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Abstract—In this paper, we study the eigentime 

identities on a family of treelike networks, which 

quantifies as the sum of reciprocals of all nonzero 

normalized Laplacian eigenvalues. Firstly, we 

calculate the constant term and monomial 

coefficient of characteristic polynomial. By using 

the Vieta theorem, we then obtain the sum of 

reciprocals of all nonzero eigenvalues of 

normalized Laplacian matrix. Finally, we obtain 

the scalings of the eigentime identity on a family 

of weighted treelike networks. The larger the size, 

the lower the efficiency for a family of treelike 

networks. 
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I.  INTRODUCTION 

In the past decade, the study of networks 
associated with complex systems has received the 
attentions of researchers from different scientific 
fields[1]. The eigentime identity is a global 
characteristic of the network, which reflects the 
architecture and the efficiency of the whole network. 
Julaiti et al. used the relation between normalized 
Laplacian spectra and eigentime identity to derive the 
explicit solution to the eigentime identity for random 
walks on the Cayley networks[2]. 

In this paper, we use normalized normalized 
Laplacian spectrum to get the eigentime identity on a 
family of treelike networks. We obtain the normalized 
Laplacian spectra by writing the normalized Laplacian 
matrix of the networks. Due to the different structure of 
the network, the form of normalized Laplacian matrix is 
also different. So, using this method to research the 
eigentime identity has great flexibility .Besides, 
normalized Laplacian spectra is related to a lot of the 
performance index of the networks[3, 4], such as 
mixing time, return-to-origin probability, eigentime 
identity[5]. 

The organization of this paper is as follows. In 
next section we introduce the definition of eigentime 
identity. In Section 3, we give the model of a family of 
treelike networks and get the scalings of eigentime 

identity with network size on a family of treelike 
networks. In the last section we draw the conclusions. 

II. EIGENTIME IDENTITY 

In this section, we introduce the concept of the 

eigentime identity. 

 

  Let )(Fij n be mean-first passage time from node 

i to node j in 
nG , which is the expect time for a particle 

starting off from node i to arrive at node j  for the first 

time. Let )(d i n be the degree of node i  and  
nE  be 

the number of edges in .G n The stationary distribution 

for random walks on nG is ，T

N21 )π,...,π,(π π  where

，
n

i
i

2E

(n)d
=π obeying relations  


N

1i i 1π and

T

n

T  π=M π , where
nM be the Markov matrix of 

nG . 

Let 
nH represent the eigentime identity for random 

walks On ，nG   which is defined as the expected time 

for a walker going from a node i to another node j , 

chosen randomly from all nodes accordingly to the 

stationary distribution [6]. That is, 

，



nN

1j

ijjn (n)FπH                                                  (1) 

   

where 
nN is the number of nodes of .G n nH quantifies 

the expected time taken by a particle starting from 

node i to get to a node (target) j randomly chosen 

according the stationary distribution. Since 
nH do not 

rely on the starting node , it can be rewritten as 
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The rightmost expression in above equation 

indicates that the eigentime identity 
nH is actually the 

average trapping time of a special trapping problem, 

which involves a double weighted average: the former 

is over all the source nodes to a given trapping (target) 

node j . The later is the average with respect to the 

first one taken over the stationary distribution. Because 

trapping is a fundamental mechanism for various other 

dynamical processes, 
nH  contains much information 

about trapping and diverse processes taking place on 

complex systems [6]. 

According to previous results [6], let nL be the 

normalized Laplacian matrix of
nG .

nH can be 

expressed in terms of the nonzero eigenvalues of nL  

as 





N

1i i

n
λ

1
H ，                                                       (3)                              

where we assume .0λ1   

In the following, we introduce a family of treelike 

networks inspired by the models in [7, 8, 9, 10]. 

According to their constructions, we will obtain the 

scalings of eigentime identity for a family of reelike 

networks with network size. 

III. Eigentime identity of a family of treelike 

networks 

A. Construction of a family of treelike networks 

Initially ,0n ）（   
0G consists of only a central 

node. To form 
1G , we create 4  nodes and attach 

them to the central node. For any 1n  ,  
nG  is 

obtained from  
1-nG  by performing the following 

operations. For each outermost node of 
1-nG , 4  nodes 

are generated and attached them to the outermost 

node. Let ）（ nnn E,VGG  , ）（ nnn E,VGG  be its 

associated network, with node set )N = |V(|V nnn
and 

edge set 1)-N = |E(|E nnn
. In Fig.1, we schematically 

illustrate the process of the first three iterations. From 

the construction of a family treelike networks, one can 

see that 
nG , is characterized by the parameter n . Let 

）（nN i
denote the number of nodes in 

nG , which are 

given birth to at iteration i . It is easy to check that 

i

i 4N  . The total number of nodes in nG ,
nN , satisfies 

the following relationship, 







n

0i

1n

in .
3

1-4
NN                                              (4)   

 

 

 

 

 

Figure 1: Take a family of treelike 
10 G,G and 2G for 

example. 

B. The characteristic polynomial of the 

normalized Laplacian matrix 

In this subsection, we use the elementary matrix 

operations to reduce the related matrix to lower 

triangle matrix. 

Let
nA and

nD be the adjacency matrix and 

diagonal degree matrix of 
nG . Then, its normalized 

Laplacian matrix is 
nnnn AD-IL 1- . The 

nN nodes can 

be divided into 1n   levels: the th0 level contains only 

one node (i.e., the central node) labeled by 1; the ith
）（ ni1   level has 

1-iii N -N = (n)N nodes, which are 

labeled sequentially by .N, · · · ,2N,1N i1-i1-i   

We now address the eigenvalue problem of 
nL  . 

By definition, all eigenvalues of  
nL  are actually the 

roots of characteristic equation 0. = )λI det(L nn  Let 

.λI LX nnn  . Then  )det(Xn
 is a determinant of order 

3

1-4 1n

. Next we apply the row operations of 

determinant to transform  )det(Xn
 into a lower triangle 

determinant. 
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Now, we calculate the  )det(Xn
 of 

nG , let 
kR

represent the kth  row of 
nX  and its variants after 

being performed row operations. In order to have a 

lower triangle matrix, the row operations are performed 

as follows. 

 First, we keep rows ）（ nn NkN  1R 1k

unchanged and define their diagonal entries as

λ1)λ(1 f as in the original matrix. 

 For i  from 1  to )N≤k  ≤ 1 + (Nk  i-n1-i-n
n , we 

repeat the following two operations: (i) For each, 

we multiply
kR by )λ(if ; m(ii) For each 

)N≤k  ≤ 1 + (Nk  i-n1-i-n
, we add the sum of 

4+4k3+4k+4k1+4k R , · · · ,R 2,R ,R times
5

1
to

kR  . 

Assuming that 0 = N 1-
, after performing the two 

operations, for n ≤ i , the diagonal entry of 

)N ≤k  ≤ 1 +(N R i-n 1-i-nk
 becomes ）（λf 1i

, while the 

other entries of 
kR  on the right-hand side of the 

diagonal entry ）（λf 1i
are zeros. Finally, we add 

2R  times 
5

1 to 
1R . 

The above row operations reduce matrix 
nX  to 

lower triangle matrix 
nY In the similar way, the diagonal 

elements of
nY are as follows: )λ(

25

1
)λ( 11   nn ff for the 

first row, )1)(λ( nif i  for those rows starting from

1 + N i-n
 to 

1 + i-nN . It follows above row operations that 

the functions  λ)(if obey the following recursive 

relation: 

 























 n.i 3    ,)λ(
25

4
-λ)-(1λ)f-(1

2i                             ,
5

4
-λ)-(1

1i                                        λ,-1

)λ(

21-i

2

i

i

f

f ，

，

 (5) 

According to the properties of determinants, we 

have )
)D(λ

det()det( nY
Xn  , where )λ(D is the overall 

factor. From the above procedure, we can obtain 









1

1

4 1

)]λ([)λ()λ(
n

i

in

in

ffD .                                (6) 

Thus, we have the characteristic polynomial of nL , 

.
)λ(

)]λ([)]λ(
25

1
)λ([)]λ([

)λ(

)]λ([)]λ(
25

1
)λ([)]λ([

)det(

1

1

43
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1
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D
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n

i

innn

n

in
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   (7) 

Since the eigenvalues of nL are the roots of 0)det( nX

, the problem of computing eigenvalues of Ln becomes 

to find the roots of functions )1)(λ( nifi   and 

)λ(
25

1
)λ( 11   nn ff . From Eq. (2), it is obvious that 

)λ(if is a polynomial of λ with degree i . )λ(nf

generates n eigenvalues and )λ(
25

1
)λ( 11   nn ff  

generates 1 +n eigenvalues. Every 

1)-n , . . . 2, 1, = (i 0)λ( if  provides i different roots, each 

of which is an eigenvalue of Ln having a multiplicity
in43 . Thus the total number of eigenvalues is 





 




1-n

1i

1

,
3

14
431) +(n  +3n n

n
in Ni             (8) 

implying that all eigenvalues of
nL are produced by

n) , . . . 2, 1, = (i 0)λ( if  and .0)λ(
25

1
)λ( 11   nn ff  

C. The eigentime identity on a family of treelike 

networks 

It is difficult to obtain eigentime identity on a family 

of treelike networks straightforwardly from the 

eigenvalues of its normalized Laplacian. For this 

networks with recursive structures, we compute 

the analytical eigentime identity without 

explicitlycomputing these eigenvalues.  

For each n), ≤ i ≤ (1)λ(if which is an i  degree 

polynomial, we can rewrite it as 

 . · · · + λ γ+ λβ + α)λ( 2

iiiif                                (9) 

Thus, equation 0)λ( if  has i  nonzero roots, 

labeled by .λ, · · ·λλ
(i)

i

(i)

2

(i)

1 ，，  According to Vieta’s 

formulas, we have 
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.
α

β

λ

1

1 i

i

)(

j





i

j
i

                                                     (10) 

Combaring Eqs. (2) and (3), for n, , · · · 3, = i  we obtain 

，2-i1-ii α
25

4
-α = α                                                  (11) 

，2-i1-i1-ii β
25

4
-α-β = β                                           (12) 

.γ
25

4
-β- γ= γ 2-i1-i1-ii

                                            (13) 

Considering the initial conditions 

1.γ2-β
5

1
= α 0, =  γ-1,= β 1, = α 222111  ，， For 

n, , · · · 2, ,1i , Eqs. (4)-(6) are easily solved to yield 

 

,5 α i-1

i                                                                (14) 

],
9

42

9

38

3

)2(5
[5β

1
1

i


 





i

i i
                         (15) 

and 

 

404)32[(
527

1
γ 1

2i 


 



i

i
i   

]
2

)2)(3(15
13

3

41536 3 





 ii
i

i

  (16) 

Therefore, for any ni 1  

.
9

8

3

5

9

2

α

β

λ

1

1

32

i

i

)(

j




 ii

j

i
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On the other hand, we an see thatt only zero 

eigenvalue of
nL is generated by .0)λ(

25

1
)λ( 11   nn ff      

]. · · · +)γ
25

1
-(γ)β

25

1
-λ[(β)λ(

25

1
)λ( 1n1n1n1n11   nn ff  (18)             

Notice that the n nonzero roots, ,λ, . . ,.λ,λ
1n

n

2n

1

1n

1

）（）（）（   

satisfy 

.

β
25

1
-β

γ
25

1
-γ

λ

1

1
1n1n

1n1n

)1(

j











n

j
n

                              (19) 

 

We calculate molecule member element 

232

11n1n 432)12[(
554

1
γ

25

1
-γ 

 


 nn

n
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].70362)12( 12   nn n
  (20) 

We calculate denominator 

.
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43030
β

25

1
-β 1n1n n
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Then 
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From Eqs. (7) and (8), we can obtain that 

.4n~
3

21-n
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For very large networks(i.e., nN ），the leading 

term of 
nH  obeys 
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.lnN~H n nn N                                                 (23) 

IV. conclusions 

  In this paper, we calculated the eigentime identity a 

famil of treelike networks and obtained the exact 

scalings of eigentime identity with network size of the 

polymer networks. For a family of treelike treelike 

networks, we showed that all their eigenvalues can be 

obtained by computing the roots of several small-

degree polynomials defined recursively. We got the 

scalings of eigentime identity for a family of treelike 

networks with network size 
nN  is 

nNlnNn
. we draw 

the conclusion that the size of a family of treelike 

networks affects the efficiency. The larger the size, the 

lower the efficiency for a family of treelike networks. 
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