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Abstract—In this paper, the concept of strong 
stabilization is introduced and the chaos 
stabilization of uncertain generalized Rossler 
chaotic systems is explored. Based on the 
differential and integral inequalities approach, a 
suitable control is proposed to realize strong 
stabilization for the uncertain generalized Rossler 
chaotic systems with any pre-specified 
exponential convergence rate. The critical time 
can also be correctly estimated. Finally, numerical 
simulations are offered to demonstrate the 
feasibility and effectiveness of the obtained 
results. 
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I.  INTRODUCTION 

In recent years, various chaotic systems have 

been widely investigated; see, for example, [1-9] and 

the references therein. Chaotic systems not only have 

high sensitivity to the initial value, but also the 

unpredictability of their output signals, which is often 

the cause of system instability and the generation of 

oscillation. Therefore, the design of the stability 

controller of the chaotic system is of absolute 

importance in the practical application of various types 

of engineering.  

 In this paper, the concept of strong synchronization 

is introduced and the chaos stabilization of uncertain 

generalized Rossler chaotic systems is investigated. 

Using the differential and integral inequalities 

approach, a suitable control is proposed to realize 

strong stabilization for the uncertain generalized 

Rossler chaotic systems with any pre-specified 

exponential convergence rate. Moreover, the critical 

time can be precisely calculated. Numerical 

simulations are also provided to demonstrate the 

feasibility and effectiveness of the obtained results. 

The layout of the rest of this paper is organized as 

follows. The problem formulation and main result are 

presented in Section 2. Numerical simulations are 

given in Section 3 to illustrate the main result. Finally, 

conclusion is made in Section 4. Throughout this 

paper, 
n  denotes the n-dimensional Euclidean 

space, xxx T :  denotes the Euclidean norm of the 

column vector x, and TA  denotes the transport of the 

matrix A. 

II. PROBLEM FORMULATION AND MAIN RESULTS 

In this paper, we consider the following uncertain 

generalized Rossler chaotic systems: 

          ,1321111 tutxtxbtxatx   (1a) 

       ,222122 tutxatxbtx   (1b) 

         ,33143333 tutxtxbbtxatx   (1c) 

        TT
xxxxxx 302010321 000  ,  (1d) 

where          3

321: 
T

txtxtxtx  is the state 

vector,          3

321: 
T

tutututu  is the system 

control,  Txxx 302010  is the initial value, and 

 ii ba ,  represent the parameters of the system. 

The original Rossler chaotic system is a special case 

of system (1). It is well known that the system (1) 

without any control (i.e.,   0tu ) displays chaotic 

behavior for certain values of the parameters [1-2]. 

The objective of this paper is to search a new control 

for the system (1) such that the strong stability of the 

feedback-controlled system can be guaranteed.  

Throughout this paper, the following assumption is 

made: 
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(A1) There exist constants ia  and ia  such that 

 3,2,1,  iaaa iii . 

Before presenting the main result, we provide a 

definition as follows. 

Definition 1. The uncertain systems (1) is said to 

realize the strong stabilization if there exist a suitable 

control u  and three positive numbers k, b, and ct , 

such that the following conditons are satisfied. 

(i)   0,   tektx tb ,  

(ii)   .,0 ctttx    

In this case, the positive number b is called the 

exponential convergence rate and the positive number 

ct  is called the critical time.  

Now, we are in a position to present the main 

results for the strong stabilization of the uncertain 

systems (1). 

Theorem 1. The uncertain systems (1) realizes the 

strong stabilization under the following control  

            ,12

1113211 taxtxbatxtxbtu    (2a) 

         ,12

222122 taxtxbatxbtu      (2b) 

           ,12

33331433 taxtxbatxtxbbtu    (2c) 

where ,0,0  ba
12

1
:






p

qp
 , with Nqp ,  and 

qp  . In this case, the pre-specified exponential 

convergence rate and the guaranteed critical time are 

given by b and  
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 (3) 

respectively. 

Proof.  From (1)-(2), the feedback-controlled system 

can be performed 

    ,
12

111111





xabxxaax  (4a) 

    ,
12

222222





xabxxaax  (4b) 

    .
12

333333





xabxxaax  (4c) 

Obviously, one has  3,2,1,0  iaa ii , in view of 

(A1). Let  

      txtxtxW T . (5) 

The time derivative of   txW  along the trajectories 

of feedback-controlled systems is given by 

 332211 222 xxxxxxW    
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1 22 xxxaxxxb   

   2

3

2

2

2

122 xxxaWb   

 .0,22  tWaWb   

It follows that 

      .0,12121 1   tabWWW     (6) 

Define  

     .0,:
1




ttxWtQ


 (7) 

From (6) and (7), it can be readily obtained that 

    .0,1212  tabQQ   

It is easy to deduce that 
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It follows that 
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Consequently, we have 

     
.0,0 12 








  t

b

a
e

b

a
QtQ bt   (8) 

Hence, from (6), (7), and (8), we have 
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Consquently, we conclude that 

   
 

 

















 




.,0

,0,0

221
22

c

c

bt

ttiftx

ttife
b

a
xtx




  

in view of (1) and (9). This completes the proof.   □ 
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III. NUMERICAL SIMULATIONS 

Consider the uncertain generalized Rossler 

chaotic systems of (1) with 

1421  bbb , ,2.03 b  ,11 1  a   (10a) 

,10 2  a ,56 3  a    Tx 2240  .  (10b) 

Clearly, one has    ,1,1, 11 aa     ,1,0, 22 aa  and 

   5,6, 33 aa , in view of (A1). Our goal, in this 

example, is to design a feedback control such that the 

unsystem (1) realize the strong stabilization with the 

guaranteed exponential convergence rate 1b . From 

(2), with ,1,3,50  qpa  we deduce 6.0 , 

          ,502 2.0

11321 txtxtxtxtu   (11a) 

        ,502 2.0

2212 txtxtxtu   (11b) 

          .5042.0 2.0

33313 txtxtxtxtu   (11c) 

Consequently, by Theorem 1, we conclude that the 

uncertain systems (1) achieve strong stabilization with 

parameters of (10) and feedback control law of (11). 

Besides, the exponential convergence rate and the 

guaranteed critical time are given by 1b  and 

086.0ct , in view of (3).  

The typical state trajectories of uncontrolled 

systems and controlled systems are depicted in 

Figure 1 and Figure 2, respectively. From the 

foregoing simulations results, it is seen that the 

uncertain systems of (1) with (10) achieve the strong 

stabilization under the control law of (11). 

CONCLUSIONS 

In this paper, the concept of strong stabilization 
has been introduced and the stabilization of uncertain 
generalized Rossler chaotic systems has been 
investigated. Based on the differential and integral 
inequalities approach, a novel control has been 
proposed to realize strong stabilization for the 
uncertain generalized Rossler chaotic systems with 
any pre-specified exponential convergence rate. The 
critical time can also been correctly estimated. Finally, 
numerical simulations have been given to demonstrate 
the feasibility and effectiveness of the obtained results. 
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Figure 1:  Typical state trajectories of the uncertain 

systems (1) with (10). 

 

 

Figure 2:  Typical state trajectories of the feedback-

controlled system of (1) with (10) and (11). 
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