, the numerical solution 
accuracy is higher in Example 2 than in Example 1. 
To explain this effect we present the following well-
known estimate [38] the norm of the error of the SLAE 
(5) solution:  

           
 

 

δ δ δκ
.

δ
1 κ

 
   

 

X Φ AA

AX Φ A
A

A

           (7) 

TABLE IV. ERROR ||U – UH||C  AS A FUNCTION OF PARAMETERS  

N AND NGAUSS IN EXAMPLE 2. 

No. n NGauss ||u – uh||C κ(A) CPU 
time, 
sec. 

1 9 6 1.179e–5 4.432e2 0.14 

2 11 8 3.177e–9 2.589e3 0.24 

3 14 16 5.016e–13 3.650e4 0.20 

4 15 10 7.672e–14 8.853e4 0.22 

5 15 16 1.660e–14 8.853e4 0.30 

6 *  20 16 1.332e–15 7.307e6 0.31 

y

1.0 0.5 0.5 1.0

0.5

1.0

1.5

2.0

2.5

   
 

 (a) 
 

y

uh u

1.0 0.5 0.5 1.0

1.04 10 14

1.06 10 14

1.08 10 14

1.1 10 14

1.12 10 14

 
 (b) 

Fig. 2. Results of solving the integral equation  
of Example 1 at n = 20 and NGauss = 16. 

TABLE III. INFLUENCE OF THE ELIMINATION OF ENDPOINTS 

FROM THE SET OF COLLOCATION POINTS ON THE APPROXIMATE 
SOLUTION ACCURACY 

 

No. n NGauss ||u – uh||C 

 
||u – 

uh||C,w.e.p. 
δ 

1 9 6 4.969e–4 5.805e–4 1.168 

2 14 16 9.753e–
10 

1.287e–9 1.320 

3 20 16 1.155e–
10 

1.199e–
10 

1.038 

4 30 24 1.205e–
14 

1.155e–
14 

0.959 

5 42 35 1.199e–
14 

1.199e–
14 

1.000 

TABLE II. THE VALUES OF THE ROOTS YL  
VS. N. 

 

No. n NGauss yL 

1 9 6 ±0.968160 

2 14 16 ±0.986284 

3 20 16 ±0.993129 

4 30 24 ±0.996893 

5 42 35 ±0.998400 
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Here δA is the error of the computation of matrix A, 
δФ is the error of computing the right-hand side of the 
equation. This estimate is valid under the following 
conditions: A is a square matrix and κ(A)||δA||·||A||

–1
 < 

1. One can see from (7) that a smaller condition 
number κ(A) leads to a smaller error of the SLAE 
solution. As one can see from a comparison of Tables 
I and IV, in the case of Example 2, the condition 
number κ(A) is less than in the case of Example 1. 
The symbol * in Table IV marks a row with the result, 
which is the best in terms of accuracy. 

Fig. 3 shows the numerical results obtained at n = 
20, NGauss = 16. The exact solution is shown in Fig. 3, 
(a) by solid line, and the numerical solution obtained 
by the proposed method is shown by a dotted line. As 
one can see in Table IV and Fig. 3, (b), the maximum 
error |uh – u| does not exceed 1.4·10

–15
. 

Example 3. Consider (1) at the following 
expressions for functions g(x), K(x,s), and f(x):  

     
2

3
cos , , ,

6.4 cos 1
2

g x x K x s
x s



 
 

 
 

 

    217 128 33
cos2 16sin

2 17 2

128
cos2 , , , 1.

17

f x g x x x

x a b  

 
 
 

    

   

 

The exact solution has the following form: 

 
17 128

cos2 .
2 17

u x x   The given example was 

considered in detail in [19], where a coincidence with 
the exact solution was obtained by the computations 
on the computer BESM-6 in the first six digits of the 
mantissa of floating-point decimal numbers. 
Therefore, the numerical solution error reached in [19] 
was of the order of 10

–6
. The version of the collocation 

method proposed in the present work has enabled us 
to reach the accuracy which is by seven decimal 
orders higher than the accuracy reached in [19]. 

Table V presents the error ||u – uh||C, which was 
computed at 1001 points taken uniformly in the region 
–π ≤ x ≤ π. This example makes increased demands 
for numerical solution than two foregoing examples, 
first of all, because of a more complex behavior of the 
equation kernel. Besides, two periods of the function 
cos(2x) are contained in the interval [–π, π], which 
leads to an increase in the gradients in comparison 
with the function sin(x), and in Example 2, only part of 
the period of this function was considered. As one can 
see in Table V, the condition number of the SLAE 
corresponding to Example 3 is much larger than in 
Examples 1 and 2. Symbol * marks in Table V the row 
with the most accurate result. For the reasons 
indicated above, the given example required a much 
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Fig. 4. Results of solving the integral equation  

of Example 3 at n = 48 and NGauss = 40. 
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Fig. 3. Results of solving the integral equation  

of Example 2 at n = 20 and NGauss = 16. 

TABLE V. ERROR ||U – UH||C  AS A FUNCTION OF PARAMETERS  

N AND NGAUSS IN EXAMPLE 3. 

No. n  aussNG  Chuu    κ(A) CPU 
time, 
sec. 

1 9 6 8.404e–1 1.120e3 0.22 

2 14 16 2.624e–3 2.309e5 0.31 

3 20 16 3.712e–4 5.540e7 0.47 

4 30 24 1.115e–7 5.054e8 1.08 

5 36 30 5.957e–10 8.151e8 1.14 

6 42 35 8.750e–12 5.153e8 1.49 

7* 48 40 6.892e-13 8.650e8 2.06 

8 56 45 5.301e-12 1.557e9 2.86 
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larger number of collocation points and the nodes of 
the quadrature formula than in the first two examples 
to reach a solution accuracy which is comparable in 
terms of the order of magnitude with the magnitude of 
rounding errors. 

The exact solution is depicted in Fig. 4 (a) by a 
solid line, and the numerical solution obtained by the 
proposed method is shown by a dotted curve. As one 
can see in Table V and Fig. 4 (b), the error ||u – uh||C 
does not exceed 7·10

–13
. 

Example 4. The following linear integral equation 
was considered in the work [25]:  

         

5 11
2 2

3 3

0

1
( ) ( ) , [0, 1].

3

x s x

u x e u s ds e x
 

          (8) 

Consequently, one must set in (1) g(x) = 1, 
1

,
3

    a 

= 0, b = 1, 

5
2

3( , ) ,
x s

K x s e


  

1
2

3( ) .
x

f x e


  We assume 

further in (3): 
1

,
2

cx   
1

.
2

h   The exact solution of (8) 

is as follows: u(x) = e
2x

.  

Table VI presents the error ||u – uh||C, which was 
computed at 1001 points taken uniformly in the region 
0 ≤ x ≤ 1. One can see in this table that the obtaining 
of a high-accuracy numerical solution of the example 
under consideration by the method proposed here has 
required the use of fairly modest means, namely: the 
number of collocation points n = 14 and the number of 
nodes NGauss =16 in the Gauss quadrature formula 
(see row 2 in Table VI, from which one can see that 
the accuracy of the result has been achieved, which is 
approximately equal to the machine arithmetic 
accuracy). Symbol * marks in Table VI the row with 
the most accurate result. 

Table VII presents a comparison of the value of the 
absolute error |u(x) – uh(x)| in the solution of equation 

of Example 4 by the proposed method, by the spline-
collocation method from the work [25], and by the 
method from the work [26], in which the triangular 
orthogonal functions were used. One can see from 
this table that the method proposed here ensures an 
error, which is by 9 – 11 decimal orders less than in 
the case of method [25]. 

We believe that there are the following two main 
reasons for a lower accuracy of method [25] in 
comparison with our method: (i) in the method [25], an 
approximating polynomial only of the third degree is 
used in each cell of a uniform grid; (ii) at the endpoints 
x = 0 and x = 1, the boundary conditions s"(0) = 0, 
s"(1) = 0 are used for the closure of the algorithm for 
constructing a cubic B-spline s(x). At the same time, 
u"(0) = 4, u"(1) = 4e

2
 ≈ 29.5562 in accordance with the 

exact solution. Note that the boundary conditions s"(0) 
= 0, s"(1) = 0 are not required in the original 
formulation of the problem of solving equation (8) and, 
thus, are the artificial additional conditions, which are 
far from the real behavior of the solution at endpoints. 

At the same time, the method proposed here does 
not need any additional boundary conditions for its 
implementation. Owing to this, it involves a potential 
possibility of obtaining the numerical solution with a 
high accuracy. 

The exact solution is depicted in Fig. 5 (a) by a 
solid line, and the numerical solution obtained by the 
proposed method is shown by a dotted curve. As one 
can see in Table VI and Fig. 5 (b), the error ||u – uh||C 
does not exceed 5·10

–15
. 

Example 5. Consider the following nonlinear 
integral equation [25]: 
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Fig. 5. Results of solving the integral equation  

of Example 4 at n = 20 and NGauss = 16. 

TABLE VII. THE ABSOLUTE ERROR |U(X) – UH(X)|  AT 

PARTICULAR POINTS IN SOLUTION OF EXAMPLE 4  

AT N = 20, NGAUSS = 16. 

x Our method Method  
in [25] 

Method 
in [26] 

 0 1.33e-15  6.85e-06  1.65e-04  

0.2 6.66e-16  1.02e-05  4.69e-04  

0.4 8.88e-16  1.52e-05  3.39e-04  

0.6 1.78e-15  2.27e-05  5.31e-04  

0.8 2.66e-15  3.39e-05  1.53e-03  

1 8.88e-16  5.06e-05  1.10e-03  

TABLE VI. ERROR ||U – UH||C  AS A FUNCTION OF PARAMETERS  

N AND NGAUSS IN EXAMPLE 4. 

No. n NGauss ||u – uh||C κ(A) CPU 
time, 
sec. 

1 9 6 8.222e–8 7.571e2 0.14 

2 14 16 1.066e–14 5.721e4 0.26 

3* 20 16 4.441e–15 1.082e7 0.42 

4 30 24 5.329e–15 4.108e8 0.89 
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1

3

0

1
sin( ) cos( )sin( ) ( ) , 0,1 .

5
u x x x s u s ds x     (9) 

Thus, a = 0, b = 1, λ = 1/5, f(x) = sin(πx) in (2). In the 
work [4], the existence and uniqueness theorems 
were proved for a slightly more general integral 
equation 

   ( , ) ( ) , 2.

b
p

a

u x K x s u s ds f x p    

Let us make in (2) the substitution x = xc + hy, where 
xc = (a + b)/2 and h = (b – a)/ 2, and let U(y) = u(xc + 
hy). Equation (2) then takes the form 

       
1

1

( ) , , ,c cU y h G x hy x h U d F y   



        (10) 

where F(y) = f(xc + hy). 
At the solution of nonlinear integral equations, one 

has to use the iterative methods. Let U
m
(y), m = 

0,1,2,…, be the sequential approximations of the 
solution of (10). In the case of (9), we take U

0
(y) = 0. 

Then we immediately obtain from (9) the next 
approximation U

1
(y) = sin[π(1 + y)/2].  

To reduce (9) to a linear equation we now linearize 
the expression [U

m+1
(ξ)]

3
. Take the function φ(z) = z

3
. 

Retaining only the first two terms in the Taylor series 
expansion of φ(z), we obtain 

 

                φ(z) ≈ φ(z0) + φ'(z0)(z – z0).               (11) 
 

Let us substitute in (11) the values z0 = U
m
, z = U

m+1
. 

We obtain the following linear expression from (11):  
 

(U
m+1

)
3
 ≈ (U

m
)
2
(3U

m+1
 – 2U

m
). 

 

Substituting this expression in the integrand in (10) 
instead of U(ξ), we obtain a linear integral equation for 
the solution of which we use (at each iteration) the 
same collocation method as in the foregoing four 
examples. 

Denote the approximate solution obtained at the 
mth iteration (m = 2,3,…) as follows: 

  ( ) 1

1

.
n

m m k
k

k

U y b y 



  

For the realization of the criterion for completion of 
iterations we introduce the quantity  

( 1) ( )1

1
max .

m mm
k k

k n
b b b 

 
   

As the numerical experiments have shown, the 
quantity δb

m+1 
at first reduced with the increasing 

number of iterations m, however, at some m = mc > 1, 

the inequality 1c cm m
b b  

  took place. As soon as 

this inequality arose, the iterations were stopped, and 
the solution obtained at the mcth iteration was taken 
as the final numerical solution. Such a procedure for 
determining the moment of the iterations completion is 
termed the Garvik technique [34].  

The exact solution of (9) is as follows [25]:  

     
1

sin( ) 20 391 cos .
3

u x x x     

In Table VIII, Nit is in fact the iteration number mc. 
Symbol * marks in Table VIII the row with the most 
accurate result. 

Table IX shows that the above-described version 
of the iteration-collocation method for solving the 
Fredholm nonlinear second-kind integral equation 
ensures the numerical solution error, which is by 8 – 9 
decimal orders less than the error obtained by the 
spline-collocation method [25]. 

The exact solution is depicted in Fig. 6(a) by a 
solid line, and the numerical solution obtained by the 
proposed method is shown by a dotted curve. 
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Fig. 6. Results of solving the integral equation  

of Example 5 at n = 20 and NGauss = 16. 

TABLE VIII. ERROR ||U – UH||C  AS A FUNCTION OF PARAMETERS  

N AND NGAUSS IN EXAMPLE 5. 

No. n NGauss Nit ||u – uh||C κ(A) CPU 
time, 
sec. 

1 9 6 6 3.541e–5 5.420e2 0.22 

2 14 16 5 2.097e–12 4.231e4 0.36 

3* 20 16 10 7.772e–16 8.250e6 0.87 

4 30 24 11 7.772e–16 6.488e8 2.69 

TABLE IX. THE ABSOLUTE ERROR |U(X) – UH(X)|  AT 

PARTICULAR POINTS IN SOLUTION OF EXAMPLE 5  
AT N = 20, NGAUSS = 16. 

x Our method Method  
in [25] 

Method 
in [39] 

 0 6.66e-16  0  4.98e-02  

0.2 4.44e-16  1.56e-07  4.03e-02  

0.4 5.55e-16  5.99e-08  1.54e-02  

0.6 0.0  6.90e-08  1.54e-02  

0.8 4.44e-16  1.57e-07  4.03e-02  

1 1.80e-16  1.94e-07  4.98e-02  
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Example 6. Consider the following nonlinear 
integral equation [40]: 

        
1

0

1
( ) , 0,1 .

( )
u x f x ds x

x s u s
  

            (12) 

The function f(x) must be chosen in such a way that 
the function u(x) = (x + 1)

–1
 satisfies the integral 

equation (12). The corresponding expression for f(x) 
was found with the aid of the Mathematica system: 

 

 

2

2

2

2

5
2( 3 2 ) Arctan

3 15 2
/

2(4 )
15 2 4 (3 )Log

3

2(3 ) 15 2 ,

y
y y

y y
F y

y
y y y

y

y y y

        
     
   
          

  

 

where F(y)=f(xc + hy), xc = 1/2, and h = 1/2. The initial 
approximation U

0
(y) was obtained as follows: we have 

deleted the integral in (12), and as a result, U
0
(y) = 

F(y). The next approximations of the solution were 
computed by solving the linear equation (m = 0,1, 
2,…)

   
1

1

1

1
( ) , 1,1 .

0.5( 2) ( )

m

m
U y F y h d y

y U


 





   
  



In Table X, symbol * marks the row with the most 
accurate result. Table XI shows that the above-
described version of the iteration-collocation method 
for solving the Fredholm nonlinear second-kind 
integral equation ensures the numerical solution error, 
which is by 7 – 8 decimal orders less than the error 
obtained by the extrapolation method [40]. 

The exact solution is depicted in Fig. 7(a) by a 
solid line, and the numerical solution obtained by the 
proposed method is shown by a dotted curve. 

One can draw the following further conclusions 
from the analysis of the results of solving all 
examples: 1) the remainder term of solution 
approximation and the solution accuracy in the 
proposed numerical technique as well as in many 
other techniques applied in practice depends on 
solution gradients; 2) the ultimate attainable accuracy 
of the solution obtained on computer depends as in 
many other numerical methods also on the condition 
number of a SLAE to the solution of which the 
construction of the problem approximate solution 
reduces; 3) the attainable minimum size of the 
solution error depends on the both above factors. One 
can see from the analysis of the solution error graphs 
in all examples that when the solution error is close in 
terms of its order of magnitude to the computer 
rounding error, the oscillations appear on the graph. 
Their amplitude correlates with the magnitude of 
solution gradients. For example, the amplitude of the 
error oscillations in Example 2 is larger near the right 
end of the interval than near the left end. Their 
amplitude in Example 3 is much higher than in 
Example 2. The result presented in row 8 of Table V 
shows that at a further increase of the nodes number 
in the Gauss formula and the number of collocation 

points, there occurs such an accumulation of round-off 
errors that the numerical result is no longer refined. 
The results obtained in the present work show the 
flexibility and capabilities of the proposed method: at 
the expense of a suitable choice of the approximant 
degree, the number of collocation points, and the way 
of their location in the integration interval, one can 
obtain a very high accuracy of the result, whose error 
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Fig. 7. Results of solving the integral equation  

of Example 6 at n = 30 and NGauss = 24. 

TABLE X. ERROR ||U – UH||C  AS A FUNCTION OF PARAMETERS  

N AND NGAUSS IN EXAMPLE 6. 

No. n NGauss Nit ||u – uh||C κ(A) CPU 
time, 
sec. 

1 9 6 25 1.878e–6 1.298e3 0.12 

2 14 16 37 7.765e–11 4.153e4 0.33 

3 20 16 43 2.109e–15 8.126e6 0.52 

4* 30 24 43 4.441e–16 3.105e8 1.17 

TABLE XI. THE ABSOLUTE ERROR |U(X) – UH(X)|  AT 

PARTICULAR POINTS IN SOLUTION OF EXAMPLE 6  
AT N = 30, NGAUSS = 24. 

x Our method Method  
in [40] 

0 2.22e-16  2.20e-8  

1/6 3.33e-16  1.89e-8 

1/4 3.33e-16  1.60e-8 

1/3 0.0  1.40e-8 

1/2 0.0  1.03e-8 

2/3 1.11e-16  7.00e-9 

3/4 1.11e-16 5.57e-9 

5/6 1.11e-16 4.55e-9 

1 3.33e-16 3.00e-9 
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is close in terms of its order of magnitude to the error 
of machine computations in the arithmetic of floating-
point numbers in the Mathematica system. 
 

IV. NUMERICAL SOLUTION VERIFICATION IN THE CASE 

OF THE UNKNOWN EXACT SOLUTION 

We now consider a question about how one can 
judge approximately about the error of the numerical 
solution obtained by the method under consideration 
in the case when the exact solution of the linear 
equation (1) is unknown. Let us rewrite this equation 
in the form 

       ( , ) ( ) 0, , .

b

a

Lu g x u x K x s u s ds f x x a b      

(13) 
At the substitution of the approximate solution uh(x) 

in (13), a nonzero residual ε(x) arises in the right-hand 
side: Luh(x) = ε(x). If this residual proves to be 

sufficiently small for all  ,x a b  and, in addition, its 

modulus will reduce with increasing degree n – 1 of 
the polynomial approximating the solution then this 
will testify both the accuracy of the obtained numerical 
solution and its convergence to the exact solution with 
increasing n. Subtracting from the both sides of the 
equation Luh(x) = ε(x) the both sides of the equation 
Lu(x) = 0, it is easy to obtain the following equality: 
L(uh – u) = ε(x). From this we have: ||u – uh|| ≤  
||L

–1
||·||ε||. If the value ||L

–1
|| is bounded from above, 

then one can judge approximately from here about the 
magnitude of ||u – uh|| depending on the size of the 
residual ε. We illustrate the above-described 
procedure by Example 3. As one can see in Table XII, 
with the growth of n within the interval 9 ≤ n ≤ 48, a 
rapid reduction of the value ||ε(x)||C occurs, which is 
indicative of the convergence of the numerical solution 
to the exact one and confirms the correctness of the 
obtained approximate solution. But at n = 56, the 
residual value is already somewhat larger than at n = 
48. This agrees with the fact that ||u – uh||C at this n is 
larger than at n = 48, see Table V. Fig. 8 shows the 
form of curves ε = ε(x) for two pairs of the values (n, 
NGauss). 

In the case of the nonlinear integral equation (2), 
we can investigate the behavior of the residual 
function 

   ( ) ( , , ( ))

b

h

a

x u x G x s u s ds f x     

similarly to the linear case and compose a table 
similar to Table XII, and in this way, we can draw a 
conclusion whether the obtained approximate solution 
is correct. We omit these studies for the sake of 
brevity. 

V. CONCLUSIONS 

A p-version of the collocation method has been 
proposed for the numerical solution of the Fredholm 
integral equations of the second kind. The important 
peculiarities of the method are the possibilities for a 
considerable variation of the polynomial degree in the 
polynomial representation of the approximate solution 
and a considerable variation of the number of nodes 
of the Gauss quadrature formula for reaching a high 
accuracy of the solutions of equations. 

The proposed p-version of the collocation method 
has been implemented in the language of the system 
Mathematica. The corresponding computer code 
proved to be sufficiently compact, and it has been 
shown here that it can ensure quite well a sufficient 
accuracy for a wide class of the Fredholm integral 
equations of the second kind. In all considered 
examples, the proposed version of the collocation 
method has enabled us to reach the accuracy close to 
the size of machine rounding errors. The method has 
proved economical from the viewpoint of the computer 
resources required for its realization: even in the most 
complex example from the examples handled in the 
work — Example 3, the CPU time needed for problem 
solution did not exceed 3 seconds of the computer 
work to solve the equation with an error close to the 
rounding errors of computer calculations. 

The capabilities of the method have been shown 
by the examples of solving the specific equations. An 
algorithm has also been described here, which 
enables one to verify the accuracy of the approximate 
solution obtained by the proposed version of the 
collocation method. 

Comparison of the above numerical solutions of 
the known linear and nonlinear integral equations with 
the known results obtained by other methods showed 
that the possibilities of the collocation method are far 
from exhausted. 

TABLE XII. THE RESIDUAL NORM ||Ε(X)||C AS A FUNCTION 

OF PARAMETERS N AND NGAUSS IN EXAMPLE 3. 

No. n NGauss ||ε(x)||C 

1 9 6  4.976e-1  

2 14 16 2.707e-3  

3 20 16 8.997e-5  

4 30 24 1.115e-7  

5 36 30 3.673e-11  

6 42 35 1.528e-11  

7* 48 40 1.517e-11 

8 56 45 1.543e-11 

x

x
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Fig. 8. The residual (Example 3) at n = 48, NGauss = 40 (solid line) 

and at n = 36, NGauss = 30 (dashed line). 
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