
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 5 Issue 12, December - 2018 

www.jmest.org 

JMESTN42352771 9231 

Comparative evaluation of single constant 
tuning method and function of residue tuning 
method for the Early ITU foliage propagation 

loss model 
 

Enyenihi Henry Johnson
1
, Ibanga, Ekerette Bernard

2
, Ezuruike Okafor S.F.

3 

1
 Department of Electrical/Electronic Engineering, Akwa Ibom State University Mkpat Enin, Akwa Ibom State, 

Nigeria 
2
 Department of Electrical/Electronic and Computer Engineering, University of Uyo, Akwa Ibom, Nigeria 

3
 Department of Electrical/Electronic Engineering, Imo State Polytechnic, Umuagwo,  Nigeria 

(
1
 gentlejayy@yahoo.com) 

 

Abstract— This paper presented a comparative 
evaluation of single constant tuning method and 
function of residue tuning method for the Early ITU 
foliage propagation loss model. The study was 
conducted on a 3G mobile network coverage area 
that is within a Terminalia Mantaly tree park located 
in Uyo, Akwa Ibom state. The relevant data (RRSI, 
base station information, measurement point 
longitude and latitudes) were collected using a 
Netmonitor 1.5.84  android app installed on a Infinix 
S3 mobile phone. Two sets of measurements were 
conducted and one of the datasets was used to 
train or develop the proposed models while the 
second dataset was used for cross-validation 
purpose. The root mean square error (RMSE) and 
prediction accuracy were used to assess the 
prediction performance of the models. The four 
tuning methods considered are ; the RMSE-based 
tuning method, the coefficient of foliage depth 
tuning , the coefficient of Early ITU foliage model 
tuning  and the error function of foliage depth-
tuning methods. The results showed that the error 
function of foliage depth-tuning method the best 
prediction performance with a RMSE of 2.92  dB 
and a prediction accuracy of 97.22 % for the 
training dataset and a RMSE of 3.71  dB and a 
prediction accuracy of  96.6 % for the validation 
dataset. Also, among the four tuned models, the 
RMSE-tuned ITU foliage model had the least 
prediction performance for both the training and 
validation datasets. The ideas presented in this 
paper will guide network designers in the selection 
of model tuning approach that will ensure more 
accurate path loss prediction, especially in areas 
covered with vegetation. 
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I.  INTRODUCTION 

As wireless signals propagate through the atmosphere, 
they are subjected to both free space path loss and 
other path losses that depend on the kinds of 
obstructions present in the signal path 
[1,2,3,4,5,6,7,8,9]. Over the years, experts have 
developed empirical models to estimate the 
propagation loss that wireless signals experience in 
different environments [10,11,12,13]. Among the 
empirical models, there are some propagation loss 
models that are developed specifically for regions that 
are covered with foliage [14,15,16,17]. Such models 
are referred to as foliage path loss models and one of 
the most popular is the Early ITU model [18,19,20,21], 
where ITU stands for the International 
Telecommunication Union. 

The Early ITU foliage propagation loss model estimates 
the additional propagation loss due to the presence of 
vegetation in the signal path [18,19,20,21]. In essence, 
the effective propagation loss is the sum of the free 
space path loss and the path loss estimated by the 
Early ITU foliage propagation loss model. Although the 
Early ITU model has been widely studied, experts have 
noted that empirical models need to be optimized 
before they can provide acceptable path loss prediction 
accuracy when they are employed in an environment 
other than the environment where they were developed 
[22,23,24,25,26,27,28,29]. In this study, the  Early ITU 
foliage propagation loss model is employed in 
predicting the path loss for a Terminalia Mantaly 
[30,31] tree park located in Uyo, Akwa Ibom State. 
More importantly, the study in this paper is set to 
present and comparatively evaluate different path loss  
model tuning approaches based on the empirical data 
and the Early ITU foliage propagation loss model. The 
essence of the study is to present alternative path loss 
model tuning approaches that relatively simple but can 
give better prediction performance than the widely used 
root mean square tuning method. The relevant 
mathematical expressions and methodology for the 
models development and evaluation are presented in 
the paper. 

http://www.jmest.org/
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II.  FOLIAGE PROPAGATION LOSS  BASED ON THE 
EARLY ITU MODEL 

One of the most popular foliage propagation loss 
models developed by the International 
Telecommunication Union (ITU) is referred to as  the 
Early ITU model which specifies the foliage 
propagation loss as follows [18,19,20,21]: 

 PL𝐈𝐓𝐔 (𝑑𝐵) = {
0.2𝐹0.3(𝑑𝑓)

0.3
   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3(𝑑𝑓)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  

  (1) 

Where 𝑑𝑓 in meters is the foliage depth along the signal 

path and f in GHz is the signal frequency.  The overall 
propagation loss ( PL𝐄𝐋 ) is obtained by adding Early 

ITU estimated  propagation loss ( PL𝐈𝐓𝐔 ) to the  free-
space propagation loss ( PL𝐅𝐒𝐏 ). Hence; 

 PL𝐄𝐋  =   PL𝐅𝐒𝐏   +   PL𝐈𝐓𝐔     (2) 

where ; 

 PL𝐅𝐒𝐏 (𝑑𝐵)  = 32.5 + 20 ∗ log(f) + 20 ∗ log(d)    
   (3) 

Where d is the path length in km while f is the signal 
frequency in MHz. 

Furthermore, root mean square error (RMSE)  is used 
to assess the prediction performance of the model and 
it is given as; 

𝑒(𝑖) = 𝑃𝑚(𝑖) − 𝑃𝐼𝑇𝑈(𝑖)  (4) 

RMSE =  √{ 
1

𝑛
[∑ |𝑒(𝑖) |

2𝑖 = 𝑛
𝑖 = 1 ]}

2
   (5) 

Where 𝑃𝑚(𝑖)  is the path loss measured at data point i 

and 𝑃𝐼𝑇𝑈(𝑖) is  the ITU model  predicted  path loss at 

data point i. Also, prediction accuracy (PA)  is used to 
assess the prediction performance of the model and it 

is given as ; 

𝐏𝐀 =  (1 − (
1

𝑛
  (∑ |

𝑃𝑚(𝑖)−𝑃𝐼𝑇𝑈(𝑖)

𝑃𝑚(𝑖)
 |𝑖=𝑛

 𝑖=1 ))) * 100 % 

 (6) 

 

 

 

 

 

III.  THE FIELD MEASUREMENT AND THE EARLY 
ITU FOLIAGE  MODEL TUNING METHODS 

In most case, empirical propagation loss models need 
to be tuned based on empirically measured data to 
make them more effective in predicting the propagation 
loss in the given area. The model tuning entails 
adjustment of one or more model parameters such that 
the resultant root mean square error is minimized. Also, 
the model can be tuned by adjusting the model 
parameter by sung a composite function in respect of 
the parameter. In this paper, different single constant 
tuning methods and the composite function of the 
prediction residue method are considered and their 
prediction performances are compared. Specifically, 
single constant tuning means that only one constant 
value is adjusted to minimize the RMSE. The constant 
can be the coefficient of a factor or parameter in the 
path loss model or it can be a standalone constant that 
is added or subtracted to the model path loss prediction 
so as to minimize the RMSE. On the other hand, the 
composite function of prediction residue involves the 
derivation of a mathematical expression that can 
estimate the path loss prediction error based on the 
value of a single parameter in the model. Particularly, 
in this paper, the model developed estimates the 
prediction error based on the value of the field 
measured foliage depth.  

The field measurement was carried out on an 1800 
GHz cellular network and the network’s  coverage area 
considered is a Terminalia Mantaly tree park located in 
Uyo, Akwa Ibom State. The relevant data (RRSI, base 
station information, measurement point longitude and 
latitudes) were collected using a Netmonitor 1.5.84  
android app installed on a Infinix S3 mobile phone. Two 
sets of measurements were conducted and one of the 
datasets was used to train or develop the proposed 
models while the second dataset was used to evaluate 
the prediction performance of developed models with 
respect to independent dataset captured within the 
study area. The measured RSSI values were used to 
determine the measured path loss. . Figure 1 shows 
the measured path loss versus foliage depth for the 
training and validation datasets. 

Importantly, the selection of the parameters or the 
single constant to be adjusted depends on the 
correlation coefficient (r) results pertaining to the 
parameter. Table 1 shows the correlation coefficients of 
the field measure path loss and prediction error with 
the foliage depth and untuned ITU foliage model 
predicted path loss.  

 

http://www.jmest.org/
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=13&cad=rja&uact=8&ved=2ahUKEwiQhZnmvJrfAhXF_qQKHWCvBjgQFjAMegQIBhAB&url=http%3A%2F%2Ftropical.theferns.info%2Fviewtropical.php%3Fid%3DTerminalia%2Bmantaly&usg=AOvVaw0-Q9hYZmOOGtZtzNg37uhU
https://apk-dl.com/netmonitor/com.parizene.netmonitor
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Figure 1  The measured path loss versus foliage depth  for the training and validation data 

Table 1  The Correlation Coefficient of the field measure path loss and prediction error with the foliage depth and 
untuned ITU model path loss prediction  

  Field Measured Path loss    Error ,e 

Field Measured Path loss 1  Error ,e 1 

df (m) 0.886749  df (m) 0.832185 

Untuned ITU Model 0.893345  Untuned ITU Model path loss 0.838058 

 

The r values in Table 1 show  that both the field 
measure path loss and prediction error are very 
strongly correlated to  untuned ITU foliage model 
predicted path loss and also to the foliage depth. 
Consequently, the tuning methods adopted in this 
paper involve adjustment of the coefficients of the 
foliage depth and the untuned ITU foliage model. The 
tuning models are as follows: 

I) The RMSE-based tuning is given as 

 PL𝐈𝐓𝐔−𝐑𝐌𝐒𝐄 = {
0.2𝐹0.3(𝑑𝑓)

0.3
   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3(𝑑𝑓)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
} 

+ RMSE for ∑ 𝑒(𝑖) ≥ 0   (7) 

 PL𝐈𝐓𝐔−𝐑𝐌𝐒𝐄 = {
0.2𝐹0.3(𝑑𝑓)

0.3
   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3(𝑑𝑓)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
} 

- RMSE for ∑ 𝑒(𝑖) < 0   (8) 

 

II) The coefficient of foliage depth-tuned (CFD-tuned) 
ITU foliage model is given as; 

 PL𝐈𝐓𝐔−𝐂𝐅𝐃 =

{
0.2𝐹0.3 ((𝑑𝑓)𝐾𝐶𝐹𝐷)

0.3

   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3 ((𝑑𝑓)𝐾𝐶𝐹𝐷)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
}  

  (9) 

Where 𝐾𝐶𝐹𝐷  is the coefficient of foliage depth tuning 
parameter. 

 

III) The coefficient of Early ITU foliage model-tuned 
(CEITU-tuned) ITU foliage model is given as; 

 PL𝐈𝐓𝐔−𝐂𝐄𝐈𝐓𝐔 =

{
𝐾𝐂𝐄𝐈𝐓𝐔 (0.2𝐹0.3(𝑑𝑓)

0.3
)    𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

𝐾𝐂𝐄𝐈𝐓𝐔  (0.2𝐹0.3(𝑑𝑓)
0.6

)    𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
}  

  (10) 

Where 𝐾𝐂𝐄𝐈𝐓𝐔  is the coefficient of Early ITU foliage 
model tuning parameter. 

 

IV) The error function of foliage depth-tuned (EFFD-
tuned) ITU foliage model is given as; 

 PL𝐈𝐓𝐔−EFFD =

{
0.2𝐹0.3 ((𝑑𝑓)𝐾𝐶𝐹𝐷)

0.3

   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3 ((𝑑𝑓)𝐾𝐶𝐹𝐷)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
} +  

𝑓(𝑒 𝑜𝑓 𝑑𝑓)  (11) 

where 𝑓(𝑒 𝑜𝑓 𝑑𝑓) is the function used to estimate the 

path loss prediction error from the foliage depth. 
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IV  RESULTS AND DISCUSSIONS 

The results of the measured and predicted path loss 
versus foliage depth using the four different tuning 
methods based on the training dataset is shown in 
Figure 2. Similar results for the validation dataset are 
shown in Figure 3. The prediction performance of the 
four different tuning methods based on the training and 
the validation datasets are given in Figure 4. According 
to the results in Figure 4, the error function of foliage 

depth-tuned (EFFD-tuned) ITU foliage model had the 
best prediction performance for the training and the 
validation datasets. It has RMSE of 2.92  dB and 
prediction accuracy of 97.22 % for the training dataset 
and RMSE of 3.71  dB and prediction accuracy of  96.6 
% for the validation dataset. Also, among the tuned 
models, the RMSE-tuned ITU foliage model had the 
least prediction performance for both the training and 
validation datasets. 

 

 

Figure 2 The measured and predicted path loss using the four different tuning methods based on the training 
dataset  

 

Figure 3 The measured and predicted path loss using the four different tuning methods based on the validation 
dataset 
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Figure 4 The prediction performance of the four different tuning methods based on the training and the validation 
datasets 

The models based on the different tuning methods are 
given as follows: 

I) The RMSE-based tuning is given as 

 PL𝐈𝐓𝐔−𝐑𝐌𝐒𝐄 = {
0.2𝐹0.3(𝑑𝑓)

0.3
   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3(𝑑𝑓)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
} 

+ 11.87   (12) 

II) The coefficient of foliage depth-tuned (CFD-tuned) 
ITU foliage model is given as; 

 PL𝐈𝐓𝐔−𝐂𝐅𝐃 =

{
0.2𝐹0.3(14.7(𝑑𝑓) )

0.3
   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3(14.7(𝑑𝑓) )
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
}    (13) 

 

III) The coefficient of Early ITU foliage model-tuned 
(CEITU-tuned) ITU foliage model is given as; 

 PL𝐈𝐓𝐔−𝐂𝐄𝐈𝐓𝐔 =

{
13.42 (0.2𝐹0.3(𝑑𝑓)

0.3
)    𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

13.42 (0.2𝐹0.3(𝑑𝑓)
0.6

)    𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
}  

  (3) 

 

IV) The error function of foliage depth-tuned (EFFD-
tuned) ITU foliage model is given as; 

 PL𝐈𝐓𝐔−EFFD =

{
0.2𝐹0.3 ((𝑑𝑓)𝐾𝐶𝐹𝐷)

0.3

   𝑓𝑜𝑟    0 ≤ 𝑑𝑓 ≤ 14m  

 0.2𝐹0.3 ((𝑑𝑓)𝐾𝐶𝐹𝐷)
0.6

   𝑓𝑜𝑟    14 ≤ 𝑑𝑓 ≤ 400m  
} +  

2.08 (𝑑𝑓)
1

2 - 6.88    (14) 

In all, the EFFD-tuned Early ITU foliage model is the 
preferred foliage path loss model for the case study 
site. 

V  CONCLUSION 

The ability of different path loss model tuning methods 
to optimize the Early ITU foliage model parameters for 
more effective path loss prediction is studied. The 
study was based on field measurement conducted on a 
3G mobile network coverage area that is within a 
Terminalia Mantaly tree park. Four different model 
tuning methods were studied and the prediction 
performance of the various tuned Early ITU foliage 
models was also compared. The four tuning methods 
considered are ; the RMSE-based tuning method, the 
coefficient of foliage depth tuning, the coefficient of 
Early ITU foliage model tuning  and the error function of 
foliage depth-tuning methods. In all, the composite 
error function of foliage depth gave the best prediction 
performance in both the training and the cross-
validation datasets. On the other hand, among the 
tuned models, the RMSE-tuned ITU foliage model had 
the least prediction performance for both the training 
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and validation datasets.  The ideas presented in this 
paper will guide network designers in the selection of 
model tuning approach that will ensure more accurate 
path loss prediction , especially in areas covered with 
vegetation. 
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