
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8910

Mapping, Localization and Navigation
Improvements by Using Manipulated Floor Plan

and ROS-Based Mobile Robot Parameters
Petri Oksa, Pekka Loula and Erkki Castrén

Telecommunications Research Center
Tampere University of Technology (TUT), Pori Department, Pohjoisranta 11A, FI-28100 Pori FINLAND

petri.oksa@tut.fi

Abstract— Indoor environment mapping is one
of the obvious benefit that can be assigned for
service mobile robots. With an extensive set of
parameters provided by Robot Operating System
(ROS), the robotic system user can set core tasks
to improve the quality and usability of the
received environmental grid map. This has an
evident impact for the robot teleoperating, map
scale, and significantly, in avoiding
discontinuities and inaccuracy objects of the
generated map—that is to say the more accurate
the map is—the more straightforward the
autonomous navigation is. The use of an original
floor plan instead of map obtained by the robot is
one worthwhile option. Floor plans can be
manipulated by using a generic image processing
software in that case where the received map has
unidentifiable areas due to the robot’s 3D sensor
unable to detect. This paper presents ROS-based
indoor environment mapping, localization and
autonomous navigation factors in the Open Cloud
Robotic Platform (OpenCRP) ecosystem, a cloud
robotics project upon an open-source basis,
experimented with a TurtleBot II mobile robot.
Moreover, a method for manipulating the floor
plan is presented in this work.

Keywords— mapping; localization;
autonomous navigation; mobile robot; ROS

I. INTRODUCTION

Outside of manufacturing and wholesale
warehouses, robots are hard to find. They are through
its history considered mainly as static and monotonous
job performers. Out-of-this-box thinking, current mobile
robots could do many more pre-programmed tasks,
such as lawn mowing, vacuum-, window- and
swimming pool cleaning. In particular, mobile robots
are ideal for exploring environments and monitoring
situations that are dangerous, strenuous or too boring
to humans. They are expected to perform long range,
long term and complex missions. These robots are
typically remote controlled (teleoperated) and require
one or more human operators [1], [2], [3].

Cloud robotics projects such as DAvinCi [4] and
RoboEarth [5] have paved the way for global system
accessibility, scalability and parallelism advantages of
cloud communication environment. One of the main
purposes of these projects is to remain robots

lightweight and offload heavy computation into the
cloud. In addition, common to these projects is to
network cooperative ROS

1
 robots, provide secured

customizable computing in large environments using
the cloud as a medium for establishing a network
between robots sensors and mobile devices.

OpenCRP
2

 is an open-source cloud robotics
ecosystem based on a service-oriented PaaS
architecture using Ubuntu Linux operating system. Its
multi-robot API allows any ROS robot to share their
collected data via the cloud. The ecosystem’s cloud
environment is implemented through Apache Hadoop
software framework and configured as a HDFS-cluster
(Hadoop Distribution File System). HDFS-cluster
operates as data storage for large data sets and could
be managed from remote computers with terminal
commands. Figure 1 shows a use case architecture of
the ecosystem for the experiments.

There are several mobile robots that can be used
with ROS. One of the most popular robot is TurtleBot
II, a developmental kit for researchers, hobbyists and
software developers see Figure 2 and Table 1 for
technical specification. A wheeled TurtleBot II

1 Please refer to http://www.ros.org for a complete

description of ROS
2 www.tut.fi/opencrp

Fig. 1. OpenCRP use case architecture

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8911

integrates in several simple and low-cost state-of-the-
art hardware devices such as Microsoft’s Kinect Xbox
360 sensor, Yujin Robot’s Kobuki, and iRobot’s
Create. It is a moving platform intended for indoor
environments and with 3D perception capabilities by
means of the Kinect and Asus Xtion Pro Live [6].
TurtleBot II is the evolution of the TurtleBot platform,
the cheapest robot in the market with ROS
architecture. TurtleBot II (Kobuki base) is a new
version of TurtleBot platform and it has features over
its predecessor: odometric measurement precision,
open protocol, higher speed and mobility, bigger
diameter wheels and capacity to overcome obstacles
up to 12 mm [13].

Few works address mapping question at the
mission level. Authors in [14] present a ROS-Based
control system with a Pioneer 3-DX robot for indoor
mapping, localization and autonomous navigation.
Some factors associated with indoor environments that
can affect mapping, localization and automatic
navigation, are also presented. Authors investigate in
[15] the suitability of the Xbox Kinect sensor for
navigation and simultaneous localization and mapping.
A prototype using the Kinect to capture 3D point cloud
data of the external environment is also presented.
The data is used in a 3D SLAM to create 3D models of
the environment and localize the robot in the
environment. By projecting the 3D point cloud into a
2D plane, the Kinect sensor data for a 2D SLAM
algorithm is used and compared the performance of
Kinect-based 2D and 3D SLAM algorithm with
traditional solutions.

Multi-sensor navigation of intelligent ROS-based
wheelchair is presented in [16] for elderly and disabled
people. The system enables capabilities of
autonomous navigation, inter-operation by multiple
modality, interaction and collaboration with the
wheelchair. An autonomous navigation for the
wheelchair is implemented enabling user point a goal
and arrive the goal automatically in a static
environment.

In this paper, improvements of mapping,
localization and autonomous navigation is presented

by using TurtleBot II mobile robot. For experiments, a
part of the floor of the building is used for mapping
experiments and factors to enhance the received 2D
grid map are presented. The rest of the paper is
organized as follows. Section II show up issues
occurred in a dynamic environmental mapping and
autonomous navigation with a received grid map. In
Section III, experimental results are given to
demonstrate the feasibility and development by the
ROS-based (ROS Indigo platform) use case
configurations. Finally, a conclusion and summary of
the whole work of this paper are discussed in Section
IV.

II. ROBOT SYSTEM

A. ROS Parameters

ROS Parameter Server is a shared, multivariable
dictionary that is accessible via network APIs. Nodes
use this server to store and retrieve parameters at
runtime. The Parameter Server is implemented using
XML-RPC and runs inside the ROS Master, which
means that its API is accessible via normal XMLRPC
libraries. The Parameter Server is used to store data
that is accessible by all the nodes. ROS has a tool to
manage the Parameter Server called rosparam [6].

The robot will move through the map using two
types of navigation—global and local. The global
navigation is used to create paths for a goal in the map
or a far-off distance. The local navigation is used to
create paths in the nearby distances and avoid
obstacles, for example, a square window of 4 x 4
meters around the robot. The costmaps have
parameters to configure the behaviors, and they have
common parameters as well, which are configured in a
shared file. Configuration basically consists of three
files where different parameters can be set up [6], [7].
These files are as follows:

– costmap_common_params.yaml

– global_costmap_params.yaml

– local_costmap_params.yaml

Parameters can be accessed via command line,
code or launch file [8]. They are named using the
normal ROS naming convention. This means that ROS
parameters have a hierarchy that matches the
namespaces used for topics and nodes. This hierarchy
is meant to protect parameter names from colliding.
The hierarchical scheme also allows parameters to be
accessed individually or as a tree [7]. The rosparam
command-line tool enables user to query and set
parameters on the Parameter Server using YAML
(YAML Ain’t Markup Language) syntax [9].

YAML-encoded file contains an experimental library
for using YAML with the Parameter Server. This library
is intended for internal use only. rosparam can be
invoked within a roslaunch file [10].

B. OpenSLAM

Simultaneous Localization and mapping (SLAM) is
an algorithm for robot to autonomously explore and

Fig. 2. TurtleBot II robot

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8912

map its environment with its sensors while localizing
itself at the same time [15]. The preliminary challenge
in SLAM is how mobile robots can autonomously learn
maps of their environments. The basic difficulty is that
the robot must know exactly where it is, so that it can
update the right part of the map: relying on dead-
reckoning alone (i.e. integrating the motor commands)
is unreliable because of noise in the actuators
(slippage and drift). One solution is GMapping from
OpenSLAM, Rao-Blackwellized particle filter (RBPF) to
learn grid maps from laser range data. This approach
uses a particle filter in which each particle carries an
individual map of the environment. A key question is
how to reduce the number of particles. The RBPF
provides adaptive techniques to reduce the number of
particles in a Rao-Blackwellized particle filter for
learning grid maps. In addition, an approach to
compute an accurate proposal distribution taking into
account not only the movement of the robot but also
the most recent observation, is presented. This
drastically decreases the uncertainty about the robot’s
pose in the prediction step of the filter. Furthermore,
RBPF applies an approach to selectively carry out re-
sampling operations, which reduces the problem of
particle depletion [11], [12].

C. Creating a map with TurtleBot and ROS

ROS has a tool that builds a map using the
odometry and a laser sensor. This tool is a ROS map-
server (slam_gmapping), a tool enabling to build a
map using the robot’s odometry and 3D sensor data.
amcl (Adaptive Monte Carlo Localization) is a
probabilistic localization system for a robot moving in
2D. It implements the adaptive Monte Carlo
localization approach, which uses a particle filter to
track the pose of a robot against a known map [6].

To navigate the environment, the gmapping
algorithm is used. The gmapping package provides
laser-based SLAM to create a 2D occupancy grid map
(like a building floor plan) from laser and pose data by
TurtleBot. TurtleBot provides odometry data, which is
needed for slam_gmapping. The slam_gmapping node
will attempt to transform each incoming scan into the
odom (odometry) tf frame. tf is a package that lets the
user keep track of multiple coordinate frames over
time. tf maintains the relationship between coordinate
frames in a tree structure buffered in time, and lets the
user transform points, vectors, etc. between any two
coordinate frames at any desired point in time [17].

D. Mapping Issues

In OpenCRP, the 2D SLAM algorithm is performed
using an ROS implementation of GMapping from

OpenSLAM [18]. One of the biggest drawbacks for a
proper mapping is indoor surroundings where the
corridors are long or where there are not enough
identifiable objects for scanning operation. If the
corridors are long with no clearly identifiable objects
such as chairs, vertical pillars, or tables, the scanned
map is inapplicable almost in every case. Another
issue is the case where objects in the environment are
moved to different place, for instance someone have
moved the chair, causing the robot lose its location on
the map. In this case, the robot performs two rotate
recoveries to find its location on the map until it aborts
and stops the ROS master because the path plan
cannot be created.

Aforementioned drawbacks result unwanted wall
line discontinuation, diagonals or many gray regions in
the generated map. Grey regions indicate that there is
no data available for these regions. This is one major
issue due to amcl mapping algorithm causing the
experiment complicated.

The robot is moved in the desired environment via
joystick. Joystick is connected to the on-board laptop
running ROS with an USB dongle. Controlling the
velocity by joystick is quite difficult, therefore it is much
convenient to modify the myjoystick.launch file to attain
an optimal robot control. Figure 3a shows
discontinuation of the generated grid map at the
velocity of 1.5 rad/sec (rotational) and 0.5 m/s
(translational) highlighted in red circle. In Figure 3b,
the velocity is set down to 1.0 rad/s and 0.2 m/s. The
velocity can be altered by changing two parameter
values in myjoystick.launch file:

<param name="scale_angular" value="1.5"

/>

<param name="scale_linear" value="0.5"

/>

As can be seen in the Figure 3, slowing down the
velocity has a visible difference for the map quality.
The mapped environment structure is a closed loop,
where the robot starts moving from a point and comes
back at that point through different way. To overcome
the mapping issues presented here, a solution is
described in SectIion III. A laptop was mounted onto
the TurtleBot robot. TurtleBot has either Kinect or Xtion
sensor used in the experiments. Both sensors are
tested in experiments in order to find the optimal
parameters for mapping. Relevant mapping functions
for ROS-based robot are then clarified. A good
reminder for the mapping is to notice both ROS-
parameters and min/max parameter values
changeable through the 3D sensor.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8913

III. EXPERIMENTAL RESULTS

To validate the presented system and to identify the
systems functionality and performance, an
experimental use case has been implemented. The
experiment entails TurtleBot II mobile robot, MS Kinect
and Xtion Pro Live sensors, and laptop mounted onto
the TurtleBot. The goal is to improve the map using
certain ROS parameters and to make assessment on
where the system needs to be improved upon.

A. 3D Sensors

Both of 3D sensors used in experiments, Asus
Xtion Pro Live and Microsoft Kinect for Xbox, use laser
point cloud for distance measuring. The point cloud is
projected into the environment, which is going to be
mapped. The pattern is then received by the IR CMOS
sensor. As a default setting, a 10-point slice is used
and nearest vertical measuring points is projected into
a same plane. This produces an emulated laser
scanning line.

In OpenCRP, the most significant features are
minimum- and maximum measurement ranges. If the
minimum range is high, object in nearby will not be
observed. Whereas the maximum range is small,
localization suffers as the AMCL-algorithm gets less
sensor data, which can be compared to a base map.
Both ranges were measured by placing the robot
perpendicularly towards the measuring surface. rviz
was used to visualize the laser scanning.

A minimum measurement range was taken from
the leading edge of sensor measured to a three
different wall surfaces. Then the smallest distance
where the laser scanning line is still continuous in the
middle of the view, were searched, because the
measurement result disappears first when the distance
begin to decrease.

Distances were measured by the measuring tape
and results are rounded down to a nearest centimeter,
because the determining of a continuous line from a
rippling laser scan line was not so unambiguous. Table
2 shows the minimum measurement ranges for
different materials. Mat surfaced brick wall gave the
best results for both sensors. The results show that
dim surfaces have better features than glossy. To get
unambiguous reason for this behavior is difficult to
analyze, because the exact operating principle is not
released.

TABLE I. TURTLEBOT II TECHNICAL SPECIfiCATION

Max. translational velocity 65 cm/s
Max. rotational velocity 3.14 rad/s
Payload 5 kg (hard floor), 4 kg (carpet)
Cliff will not drive off a cliff with a

depth >5cm
Threshold climbing climbs thresholds of 12mm or

lower
Rug climbing climbs rugs of 12mm or lower
Expected operating time 3/7 hours (small/large

battery)
Expected charging time 1.5/2.6 hours (small/large

battery)
Docking can perform docking within a

2m x 5m area in front of the
docking station

PC connection USB or via RX/TX pins on the
parallel port

Motor overload detection disables power to motors on
detecting high current

Odometry 25718.16 ticks/revolution,
11.7 ticks/mm

Gyro factory calibrated, 1 axis (100
deg/s)

Bumpers left, center, right
Cliff sensors left, center, right
Wheel drop sensor left, right
Power connectors 5V/1A, 12V/1.5A, 12V/5A
Docking recharging connector 19V/2.1A- expansion pins:

3.3V/1A, 5V/1A, 4 x analog in,
4 x digital in, 4 x digital out

Audio several programmable beep

Fig. 3. Discontinuation of the generated grid map at the velocity of (a) 1.5 rad/s and 0.5 m/s, and (b) 1.0 rad/s and 0.2
m/s

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8914

sequences
Programmable LED 2 x two-coloured LED
State LED 1 x two-coloured LED

[blinking-charging, Green-
high level, Orange-low level]

Buttons 3 x touch buttons
Battery 14.8V lithium-Ion 2200 mAh

(small) 4400 mAh (large)
Firmware upgradeable via USB
Sensor Data Rate 50 Hz
Recharging Adapter Input: 100-240V AC, 50/60

Hz, 1.5A max; Output: 19V DC,
3.16A

Netbook recharging connector
(only enabled when robot is
recharging)

19V/2.1A DC

Docking IR Receiver left, centre, right

TABLE II. MINIMUM MEASUREMENT DISTANCES FOR DIFFERENT

MATERIALS

Wall material Kinect Xbox
360/min.
range (cm)

Xtion Pro Live/min. range
(cm)

White
fiberglass
wallpaper

54.5 55.5

Grey sheet
metal locker

60.5 63.5

White door 65.0 77.5
Red brick wall 50.0 (from the

surface of the
brick)

49.0 (from the surface of
the brick)

The minimum measuring range using Kinect was
0.50–0.65 meters, which is better than the
manufacturer have informed, 0.80 meters [19]. It is
specified in [20], that the OpenKinect software limits
the minimum measuring range to 0.50 meters, which
was also the minimum value achieved in the
measurements.

For Xtion Pro, the manufacturer gives the minimum
measurement range of 0.8 meters, same as Kinect
[21]. When measuring the range to white door, which
was the most challenging material, we got the 0.77
meters range, being quite close to what is stated in the
technical specification. However, depending on the
surface, shorter ranges is also possible to measure, as
can be noticed in the red brick wall result of 0.49
meters.

Maximum measurement range was measured only
on two different surface materials, because such a
long measurement sites for other surface materials
was not available. In measurements, the robot was
placed on a wheeled table and distances were carried
out by moving the table. For each surfaces three
limiting distances were measured:

(1) laserline is static as a whole (only small gaps
is in view as the distance is gradually
increasing in both sensors)

(2) static laserline parts are still separable; sensor
data is available

(3) measurement results disappear on a whole
width of the measurement point (occasional
glimmers were ignored)

Distances were measured with Bosch PLR 15
digital range rangefinder, measuring accuracy of
±3.0mm [22]. Results in Table 3 are given the
accuracy of 10 cm, because the specific interpretation
is much more challenging when comparing them to
minimum range measurements. White door
measurement was proved to be the most difficult for
both sensors. In Kinect, a varying behavior was
detected in such a way, that the static parts of laserline
disappeared in some distances and coming back when
the distance increases. This kind of spot was in the
measurement of white fiberglass wallpaper at 8.6
meters range and 7.0 meters for white door. In Xtion
Pro sensor, such as this kind of zones was not
detected, but the behavior changes consistently with
relation to the distance.

Kinect’s maximum measuring distance is 4.0
meters according to the manufacturer [19]. As the
measurement for white door show, the laserline is still
static at 5.7 meters distance, being obviously better
than manufacturer have specified. For Xtion Pro the
manufacturer give the maximum measuring distance of
3.5 meters [21]. Like Kinect, Xtion Pro’s maximum
measuring distance is better than manufacturer have
specified as can be seen from results; laserline is still
stable at the distance of 5.8 meters.

TABLE III. MAXIMUM MEASUREMENT DISTANCES FOR DIFFERENT

MATERIALS

Wall material Kinect Xbox
360/min. range
(cm)

Xtion Pro Live/min.
range (cm)

White fiberglass
wallpaper

6.1, 9.3, 9.7 7.1, 9.0, 10,1

White door White fiberglass
wallpaper

White fiberglass
wallpaper

B. Mapping Remarks and Solution

A primary solution for successful mapping became
obvious after mapping the same environment several
times and comparing the results with each other. The
best results can be achieved when driving the robot in
a slow speed, turning it 360 degrees after few meters
scanning and rotating it at the corner of the wall, so the
laser sensor can observe both walls. By using this
method, the robot observes both walls at the same
time and it obviously improves the corner shape and
wall line straightness, see Figure 4 for the mapping
result. It is important that the robot get distance data all
the time when it is moving forward. However, this is
not comprehensive method because of the mapping
algorithm fixes the corners while walls lengths being
incorrect due to the dimensional error.

Especially remarkable discontinuation error is
caused by a long corridor with no reference points
when the algorithm try to fix data received from
odometry in a way that the corridors become shorter

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8915

than they really are. When driving the robot forward
along the corridor, the distance from sidewalls do not
change which interferes the mapping. In a straight
corridor, it is advisable to drive the robot slantingly one
after another wall so that the changing distance data is
available all the time.

By using the methods above it is possible to get
proper mapping results, but they will not ensure a
relevant map in every environment scanning. Mapping
has such feature that if the same data is available, the
generated map is not similar after each scan. The
variation of map shape is understandable when taking
into account that the algorithm is based on a
probability function. This issue is discussed in more
detail in [23].

When mapping the environment by the robot,
obstacles on the map will be removed only, if
measurement points can be received from behind
another obstacle. This means that the oncoming
obstacle in a long corridor can cause a long row of
obstacles if data behind its measurement point is not
possible to get.

Parameters for marking the obstacles and
removing them are in turtlebot_navigation package’s
gmapping.launch file:

$ maxUrange //(default 6.0m) the

maximum range of the sensor

$ maxRange //(default 8.0m) the

maximum usable range of the laser

In a mapping procedure, obstacles within the range
maxUrange are marked onto the generated map.
Regions in further, but within a range of maxRange
parameter, will be cleared and then appeared as a free
space in a map between the area of robot and
maxUrange. Reasonable explanation for the area
between maxUrange and maxRange parameter can
be found. Obstacle locations on the generated map
should be accurate enough and therefore only regions
the most accurate laser sensor measuring range will
be used. When the data is available outside of the

accurate measurement region, sufficient obstacle
location and distance is unobtainable, but with the
existence of usable measurement region can be
concluded that the area is free from obstacles in
measurement direction. Thus, also the inaccurate
measurement data is available for the improvement of
a grid map.

C. Floor Plan Manipulation

One worthwhile option for preferable navigation is
the use of a floor plan. For the experiments, a PDF-file
from the building’s floor plan was used as a map to be
manipulated. All the mappings were performed in the
second floor of the building. This mapped environment
consists of corridors around the telecommunications
lab. All other surrounding areas were separated off
from the map except the lab and corridors as
illustrated in Figure 5.

A resulted PGM file format on the right hand side is
a base map file that TurtleBot uses for navigate the
environment. For manipulation of the generated 2D
grid map, GIMP (GNU Image Manipulation Program) is
used [24]. The map must be in scale and therefore the
map generated by TurtleBot was imported to its own
layer. Then manipulated floor plan was scaled together
with the robot-generated map. After that, the resulting
PGM (Portable Greymap) map is then saved to the
robot’s laptop and a new YAML file is saved utilizing
the YAML file used for scaling before. Lastly, a YAML
file name should be changed and edit the image file
similar as done with the floor plan. In our use case the
modified YAML file is:

$ image: /home/user/maps/

pohjapiirros.pgm

The manipulated floor plan was tested by driving
the robot through the environment area. The test
proved that the floor plan was in same scale as the
robot-generated map. One option to scaling is to map
a part of the environment with the robot and use this
map for scaling the manipulated floor plan. YAML file
consist of a resolution parameter, which can be used
to define distance in meters per pixel. This gives the
possibility to scale by using pixels of the map, being
useful for instance in the case where the length of
building corridor is known. The GIMP, for example, can
then be used to measure distances in pixels. That
means it is not necessary to perform the environmental
mapping with robot at all.

Fig. 4. Rotating at the corners of walls

Fig. 5. Manipulated floor plan

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8916

D. Navigation

In ROS navigation, several map layers are used at
the same time. In addition to a static map layer, the
dynamic global costmap is maintained, in which the
robot-collected obstacle information is inserted, those
which are not updated into the local costmap. Paths
are calculated in a larger scale according to the global
costmap and during the robot teleoperation local cost-
map is used, by which the local path is calculated in
nearby the robot along dynamically changing
environment. In practice, by means of the information
got from a local costmap, the obstacles in the robot’s
way are avoided.

For obstacle avoidance, costmaps have
parameters turtlebot_navigation package’s
costmap_common_params.yaml folder:

$ obstacle_range //(default 2.5)

maximum range for obstacle insert

$ raytrace_range //(default 3.0) range

for costmap clearing

The obstacle_range parameter determines the
maximum range sensor reading that will result in an
obstacle being put into the costmap. The
raytrace_range parameter is the maximum range in
meters at which to raytrace out obstacles from the map
using sensor data. Setting it to 3.0 meters as above
means that the robot will attempt to clear out space in
front of it up to 3.0 meters away given a sensor
reading [25], [26].

The environment that is going to be mapped can
consist of complicated structures like narrow passes,
edges or zigzag ways, for example. One such a
structure is an automatic sliding door. In our
experiments, we had a long corridor with an automatic
sliding door at the end of it. Its response distance was
different when coming in to the corridor than going out
of it. The door opened nicely when the robot
approaches it in one direction but from coming
opposite direction robot stops when detecting it before
the door opens.

Solution for the problem was virtual wall added into
the 2D grid map. That changes the robot’s path in such
a way that the door have enough time to open. As
visualized in Figure 6, the robot is forced to go around
the virtual wall so that the door’s opening mechanism
can detect the robot in time. Obstacle clearing from
behind the received sensor reading is not considered
when adding the virtual wall, because the static map is
not updated with this sensor data. This was
experimented by driving the robot beside to virtual wall
measuring direction pointed through it towards the real
wall. Measuring results from the real wall was
visualized by rviz’s local costmap view, where the
measurements are clearly displayed. This test proved
that it is not unable to produce a path through the
virtual wall.

IV. CONCLUSION AND DISCUSSION

The presented work describes a ROS-based
system for improving mapping, localization and
navigation. Parameters for controlling the TurtleBot II
robot in indoor environment are experimented.
Experiments give practical results on how the mapping
can be improved.

Minimum measuring range results were fairly
similar for both sensors. The blind spot was the main
goal for the sensor experiments. The length of a blind
spot was rounded down to a same tolerance along

with measurements (±0.25cm). Kinect’s blind spot

varied between 24.2−39.2≈24.0−39.0cm and Xtion

Pro’s between 22.8−51.3≈23.0−51.5cm.

The blind spot substantially impairs the robot’s
ability to perform its tasks in a dynamic environment.
The robot should have the ability to make observations
immediately after its physical dimensions in order to
avoid obstacles nearby. The results of minimum
distance range cannot therefore consider adequate.

The difference in maximum measuring results
between sensors was bigger than minimum measuring
results. Maximum distances on a whole length of static

laserline varied with Kinect between 5.7−6.1m and

with Xtion Pro between 5.8−7.1m. Default values of

maxUrange and maxRange parameters for both
sensors were more suitable to white fiberglass
wallpaper than to results with white door, which was
challenging to measure. maxUrange parameter default

value is 6.0 meters, which means that obstacles

within the range are inserted onto the generated map,
is close to results with white door for both sensors.
Similarity can be seen when comparing results with

maxRange default parameter value of 8.0 meters.

When measuring towards a white door, Kinect’s

maximum range was 7.9 and Xtion Pro’s 7.8

meters, in which case the laserline has still static

parts. maxRange parameter indicates the maximum
distance from which results enabling the clearance the
area between the robot and maxRange. Default
parameter values for TurtleBot are quite suitable
according to the experiment results.

Kinect managed a little bit slightly between the area
of maxUrange and maxRange having an area around

at 7.0 meters, where the static measurement was

unable to get. Xtion Pro was found better in navigation
than Kinect in a practical manner. Maps obtained with
Kinect included more unknown gray regions, which

Fig. 6. Modified grid map

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8917

inaccurate zones between 6.0 and 8.0 meters will

partly explain.

Obtaining a proper map is challenging with both
sensors. A short maximum observation range and
limited scanning beam lead to situation, where the
robot have to turn around to scan the whole area
again. In small rooms this problem not exist, but larger
spaces and especially long closed paths will most
likely cause difficulties.

When using TurtleBot equipped with Kinect- or
Xtion Pro-like sensor, the following circumstances are
good to notice:

– The velocity should be moderate; experiments
showed that suitable rotational speed is 1.0

rad/s and translational 0.2 m/s

– Robot must have measuring data related to
distance all the time when it is moving forward.
This can be done by driving the robot
slantingly one after another wall

– In corners the best way is to stop the robot

about a 1.0 meters distance from the corner

and turn the robot 360 degrees so that sensor
data is available from both walls at the same
time

One worthwhile option for accurate mapping is floor
plan manipulation, especially in larger operating areas.
Manipulation of the floor plan, like adding new walls or
clearing them from map, is easily editable by using
image manipulation program. In particular,
environments where moving obstacles exists, e.g.
patient beds or chairs in hospital’s corridor, the floor
plan manipulation is very viable option to consider. In
that way the robot treats all obstacles as a dynamic
obstacles inserting them and clearing them from
costmap always when the situation in environment
changes during the mapping procedure.

Navigation goes to its purpose when there is
enough room around the robot. TurtleBot can calculate
the alternative route if the first one is obstructed.
Avoiding dynamical obstacles coming to the robot’s
way come off fine as far as sensor data is available
and the distance can be measured. If an obstacle
appears inside the minimum distance range, the robot
is usually in difficulties.

Very challenging situation is also at dynamical
obstacles, which have already left from the area and
are inserted on map located nearby the robot.
Because the robot localize itself constantly when
measuring the environment, also its calculated
probable location will fluctuate a bit. When the
calculated location is just on the inserted point on map,
the robot will not recover from this situation and user
have to physically step in to start the ROS master
again.

For clearing the dynamical obstacles from costmap
depend on significantly the range of sensor. If the
sensor range is not enough for making observations

from behind the trace left by the obstacle, the trace
cannot be cleared.

As mentioned earlier, the floor plan manipulation is
a worthwhile option. The robot will not do path
planning in such area, which is separated from other
area. This is useful method when the operating area
delimitation is designed. The virtual wall can also be
used for affecting to the robot’s path and diverting it to
go via a different path. In our experiment, this benefit
was utilized by adding a virtual wall inside the
response distance of an automatic sliding door sensor
to get it opened when the robot approaches the door.

Both navigating and sensors performance are
limiting factors. In OpenCRP ecosystem, the robot can
be controlled safely in environment where it cannot
end up to dynamically narrow passed places. In
practice, this means that, for instance in congested
corridors, the navigation is uncertain.

ACKNOWLEDGMENT

The authors would like to thank Tampere University
of Technology (TUT) Pori Department staff. This work
was supported by the European Regional
Development Fund (ERDF).

REFERENCES

[1] Reid, R.; Cann, A.; Meiklejohn, C.; Poli, L.;

Boeing, A., Braunl, T. (2013). Co-operative multi

robot navigation, exploration, mapping and object

detection with ROS. In: IEEE Intelligent Vehicles

Symposium (IV), June 23-26, 2013, pp. 1083-

1088.

[2] Janssen, R.; van de Molengraft, R.; Bruyninckx,

H.; Steinbuch, M. (2016). Cloud based

centralized task control for human domain multi-

robot operations. Intelligent Service Robotics,

9(1): 63-77.

[3] Jaiem, L.; Druon, S.; Lapierre, L.; Crestani, D.

(2016). A Step Toward Mobile Robots Autonomy:

Energy Estimation Models. Springer Lecture

Notes in Artificial Intelligence, June 21-July 1,

2016, pp. 177-188.

[4] Arumugam, R.; Enti, V. R.; Bingbing, L.; Xiaojun,

W.; Baskaran, K.; Kong, F. F.; Senthil K. A.;

Meng, K. D.; Kit, G. W. (2010). DAvinCi: A cloud

computing framework for service robots. In: IEEE

2010 International Conference on Robotics and

Automation (ICRA), May 3-8, 2010, pp. 3084-

3089.

[5] Hunziker, D.; Gajamohan, M.; Waibel, M.;

D’Andrea, R. (2013). Rapyuta: The roboearth

cloud engine. In: IEEE 2013 International

Conference on Robotics and Automation (ICRA),

May 6-10, 2013, pp. 438-444.

[6] Martinez, A.; Fernández, E. (2013). Learning

ROS for robotics programming. Packt Publishing

Ltd., UK.

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 5 Issue 10, October - 2018

www.jmest.org

JMESTN42352708 8918

[7] ROS.org, Parameter Server, (2013). [Online].

Available:

http://wiki.ros.org/Parameter%20Server

[Accessed: 2 September 2018].

[8] O’Kane, J. M.; Kane, J. M. O. A gentle

introduction to ROS. O’Kane, 2013.

[9] Ingy döt Net; Ben-Kiki, O.; Evans, C. YAML Ain’t

Markup Language (YAMLTM) Version 1.2.

[Online]. Available:

http://yaml.org/spec/1.2/spec.html [Accessed:

Accessed: 2 September 2018].

[10] Conley, K. "rosparam", (2014). [Online].

Available: http://wiki.ros.org/rosparam [Accessed:

2 September 2018].

[11] Murphy, K. P. (1999). Bayesian Map Learning in

Dynamic Environments. In NIPS, November

1999, pp. 1015-1021.

[12] Grisetti, G.; Stachniss, C.; Burgard, W.

OpenSLAM.org. [Online]. Available:

http://openslam.org/gmapping.html. [Accessed:

22 September 2017].

[13] Kobuki Turtlebot II. User’s Manual, Robotnik

Automation, S.L.L., Indigo v1.

[14] Zaman, S.; Slany, W.; Steinbauer, G. (2011).

ROS-based mapping, localization and

autonomous navigation using a Pioneer 3-DX

robot and their relevant issues. In: IEEE 2011

Saudi International Electronics, Communications

and Photonics Conference (SIECPC), April 2011,

pp. 1-5.

[15] Oliver, A.; Kang, S.; Wünsche, B. C.; MacDonald,

B. (2012). Using the Kinect as a navigation

sensor for mobile robotics. In: ACM Proceedings

of the 27th Conference on Image and Vision

Computing New Zealand, November 2012, pp.

509-514.

[16] Li, R.; Oskoei, M. A.; McDonald-Maier, K. D.; Hu,

H. (2013). ROS based multi-sensor navigation of

intelligent wheelchair. In: IEEE 2013 Fourth

International Conference on Emerging Security

Technologies (EST), September 2013, pp. 83-88.

[17] ROS.org, tf, (2016). [Online]. Available:

http://wiki.ros.org/tf [Accessed: 26 September

2018].

[18] Gerkey, B. Gmapping (2015), Available:

http://wiki.ros.org/gmapping [Accessed: 26

September 2018].

[19] Microsoft, "Coordinate Spaces", (2016). [Online].

Available: https://msdn.microsoft.com/en-

us/library/hh973078.aspx#Depth_Ranges

[Accessed: 7 September 2018].

[20] Andersen, M. R.; Jensen, T.; Lisouski, P.;

Mortensen, A. K.; Hansen, M. K.; Gregersen, T.;

Ahrendt, P. (2012). Kinect depth sensor

evaluation for computer vision applications.

Technical Report Electronics and Computer

Engineering, 1(6).

[21] ASUSTeK Computer Inc., "Xtion PRO LIVE".

[Online]. Available: http://www.asus.com/3D-

Sensor/Xtion_PRO_LIVE/specifications

[Accessed: 26 September 2018].

[22] Robert Bosch GmbH, "Bosch PLR 15 Digital

Laser Measure". [Online]. Available:

http://www.bosch-plr15.com/gb/en/technical-

data.html [Accessed: 26 September 2018].

[23] Gerkey, B. gmapping: slam_gmapping.cpp

Source File. [Online]. Available:

http://docs.ros.org/indigo/api/gmapping/html/slam

_gmapping_8cpp_source.html [Accessed: 26

September 2018].

[24] Gimp.org, GIMP-GNU Image Manipulation

Program, (2016). [Online]. Available:

https://www.gimp.org [Accessed: 26 September

2018].

[25] ROS.org, navigation/Tutorials/RobotSetup-ROS

Wiki, (2015). [Online]. Available:

http://wiki.ros.org/navigation/Tutorials/RobotSetu

p#Costmap_Configuration_.28local_costmap.29_

.26_.28global_costmap.29. [Accessed: 26

September 2018].

[26] Marder-Eppstein, E.; Lu, D. V.; Hershberger, D.

"costmap_2d - ROS Wiki", (2015). [Online].

Available: http://wiki.ros.org/costmap_2d.

[Accessed: 26 September 2018].

