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Abstract—The construction of biological 
networks has certain challenges due to its high 
dimension, sparse structure and very limited 
number of observations. Thus, specific modeling 
approaches have been suggested to deal with 
these problems such as Gaussian graphical 
model, loop-based multivariate adaptive 
regression splines (MARS) with/without 
interaction effects and Gaussian copula graphical 
model. From previous analyses via these 
methods, it has been shown that they can 
successfully estimate the systems with 
comparative accuracies. Hereby, in this study, as 
the novelty we use all these complex 
mathematical models in inference of 
gynecological cancer networks whose target 
genes are gathered from biological literature. The 
observations for these target genes are collected 
from the ArrayExpress database with other 
associated risk factors such as stage of the 
cancers which are denoted by categorical 
variables. Then, under different dimensions of 
systems, sample sizes and measurement types, 
we compare the performance of all models with 
the criteria of accuracy and F-measure. From the 
results, we observe that the suggested models 
can successfully estimate the real cancer systems 
under different conditions and are promising 
approaches to describe the complexity in 
biological networks.  

Keywords—mathematical models; biological 
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I.  INTRODUCTION  

Cancer is a branch of systems’ diseases which are 
caused by malfunctions in different regulation 
pathways affecting cellular proliferation, growth and 
apoptosis. The gynecologic cancer is one group in 
these illnesses which have influence upon women’s 
reproductive organs which cover vaginal, vulvar, 
ovarian, cervical and endometrial parts. After breast 
cancer, gynecological cancers are still the second 
most common cancer types which affect 
approximately 1:4 of all cancers in women in 
developing countries (excluding non-melanoma skin 

cancer) [1]. Despite the fact that gynecological 
cancers' incidence decreases in some countries, 
whereas in others like less developed countries, the 
incidence rate rises during the same interval [2]. 
Therefore, accurately screening of potentially crucial 
genes and their interactions, which could pave the 
way for significant breakthroughs in finding cures for 
various cancers like gynecological cancers, become 
more of an issue. However, there are challenges to 
understanding the underlying system model due to the 
functional and structural complexity inherent in 
biological systems [3, 4]. For example, the high 
sparsity of the system and the high correlation 
between the genes are the two of the several issues 
that should be considered about inference of the gene 
regulatory systems. Therefore, in order to derive a 
plausible interaction network and to make a reliable 
inference about networks to explain an actual 
system's disease, the choice of mathematical models 
plays a significantly crucial role [5, 6]. 

Hereby, in this study, we initially make a list of 
quasi target proteins of these cancers by combining 
various oncogene researches [7, 8, 9] and we 
generate a target pathway having 11 genes whose 
biological interactions are also validated by the 
literature. Then, we check the ArrayExpress database 
and find all the Affymetric data which include the 
underlying genes. Finally, we perform various 
complex mathematical models to estimate the 
pathway and control the accuracy of the models. By 
this way, we aim to find the best modelling approach 
which can be used for the construction of the actual 
pathway disease.  

Accordingly, we present the recently developed 
networks models which are particularly applied for 
high dimensional and sparse biological networks in 
Section 2. Then, we introduce our datasets in Section 
3. In Section 4, we report the application of these 
models to our data and tabulate the accuracy 
measures of our models for each dataset. Lastly, in 
Section 5, we summarize our findings and discuss the 
future works. 
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    II. MATHEMATICAL MODELS 

 
There are a number of mathematical models 

designed for the description of biological networks 
under various assumptions. In this study, we perform 
GGM, CGGM with RJMCMC and BDMCMC inference 
methods as well as the LMARS model with/without 
gene interaction effect. Below, we present each 
alternative shortly. 

A. Gaussian Graphical Model (GGM) 

This model is one of the fundamental modeling 
approaches in the steady-state activation of the 
system via the undirected graph. Under the 
assumption of multivariate normality, GGM uses the 
following model to regress each gene in the system 
on the remaining genes.  
 

   pp YY ,                                                        (1) 

 

where pY  and pY  denote the state of the pth state 

and all the remaining states except p, respectively. 

Moreover,   and   show the regression coefficient 

and the random error, in order. In Equation 1, the 

state Y  is assumed to have a multivariate normal 

distribution with mean   and variance   and there is 

a direct relation between the inverse of  , denoted by 

   and called the precision matrix,  and   which is 

the model parameter in (1). In biological networks,   

is sparse, meaning that there are many zeros in the 

entry of . Accordingly, the relation between   and 

 is described by the following expression. 
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in which  pp ,  shows the precision when the pth 

state is excluded and pp ,  indicates the precision with 

totally p genes. Due to the feature of the multivariate 

normality, the zero value in   implies the conditional 

independence between the associated pair of genes 
and the non-zero entry represents the existence of the 
interrelation between those genes. Therefore, in 

GGM, we prefer to infer  , rather than  , in order to 

use this special feature of the conditional 

independency. Hereby, to estimate   in GGM, 

various approaches are suggested. Graphical lasso 
[10], neighborhood selection [11], adaptive lasso and 
fused lasso are some examples. But among them, 
graphical lasso, which is based on the L1 – penalized 
likelihood equation, is the most common one, thereby, 
is chosen in this study too.  
 

B. Copula Gaussian Graphical Model (CGGM) 

 
When the dimension of the systems increases, the 

GGM cannot estimate the systems very accurately 
since the inference is based on the likelihood equation 
and the sparsity in the systems becomes a challenge 
in inference. Therefore, GGM is redesigned by 
changing the joint function of the multivariate 
normality of states by partitioning it via the Gaussian 
copula. This new representation of the high 

dimensional joint distribution enables us to estimate   

via the Bayesian algorithms which are free from the 
limitation of the high dimension and the problem of the 
sparsity [12, 13]. 

There are two major alternative inference methods 
for CGGM. These are the reversible jump Markov 
chain Monte Carlo (RJMCMC) approach [12, 13] and 
the birth-and-death MCMC (BDMCMC) method [14]. 
The former is the modified version of the Metropolis-
Hasting algorithm which provides jumps between 
spaces of different dimensions under three stages 
whose mathematical details can be found in Dobra 
and Lenkoski (2011) [12]. On the other hand, the 
second method is based on the two poisson rates for 
the acceptance and the rejection of links between 
genes in a MCMC scheme whose mathematical 
details can be seen in Mohammadi and Wit (2015) 
[14]. Besides these approaches, theoretically, there 
are other alternative Bayesian inference methods that 
can be adapted in CGGM. The split and merge 
approach [15], Carlin and Chibs method [16] and the 
Gibbs sampling [17, 18] are some of these examples. 
In this study, we perform CGGM under RJMCMC and 
BDMCMC due to the fact that their adaptations for 
sparse systems have been discussed comprehensibly 
and their R programmes which simplify their 
applications have been already developed.   
 

C.  Loop-based Multivariate Adaptive Regression 
Splines (LMARS) 

The MARS model is one of the well-known models 
in the family of generalized additive models [19, 20]. 
MARS is specifically designed for highly dependent 
data under nonlinear structures. The full description of 
this model is presented as below. 
 



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M

m
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where 0  denotes the intercept, m  stands for the 

regression coefficient and  implies the random error, 

as used previously. Here, M shows the total number 

of parameters and mB is the basis function which has 

the following form.  
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in which mK  and mks ,  present the number of 

truncated linear functions multiplied in the mth basis 
function and the input variable corresponding to the 
kth truncated linear function in the mth basis function, 
respectively. In this expression, the basis function is 
chosen via the condition below. 
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In the expression above, t is the knot which presents 
the breaking point of the spline function. The knot is 

used to get the reflected pairs for each jx  with knots 

at each observed value ijx . 

In the application of this model in biological 
networks, we need to eliminate very high orders of 
interactions since there is no biological 
correspondence of such relationships in the literature 
of systems biology. Thereby, we convert (3) into (1) so 
that the biological systems can be nonparametrically 
represented by MARS similar to the GGM approach. 
This revised model is called the loop-based MARS  
(LMARS) [21] which is based on solely the main 
effects. Later, we also extend this LMARS without 
interaction model by adding merely the second order 
interaction effects [22]. The second order interaction 
implies the feed forward loop [23] in biological 
systems and we call this model as “LMARS  with 
interaction” in this study. 

III. DATA DESCRIPTION 

In the construction of a quasi-gynecological 
network, we firstly check the related literature about 
these cancers which mainly cover cervix, ovarian and 
endometrial cancers. Then, we detect that CTNNB1, 
TFAM, CEBPM, MAP2K1, MAPK1, TP53, PDIA3, 
IMP3, ERBB2, CHD4 and MBD3 are the core genes 
which have direct influence in these cancers [7, 8, 9] 
and have dense connections between each other in 
such a way that they generate a complete graph. This 
means that all genes have connections with the 
remaining genes, resulting in an adjacency matrix 
made up of fully “one” entries. Then, we 
comprehensively control the ArrayExpress dataset to 
find the gene expression data which consist of these 
11 genes. During the data collection, we choose the 
ArrayExpress database [24] since it is one of the most 
common databases which is composed of high 
throughout functional genomics data. This dataset 
also supports community standards such as MIAME 
and MAGE-ML [25, 26]. Hereby, we present the 

biological description of each dataset which has our 
11 genes as below. 

i) E-GEOD-9891 - Transcription Profiling of 
285 Human Ovarian Tumour Data:  The data are a 
cohort of 285 patients with epithelial ovarian, primary 
peritoneal, or fallopian tube cancer, diagnosed 
between 1992 and 2006. They are identified through 
Australian Ovarian Cancer Study8 (sample size n = 
206), Royal Brisbane Hospital (n = 22), Westmead 
Hospital (n = 54) and Netherlands Cancer Institute 
(NKI-AVL; n = 3) [27]. In this dataset, the arrays are 
designed by randomly selected samples from the 
Australian Ovarian Cancer Study whose expression 
profiles on the Affymetrix U133_plus2 platform aim to 
identify novel subtypes of the ovarian tumour by gene 
expression profiling with linkage to clinical and 
pathologic features [27]. 

ii) E-GEOD-63678 – Expression Data from 
Vulvar, Cervical, Endometrial, Carcinoma Tissue:  In 
this dataset, 35 samples are used to identify potential 
biomarkers and signatures in each type of cancer. 
Specifically, 18 cancer samples with 5 cervical, 7 
endometrial and 6 vulvar cancers, and also 17 normal 
samples with 5 cervical, 5 endometrial and 7 vulvar 
cancers are hybridized on the Affymetrix platform in 
order to identify the common features among cancer 
types, embryonic stem cells and the newly discovered 
cell population of squamocolumnar junction of the 
cervix, considered to host the early cancer events 
[28]. Moreover, total RNA is extracted from 
physiological and cancer patients from cervix, 
endometrium and vulvar tissue and is hybridized on 
the Affymetrix HG133_A_2.0 microarray chips 
corresponding to more than 12.000 uniquely 
represented genes [28]. 
 iii) E-GEOD-81248 - Expression Data from 
HEY Cells: The data are collected from two samples 
of distal naïve cells that are exposed to either 
unstimulated (control) and stimulated (LPS or 
poly(I:C)) exosomes from local cells in order to show 
whether the exosomes from TLR stimulated cells can 
largely recapitulate the TLR activation in distal cells in 
vitro [29]. In this dataset, the mRNA expression is 
captured on the Affymetrix U133 Plus 2 chips and 
includes all the 11 core genes which we list 
previously. In the dataset, each gene has 12 
observations.  

iv) E-GEOD-14764 - A Prognostic Gene 
Expression Data in Ovarian Cancer: The data are a 
cohort of 80 ovarian carcinomas (TOC cohort) for the 
development of a predictive model, which is then 
evaluated in an entirely independent cohort of 118 
carcinomas (Duke cohort) [30]. In this dataset, RNA 
from 80 frozen ovarian cancer samples is hybridized 
on Affymetrix Human Genome U133A Array and the 
collected data contain our 11 core genes. In the data 
collection, it is aimed to investigate the  hypothesis 
that molecular markers are able to predict outcome of 
the ovarian cancer independently from classical 
clinical predictors, and that these molecular markers 
can be validated using independent datasets [30]. 
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    IV. APPLICATION 

D. Accuracy Measures 

In our analyses, in order to compare the 
performance of methods, we use the accuracy value 
and F-measure for all datasets. These measurements 
are calculated with the following four main values: true 
positive, true negative, false positive and false 
negative value. True positive (TP) indicates the 
number of correctly classified objects that have a 
positive label. The true negative (TN) implies the 
number of correctly classified objects that have a 
negative label. On the other hand, the false positive 
(FP) presents the number of misclassified objects that 
have a negative label and the false negative (FN) 
shows the number of misclassified objects that have a 
positive label. This information also constructs a 
confusion matrix as shown in Table 1, which 
represents the actual and the predicted classification.  

TABLE I.  GENERAL CONFUSION MATRIX. 

 

 
H

ere
by, 

the accuracy is expressed by the ratio of correctly 
classified objects in both labels to the total of all 
classified objects which is shown by the following 
formula: 

 

FNTNFPTP

TNTP
Accuracy




 .             (5) 

 
 
On the other hand, F-measure is calculated by the 
equation below. 
 
 

callecision

callecision
measureF

RePr

RePr
2




  ,       (6) 

 
where  
 

FPTP

TP
resicion


 and 

FNTP

TP
call


Re . (7)    

 
In the following part, we present the performance of 
each model for every dataset separately and evaluate 
the findings.  
 

E. Results of Datasets 

In the following tables, we tabulate the accuracy of 
each suggested model for the selected datasets. In 
the calculation, we compare the estimated networks 
with the true system. This system is composed of 11 
genes and all the interactions between these genes 
are validated via the STRING database. Hereby, the 

true network with these 11 genes shows a complete 
graph which implies fully one in its adjacency matrix.  

As seen in Table 2, the best accuracy is obtained 
in the CGGM approach under the parametric models 
and LMARS with interaction approach under the non-
parametric models when we have small dimensional 
networks.   

Then, in order to see specifically the effect of the 
increase in dimensions on the accuracy of models, we 
extend the study by using 1000 genes for each 
dataset including the core 11 genes. In other words, in 
the analyses, we still check the accuracy of links in 
the same 11 genes, but this time, we evaluate the 
models under a high dimensional setting which is 
composed of 1000 genes in the system. Hereby, we 
tabulate our findings in Table III for E-GEOD-9891, E-
GEOD-63678 and E-GEAD-14764 datasets. In these 
calculations, E-GEOD-81248 is not applied since 
there is less number of genes in that dataset. 
Furthermore, we discard the results of CGGM too 
since both RJMCMC and BDMCMC estimation 
methods become computationally very demanding 
when the dimension of the systems is extended to 
1000 genes. Therefore, in Table III, we present the 
outcomes of GGM, LMARS with/without interaction 
effect models.  
      

TABLE II. COMPARISON OF F-MEASURE AND ACCURACY FOR ALL 

DATASETS. 

DATA: E-GEOD-9891    

METHODS F-MEASURE ACCURACY 

GGM 0.167 0.091 

CGGM VIA RJMCMC 0.846 0.733 

CGGM VIA BDMCMC 0.448 0.289 

LMARS WITHOUT INTERACTION 0.752 0.603 

LMARS WITH INTERACTION 0.858 0.752 

DATA: E-GEOD-63678   

METHODS F-MEASURE ACCURACY 

GGM 0.167 0.091 

CGGM VIA RJMCMC 0.981 0.791 

CGGM VIA BDMCMC 0.964 0.655 

LMARS WITHOUT INTERACTION 0.726 0.570 

LMARS WITH INTERACTION 0.778 0.636 

DATA: E-GEOD-81248   

METHODS F-MEASURE ACCURACY 

GGM 0.091 0.167 

   Actual  class 

  Positive  Negative 

Predicted  
class 

Positive TP FP 

Negative FN TN 
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CGGM VIA RJMCMC 0.472 0.309 

CGGM VIA BDMCMC 0.736 0.582 

LMARS WITHOUT INTERACTION 0.429 0.273 

LMARS WITH INTERACTION 0.408 0.256 

DATA: E-GEOD14764   

METHODS F-MEASURE ACCURACY 

GGM 0.167 0.091 

CGGM VIA RJMCMC 0.911 0.836 

CGGM VIA BDMCMC 0.226 0.127 

LMARS WITHOUT INTERACTION 0.193 0.107 

LMARS WITH INTERACTION 0.752 0.603 

TABLE III. COMPARISON OF F-MEASURE AND ACCURACY FOR THREE 

DATASETS UNDER 1000 GENES’ SYSTEMS. 

DATA: E-GEOD-9891    

METHODS F-MEASURE ACCURACY 

GGM 0.271 0.157 

LMARS WITHOUT INTERACTION 0.246 0.140 

LMARS WITH INTERACTION 0.271 0.157 

DATA: E-GEOD-63678   

METHODS F-MEASURE ACCURACY 

GGM 0.167 0.091 

LMARS WITHOUT INTERACTION 0.193 0.107 

LMARS WITH INTERACTION 0.167 0.091 

DATA: E-GEOD-14764   

METHODS F-MEASURE ACCURACY 

GGM 0.167 0.091 

LMARS WITHOUT INTERACTION 0.193 0.107 

LMARS WITH INTERACTION 0.049 0.025 

 
From the results in Table III, it is seen that the 

accuracy of all models decreases when the dimension 
of the systems increases. Moreover, the best 
performance is observed under the LMARS without 
interaction models.  

In the final stage of the analyses, we use a single 
dataset (E-GEOD-9811) since it is the only set which 
has discrete measurements besides its microarray 
observations. In this dataset, the following categorical 

variables are also publically available and they are 
included in modeling of the system as the risk factors 
of the disease [5].  

 Primary site: composed of three stages, 
namely, ovary, peritoneum and fallopian. 

 Type: consists of two groups, namely, 
malignan and LMP. 

 Subtypes: consisting of 3 groups, namely, 
ser/papser, endo and adeno. 

 Consolidated grade: recorded under three 
levels, namely, 1, 2 and 3. 

The tabulated values are shown in Table IV for 
GGM and LMARS with/without interaction effect 
models. In these analyses, since GGM can work with 
solely continuous measurements and cannot deal with 
categorical datasets, we add jitters to those listed 
categorical risk factors in order to convert all 
measurement to continuous scales. On the other 
hand, we do not make any adjustments for both 
LMARS models as they can be used for both 
discrete/categorical and continuous datasets. Finally, 
in our comparison, we still apply 1000 genes in 
modeling. From the results in Table IV, it is found that 
the best accuracy is computed for the LMARS with 
interaction model and the performance of this model is 
improved significantly when the model is extended via 
the categorical risk factors. 
 

TABLE IV. COMPARISON OF F-MEASURE AND ACCURACY FOR E-GEOD-
9891 DATA UNDER 1000 GENES. 

DATA: E-GEOD-9891    

METHODS F-MEASURE ACCURACY 

GGM 0.208 0.116 

LMARS WITHOUT INTERACTION 0.542 0.372 

LMARS WITH INTERACTION 0.683 0.521 

 

V. CONCLUSION 

In this study, we have aimed to generate a 
gynecological cancers pathway by choosing the core 
genes in this disease. For this purpose, we have 
combined the biological literature about this illness and 
generate a list of genes composed of 11 core proteins. 
Then, we have searched all microarray datasets in the 
ArrayExpress database which has our 11 core 
species. We have found 4 datasets under different 
sample sizes per gene. Then, we have modelled them 
separately by the selected approaches, which are 
Gaussian graphical model (GGM), copula GGM with 
two different inference approaches and the loop-based 
multivariate adaptive regression splines (LMARS) 
model constructed by both gene effect and second 
order gene-interaction effect conditions. Here, we have 
chosen these modelings since they are particularly 
designed for the construction of complex biological 
networks. In our analyses, we have evaluated the 
performance of these 4 mathematical descriptions in a 
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real disease network. In our calculation, we have 
assessed the models under moderate and high 
dimensions as well as under continuous and discrete 
measurements. The results have indicated that for the 
small dimensional systems, the CGGM model has a 
better performance. Whereas, since it is 
computationally very demanding, it has a limited 
application. On the other hand, for high dimensions, 
LMARS, particularly, with the gene–interaction effect 
version is more successful than alternates. When we 
have applied both discrete and continuous 
measurements, it has been seen that still LMARS can 
accurately construct the systems.  

As a result, we have concluded that among 
parametric models CGGM can be the most promising 
approach and among nonparametric models, LMARS 
with interactions (i.e., gene-interaction effects) is more 
preferable in real-life datasets.  As the extension of this 
study, we consider to collect more datasets from 
different databases and evaluate the performance of 
these models. We consider that this study can be a 
first step to generate a target drug in personalized 
medicine for the gynecological cancers’ studies and 
can be adapted to other complex systems illnesses 
such as heart diseases and other cancers types.  
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