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Abstract—This paper is concerned with an SIR 
epidemic model with time delay and two different 
general nonlinear incidence rates. Existence and 
uniqueness of the global positive solution, 
extinction and persistence in mean of the 
epidemic are established. Furthermore, We obtain 
the threshold between persistence in the mean 
and extinction of the stochastic system by 
applying the Itˆo formula and comparison 
theorem. Compare with the corresponding 
deterministic system, The threshold of white noise 
interference is smaller than the basic reproduction 
number of deterministic system. Finally, 
numerical simulations shows that time delay has 
an important impact on the extinction and 
persistence of the epidemic. 
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I. INTRODUCTION 

Infectious disease is an important way to carry out 
theoretical quantitative research on infectious diseases 
because of its infectiousness, which seriously 
endangers people’s health and life, causing 
immeasurable loss to human survival and national 
economy. Therefore, the study of infectious diseases 
has always been one of the objects of concern in the 
community, the control of infectious diseases has 
become an important topic in epidemiology. Many 
scholars have established the corresponding 
mathematical models by using the methodology of 
infectious diseases. One of the important mathematical 
models is the partition model, which is according to the 
disease status of the individual classification. Based on 
different transmission methods, Kermack and 
McKendrick are introduced into SIS and SIR model [1–
3]. Since then, a number of other relevant models have 
been proposed to reveal the process of disease 
diffusion and to provide some relevant control 
strategies[4,5]. 

The incidence of diseases plays an important role 
in the infectious disease model[6–8,12,13].More and 
more scholars have studied nonlinear incidence which 
it can more accurately reveal the transmission 
mechanism of infectious diseases, the nonlinear 

incidence rates 
           

        
 and 

           

       
have been 

adopted in[7,12],respectively. On the other hand, time 
delay plays an important role in the spread of 

infectious diseases, which can be used to describe the 
changes of individuals in infectious diseases in 
different periods. Therefore, many models of infectious 
diseases by using differential equation of nonlinear 
incidence rate and time delay of the two, so it can 
make the model better reflect the propagation of 
diseases, more realistic, so as to prevent and control 
diseases and provide targeted measures [9–11]. 

However, in the natural environment, the infectious 
disease model is always more or less affected by 
environmental noise [6,14–18]. Therefore, we consider 
the interference of environmental noise to the 
infectious disease model in this paper, and establish a 
stochastic model to predict the system dynamic 
behavior. 

In this paper, we propose a new stochastic 
differential equation model with time delay and two 
different nonlinear rates, and prove the existence and 
uniqueness of the global solution, extinction and 
persistence in mean. 

II. MODEL ESTABLISHMENT AND THEORETICAL 

ANALYSIS 

In this paper, We propose a stochastic SIR model 
with two different nonlinear incidence rates and time 
delay. We assume that the contact rates in the model 
are disturbed and the interference can be described as 

white noise:           ̇           Where      
(           )  is the standard Brownian defined in a 

complete probability space and           is noise 
intensity. Thus, we establish SIR model in stochastic 
differential equations: 
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Where   is the total input population size,      
stands for the number of the individual susceptible to 
the disease,       and       represents the total 

population of infectives infected with virus    and    at 
time   ,respectively.     denotes the people who is 
immune to diseases.   is the natural death rate of 

population, 〈 〉  is the average degree.     and     are 
the death rate due to diseases,   and   are the 

immunization rate of    and   ,    and    are the 
contact rates, respectively.           is the length of 

immunity period. 
           

        
 and 

           

       
 represents the 

different types saturated incidence rates, where    

and    are the half-saturation constants. 

Throughout this paper, we let          be a 
complete probability space with a filtration         
satisfying the usual conditions which are increasing 

and right continuous while    contains all        
sets. In addition,              is the standard 
Brownian motions defined on the complete probability 
space and   

                     

A. Existence and uniqueness of the global 
positive solution  

Theorem 1. For any initial solution                 , 
there exists a unique positive solution                    
of system     on    , and the solution will remain in 

  
  with probability one for all    . 

Proof First we set        (  is an empty set). Since 
the coefficients of system     satisfy the local Lipschitz 
conditions, then for any initial 

value                       
 , there exists a unique 

solution on          , where     is the explosion time. 
In order to show the solution is global,we only need to 

prove      almost surely(a.s.).To this end, let      
be enough large so that            and        all lie 
within the interval      ⁄     . For every integer      
,we define the stopping time 

                        ⁄                 ⁄      
      

Clearly,     is increasing as    . let    
        ,whence       a.s. If      a.s. is true, 

then     a.s. and                      
  a.s. for all 

   . If not, there exists a pair of constants     and 

        such that 
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where   is a positive constant. 

By applying the Itˆo formula we can get 
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Then we obtain 
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Integrating both sides from   to      and taking 
expectations yields 

             (                )     

  is a constant. We set            for any 

positive     ,then        , and there is at least 
one of                             equals   or   ⁄  for 
every     . Thus,                              is no 
less than either                ⁄        . 

Therefore, we get 

                                                 
              ⁄         

Then, we obtain 

              (                )    

      
 (                         ) 

               ⁄         

Where    
 is the indicator function of   , then let 

   , we can get 

    (                )    

Which is a contradiction. Hence, we get    
 .The proof is completed. 

B. Extinction 

Lemma 1 Let                          be a solution of 
system     and                           

 ,then 

       

∫
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Proof The proof is similar to that in Chang etal.[19] 
and hence is omitted. 

For the sake of simplicity, we define  〈    〉  
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Where   
         is the thresholds of the 

stochastic system    . 

Theorem 2  Let                         be the solution 

of system    with initial value                        
  

 . Then 
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Proof     Using Itˆo formula to system    , we get 
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know that        
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Since    
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,taking the limit superior of 

both sides yields 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 5 Issue 10, October - 2018 

www.jmest.org 

JMESTN42352526 8702 

   
    

   
       

 
  [          

√   

   
]         

Similarly, we obtain 
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Since    
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,then taking the limit superior of 

both sides leads to 
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Theorem 2 shows that when    
√   

          
       

the two infectious diseases of system     die out 
almost surely, that is to say, the large white noise 
stochastic disturbance can cause the two epidemics to 
go to extinct. 

This completes the proof. 

Proof     For both sides of    ,integrating from   to   
and dividing by   yields  
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C. Persistence in mean 

Theorem 3  Let                     be a solution of 

system     and                     
 , 
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Let    , the above inequality can be written as 
follows 

       〈     〉 

 
 

  
                

     
  〈 〉

 
     

     〈 〉

 
 

         
                   

 
 

           

 
 

 

{
 
 
 
 

 
 
 
 

 

  
                

     
  〈 〉

 
     

     〈 〉

 

    
         

 
 

           

 
                             

 

  
                

     
  〈 〉

 
     

     〈 〉

 

    
                   

 
 

           

 
        

 

Where    
  〈 〉(       (       ))

 
            

     =∫             
 

 
. 

   
    

   〈     〉  
           

 
    

          

    Similarly, we have 

〈    〉  
                 

     

 
〈     〉 

                 
               

     

 
  

By Itˆo formula, we get 

         (
  〈 〉    

   
 
 

 
  

      〈 〉 

 (   
 
 
)
 )   

                                  
  〈 〉    

       
       

Make integral from   to   and divide the two sides 
by   yields 

    
               

 
 

 
  〈 〉 

     
 

  
   〈 〉 

 (   
 
 
)

            
     〈 〉

 
 

     
  〈 〉    

     
 

  〈 〉                
     

     
  

     
  〈 〉               

     

     
〈     〉 

Let    , then 

    〈     〉 

 
 

  
              

     
     〈 〉

 
 

     
  〈 〉    

     
  

               

 
 

 

{
 
 
 
 

 
 
 
 

 

  
              

     
     〈 〉

 
 

  〈 〉    

     

  
       

 
                                                              

 

  
              

     
     〈 〉

 
 

  〈 〉    

     

  
               

 
                                                  

 

Where 

    
  〈 〉(                  )

     
  

       ∫              
 

 

 

Therefore, 

   
    

   〈     〉  
         

  

    
          

    Define                              

          

 [  〈 〉     (        )          
  

   〈 〉 

    
 

]    

       〈 〉            
  〈 〉    

   
 
 

 
  

      〈 〉 

 (   
 
 
)

  

              
  〈 〉    

       
       

Make integral from   to   and divide the two sides 

by   leads to 

    
    

 
 

    

 
 

   〈 〉     (        )          
  

   〈 〉 

    
 

 

     
     〈 〉

 
 

     〈 〉

 
 

  〈 〉    

 
 

  〈 〉    

     
 



Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 5 Issue 10, October - 2018 

www.jmest.org 

JMESTN42352526 8704 

     
  〈 〉〈    〉

   
 
 

           

     
  

   〈 〉 

         
 

  〈 〉    

       
       

 
   〈 〉

 
 

   〈 〉

     
 

  
   〈 〉 

    
 

 
  

   〈 〉 

         
 

                           
     〈 〉

 
 

    
     〈 〉

 
      〈     〉  〈     〉  

    
  〈 〉    

 
 

  〈 〉    

     
 

The inequality can be rewritten as 

〈     〉  〈     〉 

 
 

    
 
   〈 〉

 
 

   〈 〉

     
 

  
   〈 〉 

    
 

 
  

   〈 〉 

         
 

     
     〈 〉

 
 (

  〈 〉

 
 

  〈 〉

     
)      

    

 
 

    

 
 

                           
     〈 〉

 
 

Taking the inferior limit of both sides yields 
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This completes the proof of Theorem 3. 

III. NUMERICAL SIMULATION 

In this section, we discuss the density changes of  

     ,       and      are in different immune time in the 
homogeneous network through numerical simulation. 
In order to carry out the simulation model better, we 
construct a homogeneous network with a population 

number of      . 

Choose the parameters in system (1) as 

follows:                              
                

                                    

 
Fig. 1. The density of       under different    

Figure 1 shows the changes of        under different 
  . From the figure we can see that the smaller of   , 
the shorter the time for       to reach its peak, and the 
smaller of   , the greater the peak of      . After       
reaches its peak, it decreases gradually and finally 
tends to a stable state. 

Figure 2 discusses the density of      under 
different   . By observing, we can find that the larger 
the   , the slower of       , the smaller the peak. then 
the gradual stability after the peak of       . From this 
we can conclude that        is negatively correlated 
with    before reaching the peak.  

 
Fig. 2. The density of      under different    

 
Fig. 3. The density of     under different    and    
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Figure 3 describes the changes of      with 
different     and   . From the graph, we can see: with 
the increase of    and   ,      also increases, and then 
reaches the peak value. At last, it tends to be stable. In 
addition, we find that when      reaches the stable 
state, the larger of     and   , the greater of      in the 
stable state. 

IV. CONCLUSION 

In this paper, firstly, we propose a new stochastic 
differential equation model with time delay and two 
different nonlinear rates, then we complete the 
theoretical proof and numerical simulation. Finally, we 
draw the following conclusions:. 

1) under the great noise interference, the two 

diseases of System    eventually tend to become 

extinct. 

2) Before reaching the peak, the individual density 

of the two diseases was negatively correlated with the 

length of the immune period. After reaching the peak, 

the density of       gradually descends and tends to 

be stable, and the density of       gradually tends to 

be stable after reaching the peak. So in order to better 

control the disease, we should appropriately increase 

the length of the immune period. 

3)  The density of the immune individual is 

proportional to the immune time, which shows that the 

appropriate increase of the immune time can 

effectively control the disease. 
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