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Abstract—In this paper, we mainly investigated
the two-delayed SEIR epidemiological model with
general nonlinear incidence rate and saturated
recovery rate. Using the basic reproduction
number and the Liapunov function, we discussed
the local and global asymptotic stability of the
disease-free equilibrium. Further, by different
values of the redefined basic reproduction
numbers,we studied the local asymptotic stability
and Hopf bifurcation at the endemic equilibrium in
six different cases. Besides, using the center
manifold and normal form theorem, we derived an
explicit algorithm that determines the direction of
Hopf bifurcation and the stability of the bifurcating
periodic solutions. Ultimately, some numerical
simulations are performed to confirm the
correctness of the theoretical analysis above.
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I.  INTRODUCTION

In epidemiology, mathematical models have been
proved significant in better understanding of
transmissible nature and disease control for more than
a century. In 1760, Daniel Bernoulli formulated and
solved the first differential equation evaluating the
effectiveness of smallpox virus. Follow Kermack and
McKendrick [1] built up a system of ordinary differential
equations to study disease transmission. And then,
Anderson and May [2] summarized the basis and
evolution of communicable diseases. What's more, in
recent years, a tremendous number of the SIS, SIR,
SEl, SEIR, SEIS, SIRS, SEIRS models have been
established, analyzed and applied to a variety of
infectious diseases[3-14].

When exploring the character of the disease
propagation , Many mathematical researchers found
causative agents would incubate in their host for a
period of time before it is infected, this phenomenon is

time delay. Whereupon, for practical consideration, it is
suggested that time delay can be incorporated in
related models, such as predator-prey models [15,16],
critical care model [17], bio-economic phytoplankton
zoo-plankton model [18] and epidemic models [6,8-
10,12,19,20] extensively. Based on those work above,
in this paper, we are absorbed in epidemic models with
necessary delay.

In epidemic models, an incidence rate attracted
considerable attention in verifying that the model can
give better kinetic properties. A bilinear incidence rate
[21] and a standard incidence rate [22] were usually
used in some epidemic models. Specially, The Holling
type Il and Holling type lll functions were introduced
into some predator-prey models by Lianwang Deng [16]
and Xuedi Wang [15]. Furthermore, Jiang and Ma [12]
proposed a SEIR system with general nonlinear
incidence rate, which is a class of nonlinear incidence
rate. Jiang and Ma gave the detailed dynamic behavior,
which showed that the applicability of the general
nonlinear incidence rate is more wider. So it's
meaningful to corporate with the general nonlinear
incidence rate in the study of epidemic models.

Jingan Cui [23] found an interesting dynamical
behavior, backward bifurcation, by proposing a SIS
epidemic model with saturation
recoverycl(t)[b+ I(t)] from infected individuals, which

made a better understanding of the effect of limited
resources for treatment of the infected on the
emergency disease control. Three years later, C and Z
[11] proposed a SEIR epidemic model with saturated
recovery rate, by compound matrices and geometric
approaches, they further studied the existence of bi-
stability by a backward bifurcation and global
dynamical properties.

In the present paper, we will introduce three key
factors (two delays, a general incidence rate and a
saturate recovery rate) into a SEIR epidemic model,
investigating the local and global stability and Hopf
bifurcations. The detail arrangement is as follows :
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In section 2, the author investigated the local and
the global stability of the disease-free equilibrium by
the defined basic reproduction number. Besides, in
section 3, the locally asymptotic stability of the
endemic equilibrium and Hopf bifurcation were
certified. What's more, the direction of Hopf
bifurcations and the stability of the bifurcating periodic
solutions were studied in section 4. In addition, in
section 5, some numerical simulations were carried out
to support the theoretical results, and some
conclusions were obtained in the last section.

Il. LocAL AND GLOBAL ASYMPTOTIC STABILITY OF
THE DISEASE-FREE EQUILIBRIUM

Based on the former work made by Zhou [11] and
Jiang [12], in this paper, the following two delayed
SEIR epidemic model with general nonlinear
incidence rate and saturated recovery rate will be
discussed.

S=u-AAM®)SH)+re “ 1(t-7,)—d,S(t)

E=Af(1®)S(t)-pe™ f(I(t—7,)S(t-
z,)—d,E(t)

[ = fe® f(1(t-2,)S(t—2,)—(d, +d +) @Y
I(t)—cl®)[b+1)]"

R=A®)+cl®)b+1O)]" - " I(t-17)-
d,R(t)

where y represents the recruitment rate of the

susceptible population by birth or migration, pstands

for the infect rate from the susceptible class to the
infected class, y is the recovery rate,

d,(i=1,23,4) denote the natural death rates of the
suspected, exposed, infected and recovered
population, respectively, whered, <min{d,,d,,d,}, dis
the extra disease-related death rate,
S (1(t)S(t) denotes the general nonlinear incidence
rate, e |(t—r,)indicates the individuals who survived

from natural death in a recovery pool before becoming
susceptible again. Further, 7z, , 7, stands for the

immunity period and the latent period respectively.
cl(t)[b+ I(t)]' denotes the saturated recovery rate from

the infected compartment with hospital treatments,
hereb gives the infected size at which is 502 saturation
(h(b)y=c¢/2), and C denotes the maximum recovery per
unite of time. And u, g, y, d,, d,, d,, d,, c, b, dare
positive, 7, , 1, are non-negative and the
function f (1)satisfies the following conditions :

(H) =0, lim f(I)=c<eo , f(1)>0 ,

f"(I1)<0forl >0.

In this section, we will prove the local and the
global stability of the disease-free equilibrium by the
basic reproduction number. For the dynamical
properties of system (2.2) and system (2.1) are

parallel, we considering the following system :
S=u—AA®)SH+r " 1(t-7,)-d,S(t)
I =g f(I(t-1,)S(t—7,)~(d; +d +y) (22)

I(t)—cl(t)[b+1(t)]"

The disease-free equilibrium of system (2.2)
is E,(S,,0) , where s =,d" . Definite the basic
reproduction number [24] as

Ry, = Aud,'e = /(0)[d, +d +y+cb '],
we can conclude theorem 2.1 as follows :

Theorem 2.1. Consider system (2.2) . if the basic
reproduction number R, <1and z, =0, the disease-

free equilibrium Eis locally asymptotically stable; on

the contrary, the disease-free equilibrium is unstable,
ifR,, >1whenz, >0.

Proof. Linearizing (2.2) at the disease-free
equilibrium :

S =—d,S(t)+(—Bud; £'(0)+ ™)1 (t)
I =(fud; e "= £/(0)—(d, +d +y+cb™ (2.3)
D)

Then, the eigenvalues of (2.3) can be worked out
respectively as follows :

A=—d,, 4 =pud'e =2 £/(0)—(d, +d + y+cb ™).
Since the eigenvalue 4 =—d, <0, we investigate the
other eigenvalue.

Let f (1) =A—fd,'e == f'(0)+(d, +d +y+cb™). W
henz, =0, we cangetthat 1, =(d, +d+y+cb™ (R, —
1) <0ifR,, <1. Hence, the disease-free equilibrium
E, is locally asymptotically stable. when z,>0 , it
has f(0)=(d,+d+y+cb™") (1- R,)<0 if R,>1, in
addition, lim f, (1) =+, SO the function f (1)=0has

A+
at least a positive root, and the disease-free
equilibrium is unstable if R, >1. This completes the

proof.
Furthermore, the globally asymptotic stability of
E, can be chalked up by setting up a Lyapunov

function in the following.

Theorem 2.2. If(H,,) h, <0,h, >0, (H,,) u#+
T (t—7,) < ASIF(0) (H,,) fo " S(t—17,)
It—7z,)f'(I(t—7,))<(d,+d + )l —cl (b+1)"'where
h =y e @7 — a0, by = fF(0)d;

e _(d, +d +y+cb™").are satisfied, the disease-
free equilibrium E of subsystem (2.2) is globally
asymptotically stable whenR, <1.

Proof. Considering system (2.2) inQ},,

where Q) ={(S,1)eC|0<S+1<S,}. Define the
Lyapunov function as follows :
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VS, D= (hzs _hl I )2[hzdl(h2 —dl)]fl - 82(h2
—d)™.

In fact, if A =0, it can be verified thatV(S,,0) =
h,S2[d,(h, — d )" =52 (h,—d)" >0 when R, <1. On
the contrary, if A0 , we can obtain
thatV(S,,0)=— S2(d,—h,)"'(h,d," = 1) >0whenh, =d,
and lim V (S, I)=+c0. Thus, V(S,1)> 0is satisfied .

|| —>+00

DifferentiatingV (S, I ) as the following formulation

V(S, |)= [hzdl(hz - d1)]_1[2h2(h2 - hl)S[,u+ ﬂ’eidm
I(t—7,)—d,S—pgf(1)S+2hh,I[ASIf'(0)
— = (t—17,)]+2hh,S[(d, +d, +d
+)l+cl(b+ 1) = e =S(t—7,)f(l
(t=7,))]+ 2071 [fe S (t—7,)I(t-7,)
f'(0)—(d, +d; +d + )l —cl(b+1)"]].
For that(H,,), (H,,)and(H,,)are contented, we can
get V(s,1)<0 Consequently, E, is globally

asymptotically stable. This completes the proof.
Observed that Ry,<1 is equivalent

to ﬁ < edzrz (d3 +d+ y +%)[lud1—1 f ,(0)]71 _ ﬂ* , from

theorem 2.2, it’s not difficult to summarize that the
disease will be eradicated if the infection rate /3 is less
than some critical value.

I11. THE LOCALLY ASYMPTOTICALLY STABILITY OF THE
ENDEMIC EQUILIBRIUM AND HOPF BIFURCATION
In this section, we devoted to analysis the local
asymptotic stability of the endemic equilibrium of
system (2.2) and the Hopf bifurcations. For system
(2.2), assume the following conditions hold,

(H5,)(d, +£)c+(d; +d +y)[b(d, + £)+d,]

<fe (b,
(Hy,) A, =a-4aa,>0-
then, there exists a
equilibriumE"(S™,17).
where
S =[d,+d+y+cb+1")")1+17)p e,
I" =[-a, ++/a —4a,a,](2a)*-
where
a,=(d, +B)(d, +d +7) - fre e,
a, =(d, + A)[b(d; +d +y)+c]+d,(d;, +
d+7)- e (u+bpr™),
a, =d,[b(d, +d +y) +c]—bupe .
Redefine the basic reproduction number [14] as
Ry, = AF'(11)S"e = [d, +d +y +bc(b +

127"

positive  endemic

Let x(t)=St)-S" , y®=I@t)-1" and sitil
denotes S(t), I(t) respectively. Substituting them into

(2.2), by Taylor expansion,expanding it at the endemic
equilibrium E*(S",17) , then, the standard linearized

differential equations at(x, y) = (0,0) is:

X(t) = —[d, + Bf (17)x(t) + [~ @ —
B8 Ty,

YO = A (1) X ~[(d, +d +
7)+bc(b + I*)‘2 —ﬂe_(d”l)’z £ *)
S"Iy(0).

(3.1
the corresponding characteristic equation of (3.1) is

2 A1
A +bA+b,+(MA+m,)e ™ +
nle*i(fﬁ‘fl) — O

3.2
where

b, =[d, + A (1)]+d, +d +y+bcb+17)7,

b, =[d, + Af (17)][d, +d +y +bc(b+17)7],

m, = —Be = f'(1M)S7,

m, =—d,Af'(l ")STe %",

N, = B (17)e 4,

Since system (3.1) has two delays : ¢ andr,,
Therefore, we wusually investigate six cases
Dz, =7,=0; @7,>0, 7,=0; B 7,=0, 7,>0;
@ zr,=7,=2>0; ) 7,50, r,€[0,7,,) and 7, =7, ;
(6)z,€[0,7,,): 7, >0andz, = ,.

Firstly, we consider case (1) 7, =7,=0. The
basic reproduction number can be redefined
as  RY=p'(1MS[d, +d+y+bcb+I17)?*]"

correspondingly,the transcendental equation of (3.2)
can be reproduced as

A +bA+b,=0
where

b11:b1+m1’b12 :b2+m2 +n,

If RY <1 , by the Routh-Hurwitz theorem,
fora =b, =[d, + g (1")]+[d, +d +y +bc (b+1")J(1-RY)
>0, we are able to sum up theorem 3.1 :

Theorem 3.1. When ¢ =7,=0 , the endemic
equilibrium E” (S7,17) is asymptotically stable ifR® <1.

case (2) : 7,>0, 7,=0. The redefined basic
reproduction is RY(R? =RY) , the characteristic
equation of system (3.1) at (0,0) is

/12 + b21(Tl)A’ + bZZ(Tl) + rnZl(Tl)e_}J1 = 0

(3.3)
where

b, (z,)=b,+m, =[d, + A (I *)]+[d3 +d

+y+bcb+17)?1(1-R2),
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b22(71):b2 +m, :[d1(1_ Ré?)"‘ﬂf(l*)]
[d,+d+y+bc(b+17)7],
m21(T1) = _ﬁﬁ (I Q)eidarl :
Assume that R® <1 is fulfiled for all 7,20 .
Let A=iw(w>0) be a root of equation (3.3),

substituting it into (3.3) and separating the real and
imaginary parts yield that

2
sinwz, = b,,(7) ,COS T, = @ —b,(@) ,
m,,(z,) m,,(z,)

(3.4)
this leads to

g(wzi 7,)= o'+ (:21(7-1)(‘)2 +C,(7,) =0
(3.5)
where

Cou(7) = bzzl(Tl) —2b,,(7,):
Cpol(7y) = b222 (z)— mgl(z—l)'
Letv = »?, and then (3.5) becomes
g(V! T1) =V + CZl(Tl)V + CZZ(TI) =0
(3.6)

Since g(0,7,) =C,(7,) » lim g(v,7,)=+0 » by
discussing the roots of (3.6), we have the following
theorem 3.2 :

Theorem 3.2. If(H,,) A=¢’ —4c,, < oand
C,, > 0hold, the unary quadratic equation of (3.6) has
no positive root; On the contrary,
if(H,,) A=c? —4c,, > Oandc,, <0hold, then equation
(3.6) has positive root.

Assume that Equation g(v, z,) = 0has two positive
real roots denoted byv, (z,) andv,(z,) .

Accordingly, equation g(w?, z,) = Owill also has two
positive real roots, which can be denoted
by a)l(Tl) =4 V1(T1) and @, (Tl) =4V, (Tl) :

Define

| ={r, 20:¢,(r,) <0,c;,(7,) —4c,,(7,) > 0}
and let

2 .

) = iarccos{ (@ —by) I+ i

a)lk b3 wlk
k=12. j=012,--.

Hence, the characteristic equation of (3.3) has pure
imaginary roots + i, on interval | .Define z, | = min {z,
r2yand the related imaginary part is o, . Suppose
that Mz,) = a(r,) +io(z,) is the solution of (3.3)
atr, = Twsatisfying a=0and g = @y,

Before summing up the Hopf bifurcation, we can
introducing the following lemma 3.1 :

Lemma 3.1. If (H,,)cos @,,7,, +b, sin@,,7,, #0
then (d(Re /1)} ~o - In additon, the sign

dr, ) _
A=iayg

of( d(Re 4) and cosam,r,, + b, sinw,,, IS same.
dr, ).
i=loyy

Proof. In fact, substituting i(r,) into (3.3) and
differentiating it aboutfl, it concludes

) 2 b, 17,
—_— = + 1
dr, be™  be™ 1

(3.7)
Substituting 2 = im,,into (3.7), and separate the real

part :

Re[MJl _ Cosay Ty, + by Sineyr,,
dr, b,
(3.8)

As o J(d®eH)'|  and (dRed))  have the
dr, . dr rions

1

same sign, hence

sign{(d (Re /1))} = sign{Re[d (Re /1))_ }
dr, i, dr,

_ Cos ;75 +by sin @7,

b,

#0.

This completes the proof.

Based on the theorem 3.2 and lemma 3.1, we can
obtained the following theorem 3.3 by the Hopf
bifurcation theorem.

Theorem 3.3. Suppose that (H,,) holds,

When r, =0, wecan summarize that

if (H,,) is satisfied, then the endemic

equilibrium E™ of (3.1) is asymptotically stable
forz, >0;

if the condition of (H,,) is satisfied, then the
endemic equilibrium E of (3.1) is asymptotically stable
fOI’Tl € [01 z-10);

if(H,,)and (H,,) are satisfied, then the endemic

equilibrium E of (3.1) is unstable forz, >z, and goes
with Hopf bifurcation forTl =17,

case (3) : 7,=0,7,>0. The basic reproduction
isRY =R,,, and the proving progress is similar to

case (2), furthermore, we omit it and conclude the
following theorem 3.4 :
Theorem 3.4. When 7, =0 , the endemic

equilibrium E" of (3.1) is asymptotically stable
for 7, €[0,7,,) and unstable for ¢, >z, . In addition,
for 7, =z, , the endemic equilibrium E goes Hopf
bifurcation, where 7,, fepresents the minimum critical
value of time delay ¢, for the occurrence of Hopf
bifurcation whenz, =0.

case (4) :r,=r,=7r>0 . The redefined basic

reproduction number isR(Y = gf'(17)S” e [dy+d+y
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+bc(b+17)?]", the proof procedure follows case (2),

so, here, we omit it.
Theorem 3.5. When r,=1,=7>0, the endemic

equilibrium E" of (3.1) is asymptotically stable
for r€[0,7,) and unstable for T>7, - Further, the

endemic equilibrium E goes Hopf bifurcation
for T=1,, where r, represents the minimum critical
value of time delay ¢, for the appearance of Hopf
bifurcation when r,=7,=7>0.

case (5) : 7,>0, 7,€[0,7,,) and 7, #7,. We can
regard r,as a parameter and rzin its stable interval. It is
easy to see thatRlY =R ,. Let A =iwis the root of

system (3.1), substituting it into (3.1) and separating
the imaginary and real parts, respectively. one can
conceive

e, =&, SiNwr, +€,,Cosar, (3.9)

e, =e,Sinwr, —e,,Coswr,
where

g, =" —b,,e, =mw-n ssinwr,

€, =M, +Nn, CoSwr,,&, =hw-

Reorganized that

" +C, @ +C,, + CwSinwr, + ¢, coswr, =0
(3.10)
where

C,,=b’—m?+2b,,c, =bl—n?,

C;; =2m,Nn,,C,, =-2mn,.

Hypothesize that(H,,) hold, thus, equation (3.10)
has four roots @, , k =1,2,3,4. Define

2 .
A @) + A, + By sin @,

: 1 7, + (B> +B.,)cos @, T
Tle — arccos 1 (2 521k 53) - 1k “1
Wy Aoy + A, + By,o sinay,

7, + By, cos w, 7,

LAz
Wy
(3.11)
where k =1,2,34. j=012,---.
where

A, =m, —bm;, A, =-bm,, A, =m/,

A,=ni+m;, B, =bn,,B;,=n,,

By, = —b,n,, By, =—2myn,, B;; =2m,n, .

Let 7/, =min{z}, |k =1234;j=012,---}, we can
calculated that (3.10) has pure imaginary
roots +iw/,Whenz, =7/, 7, €[0,7,,) - Let A=a+im,is
the solution of (3.1) and satisfies «(z])=0 ,
o(z],) = ],- We can conclude the following transversal
condition :

Lemma 32. If (H,)AC +BD #0 ,
then [d (Re l)j .0 - Furthermore, the sign
dz-l A=iwyy

dr,

Proof. In fact, substituting A into (3.1) , and taking
the derivative ofz , there are the following differential
function :

(dl),l: A1+Bll- Lath,
dz, C,+Dji
which leads to

d(Re 1) _rel (B
dz-l A=iay, dTl A=iay,

_AC,+B/D,
=11 11z
C}+D;
at the value of § = i@, where

of{d (Re /1)} is sameto AC, +B,D, .
A=iw),

0.

A =b +(m —m,)cos w7, —-Ma)|,sin @7,

B, =2}, —m ], cos @z, + (M, —M,)sin a7,

C, = &y sin (7}, +7,),

D, = o[y, cos @(7}, + 7).

According to Hopf bifurcation theorem, we have

the following theorem 3.6 :
Theorem 3.6. When 7,>0, 7, €[0,7,,) and

r,#1,, If (Hy) and (H,,) holds, then, the endemic

equilibrium E™ of (3.1) is asymptotically stable
for 7, €[0,7},) and ¢, >/, . Moreover, the endemic

equilibrium E’ of (3.1) undergoes a Hopf bifurcation
atz, =17j,.

case (6) :r,€[0,7,), r,>0and 7, =z,. The
investigation is homoplastic to case (5) , so it can be
elided too, whereas, the bifurcation theorem is given in

the following :
Theorem 3.7. When¢, [0,7,,), 7, >0and

r,#7, - 1he endemic equilibrium E of (3.1) is
asymptotically stable for 7, <[0,7;,) and z,>7z}; .

Besides, the endemic equilibrium E™ of (3.1)
undergoes a Hopf bifurcation at ¢,=7]

where 7] represents the minimum critical value of time
delay 7, for the occurrence of Hopf bifurcation

when ne [O, 7'-10) '

IV. DIRECTION AND STABILITY OF HOPF BIFURCATION

In section 3, we concluded some conditions in six
cases, which makes (3.1) undergo Hopf bifurcation at
the endemic equilibrium. In this section, by using the
center manifold and the normal form theory in [25] , we
devoted to research the direction and stability of
periodic solutions bifurcating from the endemic
equilibrium when 7,=0.
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Letw =aw(r,)andz, =7, +v, veR, t=s7,
X(s) =x(sz,), y(s) = y(sz,) wheret =
s. Then, it is not difficult to verify thatv=0is a Hopf
bifurcation value of (2.2), and system (2.2) can be
rewritten as the following functional differential
equation (FDE) :

u(t) =L, (u(t) + G(v, u(t))

(4.1
whereu(t) = (x(t), y(t))" €C, L, :C —» R?and
G:RxC — R? where C =C([-1,0],R?) is the phase
space. Define L, () = B.p(0) + B,p(-1)
@ eCiG(v,u) =7(G,.G,) -

where
A -p(T) —pTE)
o A5 F(1)~(dy+d+y |
L D) be
+ )
(b+1")
- 0 }edm],
0 0
G =—§[2f'(l*>x(t)y(t)+ f"(u*)s*y2(t)]_§[
F7(17)S Y (0 +3 (1)) (0] +O(4)
Gz=§[2f'(l*)x<t)y(t>+f"(l*>8*y2<t)]+§[f"'(l*>

STY () +3F"(17)x(t)y*(t)]+bey*(t)(b+17)(b
+17+y(t)) " +0(4).
According to the Riesz representation theorem,
ing e[-1,0], there exists a 2x2matrix;(6,v) composed

of bounded variation functions satisfying

Lo = [ dn(6, )e(®),
4.2)

In reality, it can selectn(6,v) = B,6(8)—B,d (9+1).
where

<y.p>=FOp0)- [ [ 7(&-0)dn@)p()de,

wherey e C*, 5(0) =n(6,z,), A and Aare ad-joint
operators. From Section 3, it arrives that + i@z, are
eigenvalues of A, so, they are eigenvalues of A" too.

By computations, we receive thatq, () = (1, S (1")
lio +d,+d+y+bcb+17)2=4 f'(17)S 1) is
the eigenvector of Acorresponding toiwz, , and g,(6)
=D(L[-iw + d+AAAAD)]" ) e is the
eigenvector of A’ corresponding to-ia)*rl* . Moreover,
it satisfies <q2 ), q1(9)> =1 and <q2(9), ql(,g)> =0 ,
where D =1+[io" +d, + A (1")(1+7, "% )lio" +
d,+d+y+beb+17)7—£F'(17)].

When 7, = T: , postulate that U, be the solution of

(4.1). Define that z(t) = <q2 , u(t)> , SO

2(t) =(a,,u(t)) = i, 2(t) + 0, (0)G(z, 2),
4.7
where
G =G(¢,,W(z,7)+2Re{ 20}),W(z,7)
=U,—2Re{zq},

W(z,7) :W20%+W1122+W0227+...

(4.8)

We know that ifu, is real, then W (z,z) also real.
Here, we only think over real solutions. For eq. (4.5)
can be rewritten as 7(t) = o'z z(t)+9(z,2), where

- z° ~ z’ 2’7
g(z,z):gzo?+gllzz+goz?+9217+----
substituting (4.3) and (4.5) into the differential

equationW = u, —2q—Zzq. it has
W =AW —2Re P{T,(0) fa,(0)}, 0[-1,0)
AW —2Re P{d,(0)fq,(0)} +G, 6=0

56)=1" 0=0 Z AW +H(zz
- 0' 07&0 Where = + (29276)9
Define 2 z
»(6), 0 [-1,0) 43 H(z,Z,0)=H,,(0)—+H, (0)z2+H,(0)—+
77(8,0)@(S), = 7’z
1 H, (6)—=+--.
0, 0 <[-10) R _ _
R(v)p = 6(0.0) )-0 f Exparrl]dmg the above equation and comparing the
v a actors, there are
(4.4) B S (A=2i"7/ 1)W,,(6) = —H,(6),
Letuu_Ex',A\E/))u, jr;(rti\:jvrltet e system (4.1) as (A+2i0'z 1 W,,(8) = —H,(6),
. = AU, VU, AW, =-H,,(0).
(D4e?|%1 e Further,
—i(s) s (04] u, =u(t+0)=W(z,z,0)+z2q(0) + zq(0),
Ay (s) =1 L ’ therefore, it has g(z, Z) = T, (0) G(z, ), where
[Ldn" o) (-t), s=0
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Uy =7, D{(i" +d)[AF (1] '[28'(17)a,(0)+ BF"(17)
S*qj(O) + chz‘Oz)(O)(b +1” )‘2 1+ chz((f’(O)(b +
17)7},

9, =7, D{(i@" +d)[A (1] '[A'(1")(0,(0)+,(0))

+ (1 i )S*qz(O)qz(O) + chl(ﬁ)(O)(b +1° )*]+bc
W (0)(b+17)74,

9o, =7, Dii@" +d,[ A (1) [28 (1), (0)+ A "(1)S T}

0)+ chO(j’(O)(b +1 *)’2 1+ chO(zz)(O)(b +1° )’2 },

9, =7/ D{(i@" +d)[A (1" 24'(1 *)ONl(f’(OH%sz)(O)

+%Wz(3)(0)q2(0)+W1(1”(0)q2(0))+/3f "(1")S7(20,(0)

W, (0)+ 8, (0)W,5’ (0)]+ A "(17)(20,(0)d, (0) + 95 (0))
+ BE"(17)S70;(0)@,(0)} .
where
W,o(0) =iz, D(e'z; ) '€ “{(iw” +d)[ A ()] [28'(17)

0,(0)+ A "(17)S7q’(0)+bcW,(B+17)?]+bc
W2 (b+17)21q(0)+i7, DBe’z) ) ' " {(-iw" +
d)LAF(1)]'[-D, +beW,; (B +17)?+bew,; (b
+17)23G(0) +e 7[R (D [2ie +d, +d +y+
be(b+17)2 =y 207 14 be(h+ 17y W2 [y
e @ _ BE(11)8"],D,(2ie" +d,)+be(b
+17)"W2 2ie" +d, + A1),

W,,(0) =D & " {(ieo’ +d)[A (1) [2/'(1)8,(0) +
BE(7)S T2 (0)+beW, (b +17)*]+beW, (b +17) 7}
q(0)+iDBw )& {(—iw +d A (1)]"'[-D, +
beW, 2 (b+1")2]+beW, 2 (b+17)%} G(0) + e 7]
IF,| (D,[-2iw's; +d,+d +y+bc(b+17)7 - fF'(1)S']
e — (1) T)(-D, +be(b +17) W), D, At

(1) +[2i0 7] +d,+ B £ (1)][-D, +be(o+ 1" )WL)

W, (0)=-i7;D(@'7;)" e " {(ia" +d)[ A (1) [BF'(1)(0,(0)
+0,(0)+ B "(17)S70,(0)T,(0) + beW, P (b +17) * ]+
bew, 2 (b+17)21q(0)+i7, D (0'z)) e ™ "*{(-ie’
+d)IA OB ()T, (0)+0,(0) + F"(17)
$°0,(0)0,(0)+beW, P (b+17)?]+bcW P (b+17)7} ,(0)
Gq.0)—7|F[ (@, [AF'(1)S" —dy—d —y—beb+17)7]
+[A'(17)S" — )7 (=D, +bc WP (b +1")>),-D, /4
()= [d, + £ (1)](-D, +beW,? (b+17) ?))".

where
D, =24 (1")q(0)a,(0) - Af (1")S q;(0),
D, =—ff(I")(a(0) +T,(0))— Af (1) q,(0)7,(0)>
|F|=Qio'z +d)[2iw +d,+d+y+beb+17)7 - F/(11)S 1+ (1)
Qi +d,+d+y+bo(b+ 1))~y (1" )e @2
[Fy|=[2i@7 +d,+F(1)][-20e'7 +d,+d+y+bcb+17)7 - 8
FADS T+ A A8~ 07,
|Fy|=—d,[B'(1")S" —d, —d —y—bc(o+ 7)1+ A (17)[d; +d +y
+be(b+17) 21— yB (17)e %
Hence, the values of Oy Oypv Gpyr gy CAN also be

obtained. Moreover, we can compute the following
parameters to estimate the direction and stability of

periodic solutions bifurcating from the endemic
equilibrium when 7, =0.
. ‘2

! 1
Cl(o) = m[gzogu - 2‘911 _g‘goz‘z] +%’

B, =2Re{C,(0)} , — - RGO,
? Re A'(0)
_Im{C,(0)} + 4, 1m A'(0)
o't

T, =

where 4, indicates the directions of the Hopf
bifurcation, g, expresses the stability of the bifurcate
periodic solutions, T, represents the period of the

bifurcating periodic solutions.
By the value of these parameters above, we can
get the following theorem 4.1 .
Theorem 4.1. If/,2 >0(<0), the Hopf bifurcation is

super-critical (sub-critical); If 8, < 0(> 0),

the bifurcation periodic solutions are trajectory
asymptotically stable(unstable); And the period of the
periodic solutions is increasing ( decreasing ) if
T,>0(<0).

V. Numerical simulations

In this section, by different parameters, we present
some numerical simulation results of system (2.1) to
support these conclusions in this paper.

By choosing f(l)=1I(1+1)*, ©=035, d,= 0.1,
d2: 021 d3:015! d4:Oly dZOlu )):11 ﬁ:z,
b=001, c=055, r,=1, ¢, = 01, we can calculate
the basic reproduction number as R, =012<1 ,
therefore when ¢ =1 and ¢, =01 , the disease-free
equilibrium is asymptotically stable if R, <1( see Fig.1

) , which result is consistent with the analysis in section
3.
(b) While, if we choose ;=085 , d, =001,

d,=02, d,=03,d,=01,d=01, y=8, 8 =10,
b=1,c¢=30, 7,=1, 7, =0.1, the basic reproduction
isR,, =21.7>1. Hence, when¢ =1andz, =0.1, the
endemic equilibrium is asymptotically stable if R, >1(

see Fig.2) .
(c) When choosing 11=0.83 , d,=01, d,=02,

d,=03,d,=01,d=01, =12, y=7, b=1, c=3,
r,=2, r,=2, then, R;=9.19>1and the periodic

solution is asymptotically stable
whenz =2andz, =0.23( see Fig.3, Fig.4) .

(d) For system (2.2), if we choose the same
function of f , and let x=0.75, d, =01, d, =0.2,

d,=015, d, =01, d=01, y=18, =20, b=1,
c=15, 7,=0.2<7°=0.33, 7, =0, thus, the endemic

equilibrium is asymptotically
whenQ.2 < Toandf2 =0(seeFig.5).

stable
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EM |
1)
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-0.5
0

r r r r r r r r r
10 20 30 40 50 60 70 80 90 100
time t

Fig. 1.The disease-free equilibrium E  is asymptotically

stable if R, <1when¢ =1andz, =0.1.

s(
E()
10 ]
R()

0 10 20 30 40 50 60 70 80 90 100
time t

Fig. 2. The endemic equilibrium is asymptotically stable
ifR, >1whenz, =1andz, =0.1.

S E®M 10 R

2
1
0 w
0 20 40 60 80 100
time t

Fig. 3. The endemic equilibrium is asymptotically stable
ifR, >1wheng =2andz, =0.23.

(e) In addition, based on (d), ifd4:o_4, c=21,
7,=26>7 =118, we can also conclude that the

endemic  equilibrium is  asymptotically stable
when 7,=26> Tlland T, = 0(see Fig.6).

£() 0.8 st

RO 0 0

Fig. 4. The Wodd L [Program
Files/Youdao/Dict/7.0.1.0227/resultui/dict/?keyword=phas
e.l.d.l.J.l.1.l./Program
Files/Youdao/Dict/7.0.1.0227/resultui/dict/?keyword=diagr

am(S(1), E(1), 1(1))
(I(t), R(t),S(t)) of system (2.1) when 7, =2 and

7,=0.23.

s
] E) [
T i ||
R(t)

0 10 20 30 40 50 60 70 80 90 100
time t

Fig. 5. The endemic equilibrium is asymptotically stable
whenz =0.2<7’ =033andz, =0.
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3.5

3k

3

2 ’L h“\”ﬁ\ﬂv“‘f\

150

1)

i
,,,,,,,,,,,,,,,,, J\‘\\\f\f YU
| 1Y
)

0.5*

0 —
0 20 40 60 80 100

time t
Fig. 6. The endemic equilibrium is asymptotically stable
whenz, =26>¢ =1.18and ¢, =0.

(f) Furthermore, let 4,=0.75, d, =01, d,=02,
d,=015, d,=01, d=01,y=18, g=30, b=1,
c=15, 7, =1e(z’,7!)=(0.331.18), 7, =0, we can get
the asymptotically stability of the periodic solution
when 7, =1e(z°,r") =(0.331.18) and 7, =0 ( see Fig.7,

Fig.8 ). I's concluded that the exposed is going to
eradicate and the infected will be controlled in a small
number.

RO o0 0

8 g g ; - Fig. 8. The odd L. [Program
75 Files/Youdao/Dict/7.0.1.0227/resultui/dict/?keyword=phas
e.l.l.J.[.[.].]./Program
Files/Youdao/Dict/7.0.1.0227/resultui/dict/?keyword=diagr

Sr 1 am(S(t), E(1), 1(t))
il S FO 10RO 1 (1(t),R(), S(t)) of system (2.1)whenz, =0.73

5l m (Toyrl)andrzzo.
W 1 1
‘\
1 J"”"“ 4\ (9) Eventually, it's obtained thatg, =-77.42+
o: "”*2”0*“”““‘"‘”“L%‘”””“”‘"*”Q’g””““”‘“”8%““””“““100 0.694i . g,—-649+321.28i , g - 042-078i |
. .  fimet . g,, =—3388.71+1730.4i , C,(0)=-1700.4—-2743.87i .
Fig. 7.The periodic solutions is asymptotically stable .
whenz =0.73¢(r°,7')andz, =0. additionally, g, =-3400.8<0, x4, =-80.51<0and

T, =-403.71 < 0. Consequently, the Hopf bifurcation is

sub-critical, the bifurcation periodic solutions are
asymptotically stable and the bifurcating period is
decreasing .

VI.Conclusions

In this paper, we introduced three elements into a
saturated recovery SEIR epidemiological system which
are two delays, general nonlinear incidence rate and
saturated recovery rate. Analyzing the basic
reproduction number and Lyapunov function,we
investigated the local and global stability of the
disease-free equilibrium,concluded that the disease
will die out, if the basic reproduction number can be
controlled in the scope of (0,1) well ( see Fig.1 ). In

addition, the locally asymptotically stability of the
endemic equilibrium and the Hopf bifurcation were
studied in six different cases by different basic
reproduction number.

It is obvious that, after adding the saturated
recovery rate to system (2.1), the infected is

WWW.jmest.org
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significantly closer to the origin comparing Fig.2 to
Fig.9. In this paper, we only discussed a bifurcation at
the positive endemic equilibrium of system (2.2), one
can estimate the forward and backward bifurcation
further.

1.4

121

1k 4

081\

0.6

0.4

0.2

0 c c c r c r ¢ ¢ ¢
0 10 20 30 40 50 60 70 80 920 100
time t

Fig.9.The endemic equilibrium is more closer to the
origin in system (2.1) than in [14] when T, =land 7,=0.1.

What's more, we can see that the exposed is more
stable and closer to the origin, when the latent

period,is equal to O compared Fig.3 with Fig.7, so in

this case, the latent delay can be neglected. And for
that the function of f (1) =21/(1+2l)is also adapted to

system (2.1), hence, the applicability of general
nonlinear incidence rate is wider than nonlinear
incidence rate .

Based on the work in this paper, we can investigate
the existence of global Hopf bifurcations by using the
global Hopf bifurcation theorem [26] for system (4.1).
Here, we omit it due to limited space of the paper.
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