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Abstract— Indoor environment mapping is one 
of the obvious benefit that can be assigned for 
service mobile robots. With an extensive set of 
parameters provided by Robot Operating System 
(ROS), the robotic system user can set core tasks 
to improve the quality and usability of the 
received environmental grid map. This has an 
evident impact for the robot teleoperating, map 
scale, and significantly, in avoiding 
discontinuities and inaccuracy objects of the 
generated map—that is to say the more accurate 
the map is—the more straightforward the 
autonomous navigation is. The use of an original 
floor plan instead of map obtained by the robot is 
one worthwhile option. Floor plans can be 
manipulated by using a generic image processing 
software in that case where the received map has 
unidentifiable areas due to the robot’s 3D sensor 
unable to detect. This paper presents ROS-based 
indoor environment mapping, localization and 
autonomous navigation factors in the Open Cloud 
Robotic Platform (OpenCRP) ecosystem, a cloud 
robotics project upon an open-source basis, 
experimented with a TurtleBot II mobile robot. 
Moreover, a method for manipulating the floor 
plan is presented in this work. 

Keywords— mapping; localization; 
autonomous navigation; mobile robot; ROS 

I. INTRODUCTION 

Outside of manufacturing and wholesale 
warehouses, robots are hard to find. They are through 
its history considered mainly as static and monotonous 
job performers. Out-of-this-box thinking, current mobile 
robots could do many more pre-programmed tasks, 
such as lawn mowing, vacuum-, window- and 
swimming pool cleaning. In particular, mobile robots 
are ideal for exploring environments and monitoring 
situations that are dangerous, strenuous or too boring 
to humans. They are expected to perform long range, 
long term and complex missions. These robots are 
typically remote controlled (teleoperated) and require 
one or more human operators [1], [2], [3]. 

Cloud robotics projects such as DAvinCi [4] and 
RoboEarth [5] have paved the way for global system 
accessibility, scalability and parallelism advantages of 
cloud communication environment. One of the main 
purposes of these projects is to remain robots 

lightweight and offload heavy computation into the 
cloud. In addition, common to these projects is to 
network cooperative ROS

1
 robots, provide secured 

customizable computing in large environments using 
the cloud as a medium for establishing a network 
between robots sensors and mobile devices. 

OpenCRP
2

 is an open-source cloud robotics 
ecosystem based on a service-oriented PaaS 
architecture using Ubuntu Linux operating system. Its 
multi-robot API allows any ROS robot to share their 
collected data via the cloud. The ecosystem’s cloud 
environment is implemented through Apache Hadoop 
software framework and configured as a HDFS-cluster 
(Hadoop Distribution File System). HDFS-cluster 
operates as data storage for large data sets and could 
be managed from remote computers with terminal 
commands. Figure 1 shows a use case architecture of 
the ecosystem for the experiments. 

 

There are several mobile robots that can be used 
with ROS. One of the most popular robot is TurtleBot 
II, a developmental kit for researchers, hobbyists and 
software developers see Figure 2 and Table 1 for 
technical specification. A wheeled TurtleBot II 

                                                           
1 Please refer to http://www.ros.org for a complete 

description of ROS 
2 www.tut.fi/opencrp 

 

Fig. 1.  OpenCRP use case architecture 
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integrates in several simple and low-cost state-of-the-
art hardware devices such as Microsoft’s Kinect Xbox 
360 sensor, Yujin Robot’s Kobuki, and iRobot’s 
Create. It is a moving platform intended for indoor 
environments and with 3D perception capabilities by 
means of the Kinect and Asus Xtion Pro Live [6]. 
TurtleBot II is the evolution of the TurtleBot platform, 
the cheapest robot in the market with ROS 
architecture. TurtleBot II (Kobuki base) is a new 
version of TurtleBot platform and it has features over 
its predecessor: odometric measurement precision, 
open protocol, higher speed and mobility, bigger 
diameter wheels and capacity to overcome obstacles 
up to 12 mm [13]. 

 

Few works address mapping question at the 
mission level. Authors in [14] present a ROS-Based 
control system with a Pioneer 3-DX robot for indoor 
mapping, localization and autonomous navigation. 
Some factors associated with indoor environments that 
can affect mapping, localization and automatic 
navigation, are also presented. Authors investigate in 
[15] the suitability of the Xbox Kinect sensor for 
navigation and simultaneous localization and mapping. 
A prototype using the Kinect to capture 3D point cloud 
data of the external environment is also presented. 
The data is used in a 3D SLAM to create 3D models of 
the environment and localize the robot in the 
environment. By projecting the 3D point cloud into a 
2D plane, the Kinect sensor data for a 2D SLAM 
algorithm is used and compared the performance of 
Kinect-based 2D and 3D SLAM algorithm with 
traditional solutions. 

Multi-sensor navigation of intelligent ROS-based 
wheelchair is presented in [16] for elderly and disabled 
people. The system enables capabilities of 
autonomous navigation, inter-operation by multiple 
modality, interaction and collaboration with the 
wheelchair. An autonomous navigation for the 
wheelchair is implemented enabling user point a goal 
and arrive the goal automatically in a static 
environment. 

In this paper, improvements of mapping, 
localization and autonomous navigation is presented 

by using TurtleBot II mobile robot. For experiments, a 
part of the floor of the building is used for mapping 
experiments and factors to enhance the received 2D 
grid map are presented. The rest of the paper is 
organized as follows. Section II show up issues 
occurred in a dynamic environmental mapping and 
autonomous navigation with a received grid map. In 
Section III, experimental results are given to 
demonstrate the feasibility and development by the 
ROS-based (ROS Indigo platform) use case 
configurations. Finally, a conclusion and summary of 
the whole work of this paper are discussed in Section 
IV. 

II. ROBOT SYSTEM 

A. ROS Parameters 

ROS Parameter Server is a shared, multivariable 
dictionary that is accessible via network APIs. Nodes 
use this server to store and retrieve parameters at 
runtime. The Parameter Server is implemented using 
XML-RPC and runs inside the ROS Master, which 
means that its API is accessible via normal XMLRPC 
libraries. The Parameter Server is used to store data 
that is accessible by all the nodes. ROS has a tool to 
manage the Parameter Server called rosparam [6]. 

The robot will move through the map using two 
types of navigation—global and local. The global 
navigation is used to create paths for a goal in the map 
or a far-off distance. The local navigation is used to 
create paths in the nearby distances and avoid 
obstacles, for example, a square window of 4 x 4 
meters around the robot. The costmaps have 
parameters to configure the behaviors, and they have 
common parameters as well, which are configured in a 
shared file. Configuration basically consists of three 
files where different parameters can be set up [6], [7]. 
These files are as follows: 

– costmap_common_params.yaml 

– global_costmap_params.yaml 

– local_costmap_params.yaml 

Parameters can be accessed via command line, 
code or launch file [8]. They are named using the 
normal ROS naming convention. This means that ROS 
parameters have a hierarchy that matches the 
namespaces used for topics and nodes. This hierarchy 
is meant to protect parameter names from colliding. 
The hierarchical scheme also allows parameters to be 
accessed individually or as a tree [7]. The rosparam 
command-line tool enables user to query and set 
parameters on the Parameter Server using YAML 
(YAML Ain’t Markup Language) syntax [9]. 

YAML-encoded file contains an experimental library 
for using YAML with the Parameter Server. This library 
is intended for internal use only. rosparam can be 
invoked within a roslaunch file [10]. 

B. OpenSLAM 

Simultaneous Localization and mapping (SLAM) is 
an algorithm for robot to autonomously explore and 

 

Fig. 2.  TurtleBot II robot 
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map its environment with its sensors while localizing 
itself at the same time [15]. The preliminary challenge 
in SLAM is how mobile robots can autonomously learn 
maps of their environments. The basic difficulty is that 
the robot must know exactly where it is, so that it can 
update the right part of the map: relying on dead-
reckoning alone (i.e. integrating the motor commands) 
is unreliable because of noise in the actuators 
(slippage and drift). One solution is GMapping from 
OpenSLAM, Rao-Blackwellized particle filter (RBPF) to 
learn grid maps from laser range data. This approach 
uses a particle filter in which each particle carries an 
individual map of the environment. A key question is 
how to reduce the number of particles. The RBPF 
provides adaptive techniques to reduce the number of 
particles in a Rao-Blackwellized particle filter for 
learning grid maps. In addition, an approach to 
compute an accurate proposal distribution taking into 
account not only the movement of the robot but also 
the most recent observation, is presented. This 
drastically decreases the uncertainty about the robot’s 
pose in the prediction step of the filter. Furthermore, 
RBPF applies an approach to selectively carry out re-
sampling operations, which reduces the problem of 
particle depletion [11], [12]. 

C. Creating a map with TurtleBot and ROS 

ROS has a tool that builds a map using the 
odometry and a laser sensor. This tool is a ROS map-
server (slam_gmapping), a tool enabling to build a 
map using the robot’s odometry and 3D sensor data. 
amcl (Adaptive Monte Carlo Localization) is a 
probabilistic localization system for a robot moving in 
2D. It implements the adaptive Monte Carlo 
localization approach, which uses a particle filter to 
track the pose of a robot against a known map [6]. 

To navigate the environment, the gmapping 
algorithm is used. The gmapping package provides 
laser-based SLAM to create a 2D occupancy grid map 
(like a building floor plan) from laser and pose data by 
TurtleBot. TurtleBot provides odometry data, which is 
needed for slam_gmapping. The slam_gmapping node 
will attempt to transform each incoming scan into the 
odom (odometry) tf frame. tf is a package that lets the 
user keep track of multiple coordinate frames over 
time. tf maintains the relationship between coordinate 
frames in a tree structure buffered in time, and lets the 
user transform points, vectors, etc. between any two 
coordinate frames at any desired point in time [17]. 

D. Mapping Issues 

In OpenCRP, the 2D SLAM algorithm is performed 
using an ROS implementation of GMapping from 

OpenSLAM [18]. One of the biggest drawbacks for a 
proper mapping is indoor surroundings where the 
corridors are long or where there are not enough 
identifiable objects for scanning operation. If the 
corridors are long with no clearly identifiable objects 
such as chairs, vertical pillars, or tables, the scanned 
map is inapplicable almost in every case. Another 
issue is the case where objects in the environment are 
moved to different place, for instance someone have 
moved the chair, causing the robot lose its location on 
the map. In this case, the robot performs two rotate 
recoveries to find its location on the map until it aborts 
and stops the ROS master because the path plan 
cannot be created. 

Aforementioned drawbacks result unwanted wall 
line discontinuation, diagonals or many gray regions in 
the generated map. Grey regions indicate that there is 
no data available for these regions. This is one major 
issue due to amcl mapping algorithm causing the 
experiment complicated. 

The robot is moved in the desired environment via 
joystick. Joystick is connected to the on-board laptop 
running ROS with an USB dongle. Controlling the 
velocity by joystick is quite difficult, therefore it is much 
convenient to modify the myjoystick.launch file to attain 
an optimal robot control. Figure 3a shows 
discontinuation of the generated grid map at the 
velocity of 1.5 rad/sec (rotational) and 0.5 m/s 
(translational) highlighted in red circle. In Figure 3b, 
the velocity is set down to 1.0 rad/s and 0.2 m/s. The 
velocity can be altered by changing two parameter 
values in myjoystick.launch file: 

<param name="scale_angular" value="1.5" 

/> 

<param name="scale_linear" value="0.5" 

/> 

As can be seen in the Figure 3, slowing down the 
velocity has a visible difference for the map quality. 
The mapped environment structure is a closed loop, 
where the robot starts moving from a point and comes 
back at that point through different way. To overcome 
the mapping issues presented here, a solution is 
described in SectIion III. A laptop was mounted onto 
the TurtleBot robot. TurtleBot has either Kinect or Xtion 
sensor used in the experiments. Both sensors are 
tested in experiments in order to find the optimal 
parameters for mapping. Relevant mapping functions 
for ROS-based robot are then clarified. A good 
reminder for the mapping is to notice both ROS-
parameters and min/max parameter values 
changeable through the 3D sensor. 
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III. EXPERIMENTAL RESULTS 

To validate the presented system and to identify the 
systems functionality and performance, an 
experimental use case has been implemented. The 
experiment entails TurtleBot II mobile robot, MS Kinect 
and Xtion Pro Live sensors, and laptop mounted onto 
the TurtleBot. The goal is to improve the map using 
certain ROS parameters and to make assessment on 
where the system needs to be improved upon. 

A. 3D Sensors 

Both of 3D sensors used in experiments, Asus 
Xtion Pro Live and Microsoft Kinect for Xbox, use laser 
point cloud for distance measuring. The point cloud is 
projected into the environment, which is going to be 
mapped. The pattern is then received by the IR CMOS 
sensor. As a default setting, a 10-point slice is used 
and nearest vertical measuring points is projected into 
a same plane. This produces an emulated laser 
scanning line. 

In OpenCRP, the most significant features are 
minimum- and maximum measurement ranges. If the 
minimum range is high, object in nearby will not be 
observed. Whereas the maximum range is small, 
localization suffers as the AMCL-algorithm gets less 
sensor data, which can be compared to a base map. 
Both ranges were measured by placing the robot 
perpendicularly towards the measuring surface. rviz 
was used to visualize the laser scanning. 

A minimum measurement range was taken from 
the leading edge of sensor measured to a three 
different wall surfaces. Then the smallest distance 
where the laser scanning line is still continuous in the 
middle of the view, were searched, because the 
measurement result disappears first when the distance 
begin to decrease. 

Distances were measured by the measuring tape 
and results are rounded down to a nearest centimeter, 
because the determining of a continuous line from a 
rippling laser scan line was not so unambiguous. Table 
2 shows the minimum measurement ranges for 
different materials. Mat surfaced brick wall gave the 
best results for both sensors. The results show that 
dim surfaces have better features than glossy. To get 
unambiguous reason for this behavior is difficult to 
analyze, because the exact operating principle is not 
released. 

TABLE I.  TURTLEBOT II TECHNICAL SPECIfiCATION 

Max. translational velocity 65 cm/s 
Max. rotational velocity 3.14 rad/s 
Payload 5 kg (hard floor), 4 kg (carpet) 
Cliff will not drive off a cliff with a 

depth >5cm 
Threshold climbing climbs thresholds of 12mm or 

lower 
Rug climbing climbs rugs of 12mm or lower 
Expected operating time 3/7 hours (small/large 

battery) 
Expected charging time 1.5/2.6 hours (small/large 

battery) 
Docking can perform docking within a 

2m x 5m area in front of the 
docking station 

PC connection USB or via RX/TX pins on the 
parallel port 

Motor overload detection disables power to motors on 
detecting high current 

Odometry 25718.16 ticks/revolution, 
11.7 ticks/mm 

Gyro factory calibrated, 1 axis (100 
deg/s) 

Bumpers left, center, right 
Cliff sensors left, center, right 
Wheel drop sensor left, right 
Power connectors 5V/1A, 12V/1.5A, 12V/5A 
Docking recharging connector 19V/2.1A- expansion pins: 

3.3V/1A, 5V/1A, 4 x analog in, 
4 x digital in, 4 x digital out 

Audio several programmable beep 

 

Fig. 3.  Discontinuation of the generated grid map at the velocity of (a) 1.5 rad/s and 0.5 m/s, and (b) 1.0 rad/s and 0.2 
m/s 
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sequences 
Programmable LED 2 x two-coloured LED 
State LED 1 x two-coloured LED 

[blinking-charging, Green-
high level, Orange-low level] 

Buttons 3 x touch buttons 
Battery 14.8V lithium-Ion 2200 mAh 

(small) 4400 mAh (large) 
Firmware upgradeable via USB 
Sensor Data Rate 50 Hz 
Recharging Adapter Input: 100-240V AC, 50/60 

Hz, 1.5A max; Output: 19V DC, 
3.16A 

Netbook recharging connector 
(only enabled when robot is 
recharging) 

19V/2.1A DC 

Docking IR Receiver left, centre, right 

 

TABLE II.  MINIMUM MEASUREMENT DISTANCES FOR DIFFERENT 

MATERIALS 

Wall material Kinect Xbox 
360/min. 
range (cm) 

Xtion Pro Live/min. range 
(cm) 

White 
fiberglass 
wallpaper 

54.5 55.5 

Grey sheet 
metal locker 

60.5 63.5 

White door 65.0 77.5 
Red brick wall 50.0 (from the 

surface of the 
brick) 

49.0 (from the surface of 
the brick) 

 

The minimum measuring range using Kinect was 
0.50–0.65 meters, which is better than the 
manufacturer have informed, 0.80 meters [19]. It is 
specified in [20], that the OpenKinect software limits 
the minimum measuring range to 0.50 meters, which 
was also the minimum value achieved in the 
measurements. 

For Xtion Pro, the manufacturer gives the minimum 
measurement range of 0.8 meters, same as Kinect 
[21]. When measuring the range to white door, which 
was the most challenging material, we got the 0.77 
meters range, being quite close to what is stated in the 
technical specification. However, depending on the 
surface, shorter ranges is also possible to measure, as 
can be noticed in the red brick wall result of 0.49 
meters. 

Maximum measurement range was measured only 
on two different surface materials, because such a 
long measurement sites for other surface materials 
was not available. In measurements, the robot was 
placed on a wheeled table and distances were carried 
out by moving the table. For each surfaces three 
limiting distances were measured: 

(1) laserline is static as a whole (only small gaps 
is in view as the distance is gradually 
increasing in both sensors) 

(2) static laserline parts are still separable; sensor 
data is available 

(3) measurement results disappear on a whole 
width of the measurement point (occasional 
glimmers were ignored) 

Distances were measured with Bosch PLR 15 
digital range rangefinder, measuring accuracy of 
±3.0mm [22]. Results in Table 3 are given the 
accuracy of 10 cm, because the specific interpretation 
is much more challenging when comparing them to 
minimum range measurements. White door 
measurement was proved to be the most difficult for 
both sensors. In Kinect, a varying behavior was 
detected in such a way, that the static parts of laserline 
disappeared in some distances and coming back when 
the distance increases. This kind of spot was in the 
measurement of white fiberglass wallpaper at 8.6 
meters range and 7.0 meters for white door. In Xtion 
Pro sensor, such as this kind of zones was not 
detected, but the behavior changes consistently with 
relation to the distance. 

Kinect’s maximum measuring distance is 4.0 
meters according to the manufacturer [19]. As the 
measurement for white door show, the laserline is still 
static at 5.7 meters distance, being obviously better 
than manufacturer have specified. For Xtion Pro the 
manufacturer give the maximum measuring distance of 
3.5 meters [21]. Like Kinect, Xtion Pro’s maximum 
measuring distance is better than manufacturer have 
specified as can be seen from results; laserline is still 
stable at the distance of 5.8 meters. 

TABLE III.  MAXIMUM MEASUREMENT DISTANCES FOR DIFFERENT 

MATERIALS 

Wall material Kinect Xbox 
360/min. range 
(cm) 

Xtion Pro Live/min. 
range (cm) 

White fiberglass 
wallpaper 

6.1, 9.3, 9.7 7.1, 9.0, 10,1 

White door White fiberglass 
wallpaper 

White fiberglass 
wallpaper 

 

B. Mapping Remarks and Solution 

A primary solution for successful mapping became 
obvious after mapping the same environment several 
times and comparing the results with each other. The 
best results can be achieved when driving the robot in 
a slow speed, turning it 360 degrees after few meters 
scanning and rotating it at the corner of the wall, so the 
laser sensor can observe both walls. By using this 
method, the robot observes both walls at the same 
time and it obviously improves the corner shape and 
wall line straightness, see Figure 4 for the mapping 
result. It is important that the robot get distance data all 
the time when it is moving forward. However, this is 
not comprehensive method because of the mapping 
algorithm fixes the corners while walls lengths being 
incorrect due to the dimensional error. 

Especially remarkable discontinuation error is 
caused by a long corridor with no reference points 
when the algorithm try to fix data received from 
odometry in a way that the corridors become shorter 
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than they really are. When driving the robot forward 
along the corridor, the distance from sidewalls do not 
change which interferes the mapping. In a straight 
corridor, it is advisable to drive the robot slantingly one 
after another wall so that the changing distance data is 
available all the time. 

By using the methods above it is possible to get 
proper mapping results, but they will not ensure a 
relevant map in every environment scanning. Mapping 
has such feature that if the same data is available, the 
generated map is not similar after each scan. The 
variation of map shape is understandable when taking 
into account that the algorithm is based on a 
probability function. This issue is discussed in more 
detail in [23]. 

When mapping the environment by the robot, 
obstacles on the map will be removed only, if 
measurement points can be received from behind 
another obstacle. This means that the oncoming 
obstacle in a long corridor can cause a long row of 
obstacles if data behind its measurement point is not 
possible to get. 

 

Parameters for marking the obstacles and 
removing them are in turtlebot_navigation package’s 
gmapping.launch file: 

$ maxUrange //(default 6.0m) the 

maximum range of the sensor 

$ maxRange //(default 8.0m) the 

maximum usable range of the laser 

In a mapping procedure, obstacles within the range 
maxUrange are marked onto the generated map. 
Regions in further, but within a range of maxRange 
parameter, will be cleared and then appeared as a free 
space in a map between the area of robot and 
maxUrange. Reasonable explanation for the area 
between maxUrange and maxRange parameter can 
be found. Obstacle locations on the generated map 
should be accurate enough and therefore only regions 
the most accurate laser sensor measuring range will 
be used. When the data is available outside of the 

accurate measurement region, sufficient obstacle 
location and distance is unobtainable, but with the 
existence of usable measurement region can be 
concluded that the area is free from obstacles in 
measurement direction. Thus, also the inaccurate 
measurement data is available for the improvement of 
a grid map. 

C. Floor Plan Manipulation 

One worthwhile option for preferable navigation is 
the use of a floor plan. For the experiments, a PDF-file 
from the building’s floor plan was used as a map to be 
manipulated. All the mappings were performed in the 
second floor of the building. This mapped environment 
consists of corridors around the telecommunications 
lab. All other surrounding areas were separated off 
from the map except the lab and corridors as 
illustrated in Figure 5. 

 

A resulted PGM file format on the right hand side is 
a base map file that TurtleBot uses for navigate the 
environment. For manipulation of the generated 2D 
grid map, GIMP (GNU Image Manipulation Program) is 
used [24]. The map must be in scale and therefore the 
map generated by TurtleBot was imported to its own 
layer. Then manipulated floor plan was scaled together 
with the robot-generated map. After that, the resulting 
PGM (Portable Greymap) map is then saved to the 
robot’s laptop and a new YAML file is saved utilizing 
the YAML file used for scaling before. Lastly, a YAML 
file name should be changed and edit the image file 
similar as done with the floor plan. In our use case the 
modified YAML file is: 

$ image: /home/user/maps/ 

pohjapiirros.pgm 

The manipulated floor plan was tested by driving 
the robot through the environment area. The test 
proved that the floor plan was in same scale as the 
robot-generated map. One option to scaling is to map 
a part of the environment with the robot and use this 
map for scaling the manipulated floor plan. YAML file 
consist of a resolution parameter, which can be used 
to define distance in meters per pixel. This gives the 
possibility to scale by using pixels of the map, being 
useful for instance in the case where the length of 
building corridor is known. The GIMP, for example, can 
then be used to measure distances in pixels. That 
means it is not necessary to perform the environmental 
mapping with robot at all. 

 

Fig. 4.  Rotating at the corners of walls 

 

Fig. 5.  Manipulated floor plan 
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D. Navigation 

In ROS navigation, several map layers are used at 
the same time. In addition to a static map layer, the 
dynamic global costmap is maintained, in which the 
robot-collected obstacle information is inserted, those 
which are not updated into the local costmap. Paths 
are calculated in a larger scale according to the global 
costmap and during the robot teleoperation local cost-
map is used, by which the local path is calculated in 
nearby the robot along dynamically changing 
environment. In practice, by means of the information 
got from a local costmap, the obstacles in the robot’s 
way are avoided. 

For obstacle avoidance, costmaps have 
parameters turtlebot_navigation package’s 
costmap_common_params.yaml folder: 

$ obstacle_range //(default 2.5) 

maximum range for obstacle insert 

$ raytrace_range //(default 3.0) range 

for costmap clearing 

The obstacle_range parameter determines the 
maximum range sensor reading that will result in an 
obstacle being put into the costmap. The 
raytrace_range parameter is the maximum range in 
meters at which to raytrace out obstacles from the map 
using sensor data. Setting it to 3.0 meters as above 
means that the robot will attempt to clear out space in 
front of it up to 3.0 meters away given a sensor 
reading [25], [26]. 

The environment that is going to be mapped can 
consist of complicated structures like narrow passes, 
edges or zigzag ways, for example. One such a 
structure is an automatic sliding door. In our 
experiments, we had a long corridor with an automatic 
sliding door at the end of it. Its response distance was 
different when coming in to the corridor than going out 
of it. The door opened nicely when the robot 
approaches it in one direction but from coming 
opposite direction robot stops when detecting it before 
the door opens. 

Solution for the problem was virtual wall added into 
the 2D grid map. That changes the robot’s path in such 
a way that the door have enough time to open. As 
visualized in Figure 6, the robot is forced to go around 
the virtual wall so that the door’s opening mechanism 
can detect the robot in time. Obstacle clearing from 
behind the received sensor reading is not considered 
when adding the virtual wall, because the static map is 
not updated with this sensor data. This was 
experimented by driving the robot beside to virtual wall 
measuring direction pointed through it towards the real 
wall. Measuring results from the real wall was 
visualized by rviz’s local costmap view, where the 
measurements are clearly displayed. This test proved 
that it is not unable to produce a path through the 
virtual wall. 

 

IV. CONCLUSION AND DISCUSSION 

The presented work describes a ROS-based 
system for improving mapping, localization and 
navigation. Parameters for controlling the TurtleBot II 
robot in indoor environment are experimented. 
Experiments give practical results on how the mapping 
can be improved. 

Minimum measuring range results were fairly 
similar for both sensors. The blind spot was the main 
goal for the sensor experiments. The length of a blind 
spot was rounded down to a same tolerance along 

with measurements (±0.25cm). Kinect’s blind spot 

varied between 24.2−39.2≈24.0−39.0cm and Xtion 

Pro’s between 22.8−51.3≈23.0−51.5cm. 

The blind spot substantially impairs the robot’s 
ability to perform its tasks in a dynamic environment. 
The robot should have the ability to make observations 
immediately after its physical dimensions in order to 
avoid obstacles nearby. The results of minimum 
distance range cannot therefore consider adequate. 

The difference in maximum measuring results 
between sensors was bigger than minimum measuring 
results. Maximum distances on a whole length of static 

laserline varied with Kinect between 5.7−6.1m and 

with Xtion Pro between 5.8−7.1m. Default values of 

maxUrange and maxRange parameters for both 
sensors were more suitable to white fiberglass 
wallpaper than to results with white door, which was 
challenging to measure. maxUrange parameter default 

value is 6.0 meters, which means that obstacles 

within the range are inserted onto the generated map, 
is close to results with white door for both sensors. 
Similarity can be seen when comparing results with 

maxRange default parameter value of 8.0 meters. 

When measuring towards a white door, Kinect’s 

maximum range was 7.9 and Xtion Pro’s 7.8 

meters, in which case the laserline has still static 

parts. maxRange parameter indicates the maximum 
distance from which results enabling the clearance the 
area between the robot and maxRange. Default 
parameter values for TurtleBot are quite suitable 
according to the experiment results. 

Kinect managed a little bit slightly between the area 
of maxUrange and maxRange having an area around 

at 7.0 meters, where the static measurement was 

unable to get. Xtion Pro was found better in navigation 
than Kinect in a practical manner. Maps obtained with 
Kinect included more unknown gray regions, which 

 

Fig. 6.  Modified grid map 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 5 Issue 10, October - 2018 

www.jmest.org 

JMESTN42352708 8917 

inaccurate zones between 6.0 and 8.0 meters will 

partly explain. 

Obtaining a proper map is challenging with both 
sensors. A short maximum observation range and 
limited scanning beam lead to situation, where the 
robot have to turn around to scan the whole area 
again. In small rooms this problem not exist, but larger 
spaces and especially long closed paths will most 
likely cause difficulties. 

When using TurtleBot equipped with Kinect- or 
Xtion Pro-like sensor, the following circumstances are 
good to notice: 

– The velocity should be moderate; experiments 
showed that suitable rotational speed is 1.0 

rad/s and translational 0.2 m/s 

– Robot must have measuring data related to 
distance all the time when it is moving forward. 
This can be done by driving the robot 
slantingly one after another wall 

– In corners the best way is to stop the robot 

about a 1.0 meters distance from the corner 

and turn the robot 360 degrees so that sensor 
data is available from both walls at the same 
time 

One worthwhile option for accurate mapping is floor 
plan manipulation, especially in larger operating areas. 
Manipulation of the floor plan, like adding new walls or 
clearing them from map, is easily editable by using 
image manipulation program. In particular, 
environments where moving obstacles exists, e.g. 
patient beds or chairs in hospital’s corridor, the floor 
plan manipulation is very viable option to consider. In 
that way the robot treats all obstacles as a dynamic 
obstacles inserting them and clearing them from 
costmap always when the situation in environment 
changes during the mapping procedure. 

Navigation goes to its purpose when there is 
enough room around the robot. TurtleBot can calculate 
the alternative route if the first one is obstructed. 
Avoiding dynamical obstacles coming to the robot’s 
way come off fine as far as sensor data is available 
and the distance can be measured. If an obstacle 
appears inside the minimum distance range, the robot 
is usually in difficulties. 

Very challenging situation is also at dynamical 
obstacles, which have already left from the area and 
are inserted on map located nearby the robot. 
Because the robot localize itself constantly when 
measuring the environment, also its calculated 
probable location will fluctuate a bit. When the 
calculated location is just on the inserted point on map, 
the robot will not recover from this situation and user 
have to physically step in to start the ROS master 
again. 

For clearing the dynamical obstacles from costmap 
depend on significantly the range of sensor. If the 
sensor range is not enough for making observations 

from behind the trace left by the obstacle, the trace 
cannot be cleared. 

As mentioned earlier, the floor plan manipulation is 
a worthwhile option. The robot will not do path 
planning in such area, which is separated from other 
area. This is useful method when the operating area 
delimitation is designed. The virtual wall can also be 
used for affecting to the robot’s path and diverting it to 
go via a different path. In our experiment, this benefit 
was utilized by adding a virtual wall inside the 
response distance of an automatic sliding door sensor 
to get it opened when the robot approaches the door. 

Both navigating and sensors performance are 
limiting factors. In OpenCRP ecosystem, the robot can 
be controlled safely in environment where it cannot 
end up to dynamically narrow passed places. In 
practice, this means that, for instance in congested 
corridors, the navigation is uncertain. 
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