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Abstract— In this paper, plane geometry principles are
employed in the development of mathematical expressions for
the computation of the exact radius of curvature which can be
used for the computation of rounded edge diffraction loss. The
mathematical expressions are obtained from the path profile of
the terrain with the diffracting obstruction, which in this study
is taken as a hilly terrain. Along with the mathematical
expressions, some algorithms are also developed to extract some
of the parameters needed for the computation from the path
profile data. Mathlab program is developed to implement the
algorithms and also to facilitate the computations based on the
mathematical models derived. Sample path profile of a hilly
terrain is used to demonstrate the applicability of the analytical
expressions and algorithms. The case study hilly terrain has a
path length of 6671.98 m, maximum elevation of 383.21 m at a
distance of 2792.02 m from the transmitter. The system is
assumed to operate at a frequency of 1.2 GHz which is a
wavelength of 0.25 m. The exact radius (m) is 16,981.97 m. The
idea presented in the study can help network designers to
improve on the accuracy of their computation of diffraction loss
for rounded edges such as the ones used for hilly obstructions
that exist along the wireless signal path.
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I. INTRODUCTION

In general, wireless signals are subjected to diverse factors
that cause signal strength degradation [1,2,3,4,5,6]. Notably,
the signal spreading loss, widely known as free space loss is
unavoidable present whenever wireless signal propagates
over a distance. However, in addition to the free space loss,
other losses do occur due to climatic conditions and the
presence of obstructions in the signal path. Among other
effects, obstructions in the signal path can cause diffraction
loss [7,8,9,10,11]. As such, when there are obstructions in
the signal path, wireless network designers estimate the
expected diffraction loss based on a given approximation
model of the obstruction. Particular, isolated obstructions
like hills and trees have been modeled as single knife edge
obstructions [12,13,14]. However, further research has
shown that the actual diffraction loss emanating from such
hilly obstructions is in most cases greater than what is
obtained using the single knife edge approximation.
Consequently, the rounded edge diffraction model has been
adopted for hilly obstructions [14,15,16,17].

In rounded edge model diffraction computation, the major
challenge is how to obtain the radius of curvature of the
rounded edge that will be fitted to the apex of the hilly

obstruction. In practice, some approximate mathematical
expressions have been proposed. However, in this paper, an
exact radius of curvature is determined using plans geometry
principles and equations. The mathematical expressions are
derived in this paper. The motive behind this study is to
facilitate automation of the radius of curvature computation
base on available path profile of the signal path and that of
the hilly obstruction.
1. METHODOLOGY

In this section, mathematical expressions are developed for
the determination of the exact radius of curvature which can
be used for the computation rounded edge diffraction loss.
The mathematical expressions are developed from a rounded
edge geometric model based on a given path and diffracting
obstruction profiles. The mathematical expressions are used
in a Matlab program to determine the radius of curvature for
the rounded edge diffraction loss computation.

The data for the computation of the rounded edge diffraction
loss is based on the elevation profile data for points from
the transmitter to the receiver. The data consist of the
longitude, latitude and elevation pf the data points along with
the distance of the datapoint from the transmitter. Let d,
denote the distance of datapoint x from the transmitter and
let e, be the elevation of the datapoint x and let there be n
data points from the transmitter to the receiver, hence, x = 0,
1,2,3,....,n-1. In this case, the distance between the
transmitter and the receiver is d,_; with elevation e,_;
whereas the transmitter distance is d, = 0 with elevation e,.
A typical hill obstruction elevation profile to be used for the
rounded edge diffraction loss computation modeling is given
in Figure 1. Particularly, Figure 1 shows the rounded edge
obtained by a circle inserted at the vicinity of the hill vertex
such that the circle is tangential to two lines that are drawn
from the transmitter and the receiver.

Figure 1 The Rounded Edge Geometry For The Rounded
Edge Diffraction Loss Computation
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A. Determination of the dimensions of the Triangle TRB

In Figure 1, T denotes the transmitter and R denotes the
receiver. If however, the receiver is higher in elevation than
the transmitter, then the T and R should be swapped in the
analysis. Furthermore, in Figure 1 the origin of the plane axis
is at point B; hence, the coordinates of point B is (0,0)
where Xz =0 and Y3 =0 . The elevation (vertical
distance)of point T above point B is denoted as vy and the
elevation of point R above point B is denoted as vgg. Also,
the horizontal distance from point B to point T is denoted as
hg and the horizontal distance from point B to point R is
denoted as hgg . Hence, the coordinates of point R is
(hgr, Vgr) Where Xz =hggr and Yz = Vgg =0 and the
coordinates of point T is (hgy, Vgr) Where X; = hgy =d, =
0 and Y; = Vgr = e, . The length of line BT denoted as Ly,
where

Lgr = V(Xr = 0)2 + (Yp—0)2) =

V(&2 + (Yp)?) 1)
But in Figure 1 X; =0 and Yr = Vg, then
Lgr = YV (Y1)?= Yr = Vg = ¢, (2

The length of line BR denoted as Lg; where

Lpr = V(X —0)2 + (Y —0)?) =
V(Xp)? + (R)?) 3)

But in Figure 1 Yz=Vgz=-¢e,.; =0 and Xi = hgg
=d,_, then
Lgg = 2\/ (Xg)? =Xg = hgg = dy_4 4)

The length of line TR denoted as Ly is given by Pythagoras
theorem as;

Lrg = Y(Lsr)? + Lpr)?) =3 ((Ver)? + (hgr)?)
®)

B. Determination of the Maximum Elevation Point of the
Hill Obstruction

The algorithm used to determine the maximum elevation and
its location is given as follow:

Step 1: Xpax = dg
Step 20 Yiax = €o
Step 3: Kpax = 0

C. The algorithm for finding the tangent point from the
transmitter to the apex point on the hill obstruction

Given two points on a line with coordinates x;,y;
and xy,y;, the slope (denoted asm;) of the line is given
as
_Yk=)1

my = pr— (6)
The tangent line from the transmitter to the hill is obtained
by finding a point with the coordinates denoted as
Xexmaxr Yekemax With the highest slope denoted asmiymax-
In this case, my =22 s computed for k = 0 , 1,

k—40

2,... Knax and the point with the maximum m, is denoted
with coordinates Xixmaxr Vikmax- HENCE, the algorithm for
finding the tangent point from the transmitter to the apex
point on the hill obstruction is given as follows;

Step L: tKpax = 1
Step 2: Xikmax = d1
Step 3: Yikmax = €1
__Yi—Yo

Step 4 Mygmax =

X1—Xg

Step 5: For k = 2 to kmax step 1

Step 6: m = i—t:;::;

Step7: If m > mypax Then
Step 8: tKmax = K
Step 9: Xtkmax = dtkmax
Step 10: Yikmax = €tkmax
Step 11: End if

Step 12: K=K +1

Step 13: NextK
Step 14: OUtpUt thax' thmax ’ Ytkma\x
Step 15: End

So, the coordinates of point D in Figure 1 are Xixmax»
Yikmax Which can be referenced also as Xp, Yp. That is the
coordinates of point D in Figure 1 is such that

XD = thmax (7)
Step4: Fork=1ton-1stepl
YD = Ytkmax (8)
Step5: If e > Yax Then . . .
D. The algorithm for finding the tangent point from the
Step 6: Xmax = d receiver to the apex point on the hill obstruction
Step 7: Ymax = €x The tangent line from the receiver to the hill is obtained by
Step 8: Ko —k finding a point with the coordinates denoted as
' e Xrkmaxs Yrkmax With the highest slope denoted as m,4mqx-
Step 9: End if In this case, my =201 s computed for k =
. _ Xg—X(n-1)
Step 10: K=K +1 Kiaw Kmax + 1, Kmax + 2, .. n-1  and the point with the
Step 11: NextK maximum my is denoted with coordinatesS X xmaxs Vrkmax-
Hence, the algorithm for finding the tangent point from the
Step 12: Output Kimax, Xmax » Ymax receiver to the apex point on the hill obstruction is given as
Step 13: End follows;
WwWw.jmest.org
JMESTN42352769 9220


http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)
ISSN: 2458-9403
Vol. 5 Issue 12, December - 2018

Step 1: rKnax = Kmax
Step 2: Xrkmax = deax
Step 3: Yikmax = €Kmax

Y, Y-
Step 4: Myynay = o -2
Kmax ™ %(n-1)

Step 5: For k=kmax+ 1ton—2 step 1

_ Yx—Ym-y

Step 6: m =
Xk—X(n-1)

Step7: If -1*m > —1* mp., Then

Step 8: rKnax = K

Step 9: Xrkmax = Grkmax
Step 10: Yrkmax = €rkmax

Step 11: End if

Step12: K=K+1

Step 13:  NextK
Step 14: Output ex__ , Xikmax Yrkmax
Step 15: End

So, the coordinates of point E in Figure 1 are X xmax»
Yrxmax Which can be referenced also as Xg, Yg. That is the
coordinates of point E in Figure 1 is such that

XE = ermax (9)
YE = Yrkmax (10)

E. Determination of the coordinated of the intersection of
line tangent line TD and line RE at point V

The gradient of the line TD from the transmitter to the
tangent point D is given as

Hence,
mtkmax(Xv - XO) +Y = mrkmax(Xv - Xn—l) +Y, 4
17
Mtkmax (Xv) - mtkmax(Xo) +Y = mrkmax(Xv) -
mrkmax(Xn—l) + Yn—l (18)
Mikmax (XV) - mrkmax(Xv) = Yn—l - YO + mtkmax(XO) -
mrkmax(Xn—l) (19)
Xy (mtkmax - mrkmax) =Y,1—Yo mtkmax(XO) -
Mrkmax (Xn—l) (20)
X, = Yn—1—Yo+ MtkmaxXo) ~MrkmaxXn-1) (21)

(Mtxkmax~Mrkmax)

_ Yn—1=Yo+ Mtkmax (Xo) —Mrkmax Xn—-1)
Yv = Mtkmax {( — - XO +
(Mtkmax—Mrkmax)

Yo (22)

F. Determination of the radius of the circle and the
coordinates of the center of the circle that is tangential
to Line RE at point E and tangential to Line TD at
point D

The center of the circle is at point C with coordinates
X¢ ,Yc - Now, line DC is perpendicular to the line TD and it
passes through point D with coordinates X , Yp. Since the
gradient of line TD is mymayx then the gradient of line DC is

L andthe point-slope equation of line DC is given

Mtkmax
as
Y-Yy=——— (X—Xp) (23)
Mtkmax
Y =Yy - mtklmax (X —Xp) (24)

Again, line EC is perpendicular to the line RE and it passes
through point E with coordinates Xg , Yg. Since the gradient

of line RE is m .« then the gradient of line EC is —

Mrkmax
Mimay = W (11) and the point-slope equation of line EC is given as
tkmax—40
1
At the intersection of line TD and line RE at point V with Y-Yg=-— Mrimax (X —Xe) (25)
coordinates Xy, Yy the gradient of line TD is given as 1
Yo Y, % v Y = YE - (X - XE) (26)
v—=Yo _ Yikmax—Yo __ Mrkmax
Xu—Xo X X0 Mikmax (11) . ] . i i
max At the interception point, C the equation for line DC and EC
Hence, give X=XcandY = Y; and
Yy = Yo = Mynax(Xy — Xo) (12) Yp—— L Xe —Xp) =Yg — — L (Xe —Xp)
tkmax rkmax
Y, = mtkmax(Xv - XO) +Y (13) (27)
The gradient of the line RE from the receiver to the tangent Y 1 X 1 _ 1
il - + Xp) = Yg — Xc)+
p0|nt Eis given as D Mikmax ( ¢ ) Mikmax ( D) E Mrkmax ( ¢ )
Y rkmax—Y. (Xg) (28)
Mrkmax = X :: 2 —X(:) (14) Mrkmax
rkmax 1 1 1
At the intersection of line TD and line RE at point V with Yo~ o R0 i (o) = Ye — o (Xo) +
coordinates Xy, Yy the gradient of line TD is given as — Xg) (28)
Yy—Yn—1 _ Yrkmax—Yo —
bt KXo (15) — (X)) - —— (X0 =
rkmax tkmax
Hence, —— (Xp) ——— (Xp) + Y — Yp ©)
rkmax Mikmax
Y,—Y,_,= mrkmax(Xv _Xn—l) (15) ( 1 1 )(X ) 1 (X ) 1 (X ) +
- c) = E) T D
Y. = m X —X,_)+Y _ 16 Mrkmax Mtkmax Mrkmax Mtkmax
\% rkmax( \% n 1) n-1 ( ) YE _ YD (30)
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X X
m kE _mrkD *Ye~Yp
Xc = rkmax ma (31)

( 1 —_ 1 )
Mrkmax Mtkmax
>

XE Xp
—— ———2 — +Yg-Y,
1 ([mrkmax Mtkmax E™'D
(32)

Mrkmax
The length of line TD denoted as Ly, is given by Pythagoras
theorem as;
Lrp = 2\/((XD -Xr)? + (Yp—Yp)?) (33)

The length of line TV denoted as Ly, is given by Pythagoras
theorem as;

Ly = i/((XV -Xp)? + (Yy—Yp?) (34)

The length of line RE denoted as Lg is given by Pythagoras
theorem as;

Lee = Y(Xe—Xp)? + (Yg—YR)?) (39)
The length of line RV denoted as Lgy
Pythagoras theorem as;

Lgy = i/((Xv—XR)Z + (Yy —Yr)?) (36)

The radius of the circle with center at point C whereby the
circle is tangential to line RE at point E and tangential to line
TD at point D is given by the length of line DC or line EC.
By considering line DC, the radius is given as ;

Lpc = i/((xc —Xp)? + (Yev —Yp)?) (37)

The occultation distance, which is the horizontal distance
between point D and point E, is denoted as Dgccgiven as ;

Docc = IXg — Xpl (38)

The occultation distance, which is the horizontal distance
between point D and point E, is denoted as D¢ given as;

YC =YE_

(Fremas e
Mrkmax Mtkmax

is given by

Docc = IXg — Xpl (38)
From cosine rule,
_ (Lrr?)+(rv?)-(brv?)
Cos (a) = 2(LR)(LRv) 9
Hence,
— Cos—t (CrrAH(av))-(trv?)
a = Cos ( 2(Ltr)(LrV) ) “
_ (Lrr*)+(Lrv?)-(Lrv?)
Cos (.B) - 2(Ltr)(LTv) (41)
Hence,
— Cos—t QAL ~(Lav?)
B = Cos ( 2(LTrR)(LTV) ) 2
G. Determination of the height h of obstruction above the
line of sight

The gradient of the line RT from the receiver, R (where k =
n-1) to the transmitter, T (where k = 0) is given as my . =

Yo ¥won Similarly, the gradient of the line RP from the
Xo—X(n-1)

receiver, R (where k = n-1) to the location of the maximum
elevation, P (where k = K,.,) iS given as:

Yp—Y(n-1)
Mykmax = — (43)
Xmax X(n—1)
Hence,
Yp—Y(n-1) Yo—Y(n-1)
= =m 44
Xmax_x(n—l) XO_X(n—l) rkmax ( )
Yp = Myymayx (Xmax - X(n—l)) + Y(n—1) (45)

Therefore, the height h of obstruction above the line of sight
RT is given as;

h = Ymax — Yp = Ymax — [mrkmax (Xmax - X(n—l)) +

Y1) (46)
h = Ymax — Yp = Ymax — Y(n—1) - [mrkmax(Xmax -
Xm-1)] (47)

I1l. RESULT AND DISCUSSIONS

The path profile data for the case study hilly terrain is
plotted as shown in Figure 2.

The case study is from the elevation data extracted using
online Geocontext path profile software which is available at
http://www.geocontext.org/publ/2010/04/profiler/en/. For the
case study, the transmitter location is taken as the reference
point for the x coordinate located at 0 m (used as the origin)
whereas the receiver is at a distance of 6671.98 m from the
transmitter. The transmitter elevation is 291.80 m and the
receiver elevation is 235.09 m. The maximum elevation of
383.21 m occurred at a distance of 2792.02 m from the
transmitter. So, the x,y coordinates of the transmitter are
0.00, 291.80 while that of the receiver are 6671.98, 235.09.
The X,y coordinates of the maximum elevation is given as
2792.02, 383.206.
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Figure 2 The Elevation Profile Data For The Case Study
Hilly Terrain

Table 1 shows the key rounded hilltop parameters obtained
for the hill obstruction. The system is assumed to operate at
a frequency of 1.2 GHz which is a wavelength of 0.25 m, as
shown in Table 1. From Table 1, the path length (d) is
6,671.98 m. Also, the tangent from the transmitter and the
tangent from the receiver intersected at a distance of
2,894.80 m from the transmitter and a distance of 3,777.19 m
from the receiver. The line of sight makes an angle of
0.043706947 radians with the horizontal. The LOS clearance
height is 100.41 m while the occultation distance is 1,337.99
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m wide. The ratio of occultation distance to the path length is
Table 1 Rounded Hilltop Parameters For The Plateau Obstruction for D(m)/d(m) of 0.2005

0.2005.

f (MHz) Frequency 1200
A (m) Wavelength 0.25
The length of the tangent from the transmitter to
S1 (m) the intersection point of the two tangent 2896.687629
the length of the tangent from the receiver to the
S2 (m) intersection point of the two tangents 4357.267166
the length of the tangent from the receiver from
S3(m) the transmitter 6672.223589
The distance from the transmitter to the
dl (m) intersection point of the two tangents , that is point 2,894.80
The distance from the receiver to the intersection
d2(m) point of the two tangents 3,777.19
rt (m) Elevation of the point of intersection of the two
y tangents 396.4488991
d(m) The distance from the transmitter to the receiver 6,671.98
The angle that the tangent line from the
at (radian) transmitter makes with the LOS 0.044634226
The angle that the tangent line from the receiver
ar(radian) makes with the LOS 0.034193678
a(radian) Sum of angles at and ar 0.078827904
B(radian) The angle the LOS makes with the horizontal 0.043706947
h(m) The LOS clearance height 100.4101426
D(m) The occultation distance 1,337.99
D(m)/d(m) The ratio of occultation distance to the path length 0.2005
R (m) The exact Radius (m) By Plane Geometry Method 16,981.97
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