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Abstract— In this paper, plane geometry principles are 

employed in the development of mathematical expressions for 

the computation of the exact radius of curvature which can be 

used for the computation of rounded edge diffraction loss. The 

mathematical expressions are obtained from the path profile of 

the terrain with the diffracting obstruction, which in this study 

is taken as a hilly terrain. Along with the mathematical 

expressions, some algorithms are also developed to extract some 

of the parameters needed for the computation from the path 

profile data. Mathlab program is developed to implement the 

algorithms and also to facilitate the computations based on the 

mathematical models derived. Sample path profile of a hilly 

terrain is used to demonstrate the applicability of the analytical 

expressions and algorithms. The case study hilly terrain has a 

path length of 6671.98 m, maximum elevation of 383.21 m at a 

distance of 2792.02 m from the transmitter. The system is 

assumed to operate at a frequency of 1.2 GHz which is a 

wavelength of 0.25 m. The exact radius (m) is 16,981.97 m. The 

idea presented in the study can help network designers to 

improve on the accuracy of their computation of diffraction loss 

for rounded edges such as the ones used for hilly obstructions 

that exist along the wireless signal path. 

Keywords— Diffraction loss, radius of 
curvature, rounded edge diffraction loss, plane 
geometry, occultation distance 

I.    INTRODUCTION 

In general, wireless signals are subjected to diverse factors 

that cause signal strength degradation [1,2,3,4,5,6]. Notably, 

the signal spreading loss, widely known as free space loss is 

unavoidable present whenever wireless signal propagates 

over a distance. However, in addition to the free space loss, 

other losses do occur due to climatic conditions and the 

presence of obstructions in the signal path.  Among other 

effects, obstructions in the signal path can cause diffraction 

loss [7,8,9,10,11]. As such, when there are obstructions in 

the signal path, wireless network designers estimate the 

expected diffraction loss based on a given approximation 

model of the obstruction. Particular, isolated obstructions 

like hills and trees have been modeled as single knife edge 

obstructions [12,13,14]. However, further research has 

shown that the actual diffraction loss emanating from such 

hilly obstructions is in most cases greater than what is 

obtained using the single knife edge approximation. 

Consequently, the rounded edge diffraction model has been 

adopted for hilly obstructions [14,15,16,17]. 

 In rounded edge model diffraction  computation, the major 

challenge is how to obtain the radius of curvature of the 

rounded edge that will be fitted to the apex of the hilly 

obstruction. In practice, some approximate mathematical 

expressions have been proposed. However, in this paper, an 

exact radius of curvature is determined using plans geometry 

principles and equations. The mathematical expressions are 

derived in this paper. The motive behind this study is to 

facilitate automation of the radius of curvature computation 

base on available path profile of the signal path and that of 

the hilly obstruction. 

II.   METHODOLOGY 

In this section, mathematical expressions are developed for 

the determination of the exact radius of curvature which can 

be used for the computation rounded edge diffraction loss. 

The mathematical expressions are developed from a rounded 

edge geometric model based on a given path and diffracting 

obstruction profiles. The mathematical expressions are used 

in a Matlab program to determine the radius of curvature for 

the rounded edge diffraction loss computation.  

The data for the computation of the rounded edge  diffraction 

loss is based on the elevation profile  data  for points from 

the transmitter to the receiver. The data consist of the 

longitude, latitude and elevation pf the data points along with 

the distance of the datapoint from the transmitter. Let 𝑑𝑥 

denote the distance of datapoint x from the transmitter and 

let 𝑒𝑥  be the elevation of the datapoint x and let there be n 

data points from the transmitter to the receiver, hence, x = 0, 

1,2,3,…,n-1. In this case, the distance between the 

transmitter and the receiver is 𝑑𝑛−1   with elevation 𝑒𝑛−1 

whereas the transmitter distance is 𝑑0 = 0  with elevation 𝑒0. 

A typical hill obstruction elevation profile to be used for the 

rounded edge diffraction loss computation modeling is given 

in Figure 1.  Particularly, Figure 1 shows the rounded edge 

obtained by a circle inserted at the vicinity of the hill vertex 

such that the circle is tangential to two lines that are drawn 

from the transmitter and the receiver. 

 

Figure  1  The Rounded Edge Geometry For The Rounded 

Edge Diffraction Loss Computation 
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A.  Determination of the dimensions of the Triangle TRB    

In Figure  1, T denotes the transmitter and R denotes the 

receiver. If however, the receiver is higher in elevation than 

the transmitter, then the T and R should be swapped in the 

analysis. Furthermore, in Figure 1 the origin of the plane axis 

is at point B; hence, the coordinates of  point B is (0,0) 

where X𝐵 = 0   and 𝑌𝐵 = 0 . The elevation (vertical 

distance)of   point T above point B is denoted as v𝐵𝑇 and the 

elevation of   point R above point B is denoted as vBR.  Also, 

the horizontal distance from point B to point T is denoted as 

h𝐵𝑇 and the horizontal distance from point B to point R is 

denoted as h𝐵R . Hence, the coordinates of  point R is 

( hBR ,  VBR ) where X𝑅 = hBR   and 𝑌𝑅 = VBR = 0  and the 

coordinates of  point T is (hBT, VBT) where X𝑇 = hBT = d0 = 

0  and 𝑌𝑇 = VBT = e0 . The length of line BT denoted as 𝐿𝐵𝑇  

where    

LBT =  √((XT − 0)2 +   (YT − 0)2)2
  = 

√((XT)2 +   (YT)2)2
    (1) 

But in Figure  1  XT = 0  and YT = VBT,   then  

LBT =  √(YT)22
=  𝑌𝑇 = VBT = e0   (2) 

The length of line BR denoted as 𝐿𝐵𝑅  where    

𝐿𝐵𝑅 =  √((X𝑅 − 0)2 +  (𝑌𝑅 − 0)2)2
  = 

√((X𝑅)2 +  (𝑌𝑅)2)2
    (3) 

But in Figure  1  𝑌𝑅 = VBR = en−1   = 0 and X𝑅 = hBR  

= dn−1    then  

𝐿𝐵𝑅 =  √(X𝑅)22
 = X𝑅  =  hBR = dn−1      (4) 

The length of line TR denoted as 𝐿𝑇𝑅  is given by Pythagoras 

theorem as; 

𝐿𝑇𝑅 =  √((𝐿𝐵𝑇)2 +  (𝐿𝐵𝑅)2)2
  = √((VBT)2 +  (hBR)2)2

  

  (5) 

B.  Determination of the Maximum Elevation Point of the 

Hill Obstruction  

The algorithm used to determine the maximum elevation and 

its location is given as follow: 

Step 1:  Xmax = d0  

Step 2:  Ymax = e0  

Step 3: Kmax = 0 

Step 4: For k = 1 to n-1 step 1 

Step 5:    If    e𝑘 > Ymax  Then  

Step 6:   Xmax = d𝑘  

Step 7:    Ymax = ek  

Step 8:  Kmax = 𝑘 

Step 9:     End if 

Step 10:  K = K + 1 

Step 11:    Next K  

Step 12:  Output  Kmax,  Xmax , Ymax  

Step 13:  End 

 

C. The algorithm for finding the tangent point from the 

transmitter to the apex point on the hill obstruction 

Given two points on a line with coordinates   𝑥1, 𝑦1  

and   𝑥𝑘, 𝑦𝑘  the slope (denoted as 𝑚𝑘) of the line   𝑖s given 

as 

𝑚𝑘 =
𝑦𝑘−𝑦1

𝑥𝑘−𝑥1
    (6) 

The tangent line from the transmitter to the hill is obtained 

by finding a point with the coordinates denoted as   

  𝑥𝑡𝑘𝑚𝑎𝑥,  𝑦𝑡𝑘𝑚𝑎𝑥  with the highest slope denoted as𝑚𝑡𝑘𝑚𝑎𝑥. 

In this case,  mk =
yk−y0

xk−x0
  is computed for k = 0 , 1, 

2,… Kmax  and the point with the maximum mk  is denoted 

with coordinates   𝑥𝑡𝑘𝑚𝑎𝑥,  𝑦𝑡𝑘𝑚𝑎𝑥. Hence,  the algorithm for 

finding the tangent point from the transmitter to the apex 

point on the hill obstruction is given as follows;  

Step 1: tKmax = 1 

Step 2:  Xtkmax = d1  

Step 3:  Ytkmax =  e1  

Step 4: mtkmax =
y1−y0

x1−x0
 

Step 5: For k = 2 to kmax  step 1 

Step 6: m =
Yk−Y(k−1)

Xk−X(k−1)
 

Step 7:    If    m > mtkmax  Then  

Step 8:   tKmax = K  

Step 9:    Xtkmax = dtkmax 

Step 10:  Ytkmax = etkmax 

Step 11:     End if 

Step 12:  K = K + 1 

Step 13:    Next K  

Step 14:  Output  tKmax,   Xtkmax , Ytkmax  

Step 15:  End 

So, the coordinates of point D in Figure  1 are Xtkmax , 
Ytkmax which can be referenced also as  XD , YD. That is the 

coordinates of point D in Figure  1 is such that  

XD =  Xtkmax    (7) 

YD = Ytkmax    (8) 

D. The algorithm for finding the tangent point from the 

receiver to the apex point on the hill obstruction 

The tangent line from the receiver to the hill is obtained by 

finding a point with the coordinates denoted as   

  xrkmax,  yrkmax  with the highest slope denoted as  𝑚𝑟𝑘𝑚𝑎𝑥. 

In this case,  mk =
yk−y(n−1)

xk−x(n−1)
  is computed for k = 

Kmax, Kmax + 1, Kmax + 2, …  n-1   and the point with the 

maximum mk  is denoted with coordinates   xrkmax,  yrkmax. 
Hence,  the algorithm for finding the tangent point from the 

receiver  to the apex point on the hill obstruction is given as 

follows;  
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Step 1: rKmax = Kmax   

Step 2:  Xrkmax = dKmax
  

Step 3:  Yrkmax =  eKmax
  

Step 4: mrkmax =
YKmax−Y(n−1)

XKmax−X(n−1)
 

Step 5: For k = kmax + 1 to n − 2  step 1 

Step 6: m =
Yk−Y(n−1)

Xk−X(n−1)
 

Step 7:    If    -1*m > −1 ∗ mrkmax  Then  

Step 8:   rKmax = K  

Step 9:    Xrkmax = drkmax 

Step 10:  Yrkmax = erkmax 

Step 11:     End if 

Step 12:  K = K + 1 

Step 13:    Next K  

Step 14:  Output  eKmax
 ,   Xrkmax , Yrkmax  

Step 15:  End 

So, the coordinates of point E in Figure  1 are Xrkmax , 
Yrkmax which can be referenced also as XE , YE. That is the 

coordinates of point E in Figure  1 is such that  

XE =  Xrkmax  (9) 

YE = Yrkmax  (10) 

E. Determination of the coordinated of the intersection of 

line tangent line TD and line RE at point V 

The gradient of the line TD from the transmitter to the 

tangent point D  is given as 

𝑚tkmax =
𝑌tkmax−𝑌0

𝑋tkmax−𝑋0
  (11) 

At the intersection of line TD and line RE at point V with 

coordinates XV, YV the gradient of line TD  is given as  

 
𝑌v−𝑌0

 𝑋v−𝑋0
=

𝑌tkmax−𝑌0

 𝑋tkmax−𝑋0
 = 𝑚tkmax  (11) 

Hence,  

𝑌v − 𝑌0 =  𝑚tkmax(𝑋v − 𝑋0)  (12) 

𝑌v =  𝑚tkmax(𝑋v − 𝑋0) + 𝑌0  (13) 

The gradient of the line RE from the receiver to the tangent  

point E is given as 

𝑚rkmax =
𝑌rkmax−𝑌0

𝑋rkmax−𝑋0
  (14) 

At the intersection of line TD and line RE at point V with 

coordinates XV, YV the gradient of line TD  is given as  

 
𝑌v−𝑌𝑛−1

 𝑋v−𝑋𝑛−1
=

𝑌rkmax−𝑌0

 𝑋rkmax−𝑋0
 = 𝑚rkmax  (15) 

Hence,  

𝑌v − 𝑌𝑛−1 =  𝑚rkmax(𝑋v − 𝑋𝑛−1)  (15) 

𝑌v =  𝑚rkmax(𝑋v − 𝑋𝑛−1) + 𝑌𝑛−1  (16) 

Hence,  

𝑚tkmax(𝑋v − 𝑋0) + 𝑌0  = 𝑚rkmax(𝑋v − 𝑋𝑛−1) + 𝑌𝑛−1

  (17) 

𝑚tkmax(𝑋v) − 𝑚tkmax(𝑋0) + 𝑌0  = 𝑚rkmax(𝑋v) −
𝑚rkmax(𝑋𝑛−1) + 𝑌𝑛−1  (18) 

𝑚tkmax(𝑋v) − 𝑚rkmax(𝑋v) = 𝑌𝑛−1 − 𝑌0 + 𝑚tkmax(𝑋0) −
𝑚rkmax(𝑋𝑛−1)  (19) 

𝑋v ( 𝑚tkmax − 𝑚rkmax)  = 𝑌𝑛−1 − 𝑌0 +  𝑚tkmax(𝑋0) −
𝑚rkmax(𝑋𝑛−1)  (20) 

𝑋v   =
𝑌𝑛−1−𝑌0+ 𝑚tkmax(𝑋0)−𝑚rkmax(𝑋𝑛−1)

( 𝑚tkmax−𝑚rkmax)
  (21) 

𝑌v   = 𝑚tkmax {(
𝑌𝑛−1−𝑌0+ 𝑚tkmax(𝑋0)−𝑚rkmax(𝑋𝑛−1)

( 𝑚tkmax−𝑚rkmax)
) − 𝑋0} +

𝑌0  (22) 

F. Determination of the radius of the circle and the 

coordinates  of the center of the circle that is tangential 

to Line RE at point E and tangential to Line TD  at 

point D 

The center of the circle is at point C with coordinates 

XC  , YC . Now, line DC is perpendicular to the line TD and it 

passes through point D with coordinates XD  , YD. Since the 

gradient of line TD is mtkmax then the gradient of line DC is 

−
1

mtkmax
  and the point-slope equation of   line DC is given 

as  

Y − YD = −
1

mtkmax
 (X − XD)   (23) 

Y = YD −
1

mtkmax
 (X − XD)   (24) 

Again, line EC is perpendicular to the line RE and it passes 

through point E with coordinates XE  , YE. Since the gradient 

of line RE is mrkmax then the gradient of line EC is −
1

mrkmax
  

and the point-slope equation of   line EC is given as  

Y − YE = −
1

mrkmax
 (X − XE)   (25) 

Y = YE −
1

mrkmax
 (X − XE)   (26) 

At the interception point, C the equation for line DC and EC 

give X= XC  and Y  =  YC  and  

YD −
1

mtkmax
 (XC  − XD) = YE −

1

mrkmax
 (XC  − XE) 

 (27) 

YD −
1

mtkmax
 (XC  ) +

1

mtkmax
 (XD) = YE −

1

mrkmax
 (XC  ) +

1

mrkmax
 (XE)  (28) 

YD −
1

mtkmax
 (XC) +

1

mtkmax
 (XD) = YE −

1

mrkmax
 (XC) +

1

mrkmax
 (XE)  (28) 

1

mrkmax
 (XC) −

1

mtkmax
 (XC) =

 
1

mrkmax
 (XE) −

1

mtkmax
 (XD) + YE − YD  (9) 

(
1

mrkmax
 −

1

mtkmax
 ) (XC) =  

1

mrkmax
 (XE) −

1

mtkmax
 (XD) +

YE − YD  (30) 
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XC =  [

XE
mrkmax

 −
XD

mtkmax
 +YE−YD

(
1

mrkmax
 −

1

mtkmax
 )

]  (31) 

YC  = YE −
1

mrkmax
 ([

XE
mrkmax

 −
XD

mtkmax
 +YE−YD

(
1

mrkmax
 −

1

mtkmax
 )

] − XE)  

 (32) 

The length of line TD denoted as 𝐿𝑇𝐷  is given by Pythagoras 

theorem as; 

𝐿𝑇𝐷 =  √((XD − XT)2 +   (YD − YT)2)2
    (33) 

The length of line TV denoted as 𝐿𝑇𝑉  is given by Pythagoras 

theorem as; 

𝐿𝑇𝑉 =  √((XV − XT)2 +   (YV − YT)2)2
    (34) 

The length of line RE denoted as 𝐿𝑅𝐸  is given by Pythagoras 

theorem as; 

𝐿𝑅𝐸 =  √((XE − XR)2 +   (YE − YR)2)2
    (35) 

The length of line RV denoted as 𝐿𝑅𝑉   is given by 

Pythagoras theorem as; 

𝐿𝑅𝑉 =  √((XV − XR)2 +   (YV − YR)2)2
    (36) 

The radius of the circle with center at point C whereby the 

circle is tangential to line RE at point E and tangential to line 

TD  at point D is given by the length of line DC or line EC. 

By considering line DC, the radius is given as ; 

𝐿𝐷𝐶 =  √((XC − XD)2 +   (YCV − YD)2)2
    (37) 

The occultation distance, which is the horizontal distance 

between point D and point E, is denoted as DOCCgiven as ; 

DOCC =  |XE − XD|  (38) 

The occultation distance, which is the horizontal distance 

between point D and point E, is denoted as DOCC given as; 

DOCC =  |XE − XD|  (38) 

From cosine rule,  

𝐶𝑜𝑠 (𝛼)   =  
(LTR

2)+(LRV
2)−(LTV

2)

2(LTR)(LRV)
  (39) 

Hence,  

𝛼 = 𝐶𝑜𝑠−1  (
(LTR

2)+(LRV
2)−(LTV

2)

2(LTR)(LRV)
)    (40) 

𝐶𝑜𝑠 (𝛽)   =  
(LTR

2)+(LTV
2)−(LRV

2)

2(LTR)(LTV)
  (41) 

Hence,  

𝛽 = 𝐶𝑜𝑠−1  (
(LTR

2)+(LTV
2)−(LRV

2)

2(LTR)(LTV)
)   (42) 

G. Determination of the height h of obstruction above the 

line of sight  

The gradient of the line RT from the receiver, R  (where k = 

n-1) to the transmitter, T (where k = 0) is given as  mrkmax =
Y0−Y(n−1)

X0−X(n−1)
. Similarly, the gradient of the line RP from the 

receiver, R  (where k = n-1) to the location of the maximum 

elevation, P (where k =  Kmax) is given as: 

mrkmax =
YP−Y(n−1)

Xmax−X(n−1)
  (43) 

Hence,  

YP−Y(n−1)

Xmax−X(n−1)
=

Y0−Y(n−1)

X0−X(n−1)
= mrkmax  (44) 

YP = mrkmax(Xmax − X(n−1)) + Y(n−1)  (45) 

Therefore, the height h of obstruction above the line of sight 

RT is given as; 

h = Ymax − YP = Ymax − [mrkmax(Xmax − X(n−1)) +

Y(n−1)]  (46) 

h = Ymax − YP = Ymax − Y(n−1) − [mrkmax(Xmax −

X(n−1))]  (47) 

 

III.   RESULT AND DISCUSSIONS 

The path  profile data for the case study hilly terrain is 

plotted as shown in Figure 2.  

The case study is from the elevation data extracted using 

online Geocontext path profile software which is available at 

http://www.geocontext.org/publ/2010/04/profiler/en/. For the 

case study, the transmitter location is taken as the reference 

point for the x coordinate located at 0 m (used as the origin) 

whereas the receiver is at a distance of 6671.98 m from the 

transmitter. The transmitter elevation is 291.80 m and the 

receiver elevation is 235.09 m. The maximum elevation of 

383.21 m occurred at a distance of 2792.02 m from the 

transmitter.  So, the x,y coordinates of the transmitter are 

0.00, 291.80 while that of the receiver are  6671.98, 235.09. 

The x,y coordinates of the maximum elevation is given as 

2792.02, 383.206. 

 

Figure 2    The Elevation Profile Data For The Case Study 

Hilly Terrain 

 Table 1 shows the key rounded hilltop parameters obtained 

for the hill obstruction.  The system is assumed to operate at 

a frequency of 1.2 GHz which is a wavelength of 0.25 m, as 

shown in Table 1. From Table 1, the path length (d) is 

6,671.98 m. Also, the tangent from the transmitter and the 

tangent from the receiver intersected at a distance of 

2,894.80 m from the transmitter and a distance of 3,777.19 m 

from the receiver. The line of sight makes an angle of 

0.043706947 radians with the horizontal. The LOS clearance 

height is 100.41 m while the occultation distance is 1,337.99 
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m wide. The ratio of occultation distance to the path length is 0.2005. 

Table 1  Rounded Hilltop Parameters For The Plateau Obstruction for  D(m)/d(m) of  0.2005 

f (MHz) Frequency 1200 

λ (m) Wavelength 0.25 

S1  (m) 

The length of the tangent from the transmitter to 

the intersection point of the   two tangent 2896.687629 

S2 (m) 

the length of the tangent from the receiver to the 

intersection point of the two tangents 4357.267166 

S3(m) 

the length of the tangent from the receiver from 

the transmitter 6672.223589 

d1 (m) 

The distance  from  the transmitter to the  

intersection point of the two tangents , that is point 2,894.80 

d2(m) 

The distance  from  the receiver to the  intersection 

point of the two tangents 3,777.19 

yrt (m) 
Elevation of the point of intersection of the two 

tangents 396.4488991 

d(m) The distance from  the transmitter to the receiver 6,671.98 

αt (radian) 

The angle  that the tangent line  from the 

transmitter makes with the LOS 0.044634226 

αr(radian) 

The angle that  the tangent line  from the receiver 

makes with the LOS 0.034193678 

α(radian) Sum of angles  αt  and αr 0.078827904 

β(radian) The angle the LOS makes with the horizontal 0.043706947 

h(m) The LOS clearance height 100.4101426 

D(m) The occultation distance 1,337.99 

D(m)/d(m) The ratio of occultation distance to the path length 0.2005 

R (m) The exact  Radius (m) By Plane Geometry Method 16,981.97 

 

IV.  CONCLUSION 

Mathematical expressions and algorithms for the 

determination of the exact radius of curvature which can be 

used for the computation of rounded edge diffraction loss are 

presented. Sample path profile of a hilly terrain is used to 

demonstrate the applicability of the analytical expressions 

and algorithms. Mathlab program is used to facilitate the 

implementation of the algorithm and the computation of the 

various parameters required. In all , the mathematical 

expressions are based on plane geometry principles. Other 

approaches can as well be used. 
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