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Abstract—In this paper, we mainly investigated 
the two-delayed SEIR epidemiological model with 
general nonlinear incidence rate and saturated 
recovery rate. Using the basic reproduction 
number and the Liapunov function, we discussed 
the local and global asymptotic stability of the 
disease-free equilibrium. Further, by different 
values of the redefined basic reproduction 
numbers,we studied the local asymptotic stability 
and Hopf bifurcation at the endemic equilibrium in 
six different cases. Besides, using the center 
manifold and normal form theorem, we derived an 
explicit algorithm that determines the direction of 
Hopf bifurcation and the stability of the bifurcating 
periodic solutions. Ultimately, some numerical 
simulations are performed to confirm the 
correctness of the theoretical analysis above. 
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I.  INTRODUCTION  
In epidemiology, mathematical models have been 

proved significant in better understanding of 
transmissible nature and disease control for more than 
a century. In 1760, Daniel Bernoulli formulated and 
solved the first differential equation evaluating the 
effectiveness of smallpox virus. Follow Kermack and 
McKendrick [1] built up a system of ordinary differential 
equations to study disease transmission. And then, 
Anderson and May [2] summarized the basis and 
evolution of communicable diseases. What’s more, in 
recent years, a tremendous number of the SIS, SIR, 
SEI, SEIR, SEIS, SIRS, SEIRS models have been 
established, analyzed and applied to a variety of 
infectious diseases[3-14].  

When exploring the character of the disease 
propagation , Many mathematical researchers found 
causative agents would incubate in their host for a 
period of time before it is infected, this phenomenon is 

time delay. Whereupon, for practical consideration, it is 
suggested that time delay can be incorporated in 
related models, such as predator-prey models [15,16], 
critical care model [17], bio-economic phytoplankton 
zoo-plankton model [18] and epidemic models [6,8-
10,12,19,20] extensively. Based on those work above, 
in this paper, we are absorbed in epidemic models with 
necessary delay. 

In epidemic models, an incidence rate attracted 
considerable attention in verifying that the model can 
give better kinetic properties. A bilinear incidence rate 
[21] and a standard incidence rate [22] were usually 
used in some epidemic models. Specially, The Holling 
type II and Holling type III functions were introduced 
into some predator-prey models by Lianwang Deng [16] 
and Xuedi Wang [15]. Furthermore, Jiang and Ma [12] 
proposed a SEIR system with general nonlinear 
incidence rate, which is a class of nonlinear incidence 
rate. Jiang and Ma gave the detailed dynamic behavior, 
which showed that the applicability of the general 
nonlinear incidence rate is more wider. So it’s 
meaningful to corporate with the general nonlinear 
incidence rate in the study of epidemic models. 
    Jingan Cui [23] found an interesting dynamical 
behavior, backward bifurcation, by proposing a SIS 
epidemic model with saturation 
recovery 1)]()[(  tIbtcI from infected individuals, which 

made a better understanding of the effect of limited 
resources for treatment of the infected on the 
emergency disease control. Three years later, C and Z 
[11] proposed a SEIR epidemic model with saturated 
recovery rate, by compound matrices and geometric 
approaches, they further studied the existence of bi-
stability by a backward bifurcation and global 
dynamical properties. 
    In the present paper, we will introduce three key 
factors (two delays, a general incidence rate and a 
saturate recovery rate) into a SEIR epidemic model, 
investigating the local and global stability and Hopf 
bifurcations. The detail arrangement is as follows : 
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In section 2, the author investigated the local and 
the global stability of the disease-free equilibrium by 
the defined basic reproduction number. Besides, in 
section 3, the locally asymptotic stability of the 
endemic equilibrium and Hopf bifurcation were 
certified.  What’s more, the direction of Hopf 
bifurcations and the stability of the bifurcating periodic 
solutions were studied in section 4. In addition, in 
section 5, some numerical simulations were carried out 
to support the theoretical results, and some 
conclusions were obtained in the last section. 

II. LOCAL AND GLOBAL ASYMPTOTIC STABILITY OF 

THE DISEASE-FREE EQUILIBRIUM 
Based on the former work made by Zhou [11] and 

Jiang [12], in this paper, the following two delayed 
SEIR epidemic model with general nonlinear 
incidence rate and saturated recovery rate will be 
discussed. 
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(2.1) 

where  represents the recruitment rate of the 

susceptible population by birth or migration,  stands 

for the infect rate from the susceptible class to the 
infected class,  is the recovery rate, 

)4,3,2,1( idi
denote the natural death rates of the 

suspected, exposed, infected and recovered 
population, respectively, where },,min{ 4321 dddd  , d is 

the extra disease-related death rate, 

)())(( tStIf denotes the general nonlinear incidence 

rate, )( 1
14  




tIe
d indicates the individuals who survived 

from natural death in a recovery pool before becoming 
susceptible again. Further,

1 ,
2 stands for the 

immunity period and the latent period respectively. 
1)]()[(  tIbtcI denotes the saturated recovery rate from 

the infected compartment with hospital treatments, 

hereb gives the infected size at which is %50 saturation 

( 2)( cbh  ), and c denotes the maximum recovery per 

unite of time. And ,  ,  , 
1d , 

2d , 
3d , 

4d , c , b , d are 

positive, 
1 , 

2 are non-negative and the 

function )(If satisfies the following conditions : 

)( 1H 0)0( f , 


cIf
I

)(lim , 0)(  If ,

0)(  If for 0I . 

In this section, we will prove the local and the 
global stability of the disease-free equilibrium by the  
basic reproduction number. For the dynamical  
properties of system (2.2) and system (2.1) are  

parallel, we considering the following system : 
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The disease-free equilibrium of system (2.2) 

is )0,( 00 SE , where 1
0 1

 dS  . Definite the basic 

reproduction number [24] as 
11

3
1

101 ])[0(22   cbddfedR
d   ,  

we can conclude theorem 2.1 as follows :  
Theorem 2.1. Consider system (2.2) . if the basic 

reproduction number 101 R and 02  , the disease-

free equilibrium
0E is locally asymptotically stable; on 

the contrary, the disease-free equilibrium is unstable, 

if 101 R when 02  . 

Proof. Linearizing (2.2) at the disease-free 
equilibrium : 
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Then, the eigenvalues of (2.3) can be worked out 
respectively as follows : 

11 d , )()0( 1
3

)(1-
12

222 
 cbddfed

d   . 

Since the eigenvalue 011  d , we investigate the 

other eigenvalue. 
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)1 0 if 101 R . Hence,  the disease-free equilibrium 

0E is locally asymptotically stable. when 02  , it 

has )()0( 1
31

 cbddf  1( 0)01 R if 101 R , in 

addition, 
1lim f


)( , so the function 0)(1 f has 

at least a positive root, and the disease-free 

equilibrium is unstable if 101 R . This completes the 

proof. 
Furthermore, the globally asymptotic stability of 

0E can be chalked up by setting up a Lyapunov 

function in the following. 
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12 )0(  dfh 

 
)( 1

3
)( 22 

 cbdde
d  .are satisfied, the disease- 

free equilibrium
0E of subsystem (2.2) is globally  

asymptotically stable when 101 R . 

Proof. Considering system (2.2) in 1 , 

where }0|),{( 01 SISCIS  . Define the  

Lyapunov function as follows : 
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For that )(
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H , )(
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H and )(
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H are contented, we can 

get 0),( ISV . Consequently, 
0E is globally 

asymptotically stable. This completes the proof. 

Observed that 1
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d , from 

theorem 2.2, it’s not difficult to summarize that the 

disease will be eradicated if the infection rate  is less 

than some critical value. 
 

III. THE LOCALLY ASYMPTOTICALLY STABILITY OF THE 

ENDEMIC EQUILIBRIUM AND HOPF BIFURCATION 

In this section, we devoted to analysis the local 
asymptotic stability of the endemic equilibrium of 
system (2.2) and the Hopf bifurcations. For system 
(2.2), assume the following conditions hold, 
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Let *)()( StStx  , *)()( ItIty  and still 

denotes )(tS , )(tI respectively. Substituting them into 

(2.2), by Taylor expansion,expanding it at the endemic 

equilibrium ),( *** ISE , then, the standard linearized 

differential equations at )0,0(),( yx  is : 
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the corresponding characteristic equation of (3.1) is 
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  cccI

 
and let 

k

k

k

j

k
b

b

13

2

2

1

1

1

)(
arccos

1








2j
}{ 


 .                 

.2,1k   .,2,1,0 j  

Hence, the characteristic equation of (3.3) has pure 
imaginary roots

k
i

1
 on interval I .Define min10  ,{ 0

11
 

}0

12
 and the related imaginary part is

10
 . Suppose 

that )()()(
111
 i is the solution of (3.3) 

at
101
  satisfying 0 and

10
  . 

Before summing up the Hopf bifurcation, we can 
introducing the following lemma 3.1 : 

Lemma 3.1. If 0sincos)( 10101101035   bH , 

then
0

)(Re

10
1










 




i
d

d . In addition, the sign 

of

10
1

)(Re






i
d

d










 and
101011010

sincos  b is same. 

Proof. In fact, substituting )(
1
 into (3.3) and 

differentiating it about
1
 , it concludes 

    









1

3

1

3

1

1
11

2













eb

b

ebd

d

              

         

(3.7) 
Substituting

10
 i into (3.7), and separate the real 

part : 

    

3

101011010

1

1

sincos
Re

b

b

d

d 



 











              

  

(3.8) 

As

0

1

1

)(Re
Re






i

d

d


























 and

10
1

)(Re






i
d

d










 have the 

same sign, hence 

.0

sincos

)(Re
Re

)(Re

3

101011010

1

11
10


















































b

b

d

d
sign

d

d
sign

i













 

This completes the proof. 
Based on the theorem 3.2 and lemma 3.1, we can 

obtained the following theorem 3.3 by the Hopf 
bifurcation theorem. 

Theorem 3.3. Suppose that )(
32

H holds, 

When 0
2
 , we can summarize that  

if )(
33

H is satisfied, then the endemic 

equilibrium
*E of (3.1) is asymptotically stable 

for 0
1
 ; 

if the condition of )(
34

H is satisfied, then the 

endemic equilibrium
*E of (3.1) is asymptotically stable 

for ),0[
101
  ; 

if )(
33

H and )(
35

H are satisfied, then the endemic 

equilibrium
*E of (3.1) is unstable for

101
   and goes 

with Hopf bifurcation for
101
  . 

case (3) : 0
1
 , 0

2
 . The basic reproduction 

is
02

)3(

02
RR  , and the proving progress is similar to 

case (2), furthermore, we omit it and conclude the 
following theorem 3.4 : 

Theorem 3.4. When 0
1
 , the endemic 

equilibrium
*E of (3.1) is asymptotically stable 

for ),0[
202
  and unstable for

202
  . In addition, 

for
202
  , the endemic equilibrium 

*E goes Hopf 

bifurcation, where
20

 represents the minimum critical 

value of time delay
2

 for the occurrence of Hopf 

bifurcation when 0
1
 . 

case (4) : 
1
 0

2
 . The redefined basic 

reproduction number is **)4(

02
)( SIfR  

2d
e


 dd3[  
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12* ])(  Ibbc , the proof procedure follows case (2), 

so, here, we omit it. 
Theorem 3.5. When 

1
 0

2
 , the endemic 

equilibrium
*E of (3.1) is asymptotically stable 

for ),0[
0
  and unstable for

0
  . Further, the 

endemic equilibrium 
*E goes Hopf bifurcation 

for
0
  , where

0
 represents the minimum critical 

value of time delay
2

 for the appearance of Hopf 

bifurcation when 
1
 0

2
 . 

case (5) : 0
1
 , ),0[

202
  and

21
  . We can 

regard
1
 as a parameter and

2
 in its stable interval. It is 

easy to see that
02

)5(

02
RR  . Let  i is the root of 

system (3.1), substituting it into (3.1) and separating 
the imaginary and real parts,  respectively. one can 
conceive 

25225354

25325251

cossin

cossin





eee

eee




                   (3.9) 

where       

2

2

51
be  , ,sin 11152  nme 

  

11253
cosnme  , 

154
be  . 

Reorganized that 

0cossin
15415352

2

51

4   cccc  

(3.10) 
where 

2

2

1

2

151
2bmbc  , 2

1

2

252
nbc  , 

1253
2 nmc  ,

1154
2 nmc  . 

Hypothesize that )(
36

H hold, thus, equation (3.10) 

has four roots
k1

 , .4,3,2,1k  Define 

     

.
2

cos

sin

cos)(

sin

arccos
1

1

11551

115454
2
153

1153
2
1521

115152
2
151

1

1

k

k

kkk

kk

kkk

k

j

k

j

B

BAA

BB

BAA




























    

(3.11) 
where .,2,1,0.4,3,2,1  jk  

where 

11251
mbmA  ,

2252
mbA  , 2

153
mA  , 

2

2

2

154
mnA  ,

1151
nbB  ,

152
nB  , 

1253
nbB  ,

1154
2 nmB  ,

1255
2 nmB  . 

Let .},2,1,0;4,3,2,1|min{
110

 jkj

k
 , we can 

calculated that (3.10) has pure imaginary 
roots

10
 i when

101
  , ),0[

202
  . Let

5
 i is 

the solution of (3.1) and satisfies 0)(
10

 , 

1010
)(   . We can conclude the following transversal 

condition : 

Lemma 3.2. If 0)(
111137
 DBCAH , 

then 0
)(Re

10
1










 




i
d

d . Furthermore, the sign 

of

10
1

)(Re

















i
d

d is same to 
1111

DBCA  . 

Proof. In fact, substituting into (3.1) , and taking 

the derivative of
1
 , there are the following differential 

function : 

    i
iDC

iBA

d

d

10

21

11

111

1

)(
















 , 

which leads to 

    

.0

)(Re
)(Re

2
1

2
1

1111

1

11
1010






























DC

DBCA

d

d

d

d

ii 








 

at the value of
10

  i , where 

,sincos)( 2101012102111   mmmbA
 
,sin)(cos2 21021210101101   mmmB
 

),(sin 210101101   nC       

).(cos 210101101   nD  

According to Hopf bifurcation theorem, we have 
the following theorem 3.6 : 

Theorem 3.6. When 0
1
 , ),0[

202
  and 

21
  , if )(

36
H and )(

37
H holds, then, the endemic 

equilibrium
*E of (3.1) is asymptotically stable 

for ),0[
101
  and

101
  . Moreover, the endemic 

equilibrium
*E of (3.1) undergoes a Hopf bifurcation 

at
101
  . 

    case (6) : ),0[
101
  , 0

2
 and

21
  . The 

investigation is homoplastic to case (5) , so it can be 
elided too, whereas, the bifurcation theorem is given in 
the following : 

Theorem 3.7. When ),0[
101
  , 0

2
 and 

21
  . The endemic equilibrium

*E of (3.1) is 

asymptotically stable for ),0[
202
  and

202
  . 

Besides, the endemic equilibrium
*E of (3.1) 

undergoes a Hopf bifurcation at
202
  , 

where
20

  represents the minimum critical value of time 

delay
2

 for the occurrence of Hopf bifurcation 

when ),0[
101
  . 

 
IV. DIRECTION AND STABILITY OF HOPF BIFURCATION 

In section 3, we concluded some conditions in six 
cases, which makes (3.1) undergo Hopf bifurcation at 
the endemic equilibrium. In this section, by using the 
center manifold and the normal form theory in [25] , we 
devoted to research the direction and stability of 
periodic solutions bifurcating from the endemic 
equilibrium when 0

2
 . 
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Let )(
1

* *  and v *

11
 , Rv ,  

1
st  , 

)()(
1
sxsx  , )()(

1
sysy  where t  

s . Then, it is not difficult to verify that 0v is a Hopf 

bifurcation value of (2.2), and system (2.2) can be 
rewritten as the following functional differential 
equation (FDE) : 

))(,())(()( tuvGtuLtu
v

                                     

(4.1) 

where Ctytxtu T  ))(),(()( , 2: RCL
v

 and 

2: RCRG  where )],0,1([ 2


 RCC  is the phase 

space. Define    )1()0()(
21

  BBL
v

, 

C ;  TGGtuvG
211

,))(,(  . 

where 
       




























)
)(

()(

)(

)()(

2*

3
**

*

***
1

11

Ib

bc

ddIfS

If

IfSIfd

B






 , 













00

0 14

12




d
e

B , 

)4()]()()(3)()(

[
6

)]()()()()(2[
2

2*3**

2***
1

OtytxIftySIf

tySIftytxIfG






 

).4())(

())(()]()()(3)(

)([
6

)]()()()()(2[
2

1*

2*22*3*

*2***
2

OtyI

bIbtbcytytxIftyS

IftySIftytxIfG













 

According to the Riesz representation theorem, 
in ]0,1[ , there exists a 22 matrix ),(   composed 

of bounded variation functions satisfying 

,)(),(
0

1  dL                                    

(4.2) 

In reality, it can select  21 )(),( BB  )1(  , 

where 










0,0

0,1
)(




  

Define 














0

1
0),(),(

)0,1[),(
)(






ssd
A



            

(4.3) 










0),,(

)0,1[,0
)(






G
R               

(4.4) 

Let
Tyxu ),( ,  and rewrite the system (4.1) as 

.)()(
ttt

uRuAu                                           

(4.5) 
Define 














0

1

*

*

0),(),(

]1,0(),(
)(

sttd

ss
sA

T 






 

,)()()()0()0(,
0

1 0 




 dd   

where 1C , ),()(
1

*  ,
*A and Aare ad-joint 

operators. From Section 3, it arrives that *

1

*i are 

eigenvalues of A , so, they are eigenvalues of
*A too. 

By computations, we receive that )(,1()( *
1 Ifq    

  2*
3

* )([ Ibbcddi  *
1

*

)])( 1** ieSIf  is 

the eigenvector of Acorresponding to *

1

*i , and )(2 q  

 *[,1( iD
1**

1 )]()][(  IfIfd   *
1

*

) iT e is the 

eigenvector of 
*A corresponding to *

1

*i . Moreover, 

it satisfies 1)(),(
12

 qq and ),(2 q 0)(1 q , 

where *
1

*
1

* 1)(([1   IfdiD 
 *)( )][

*
1

*
4  

ie
id

 
)].()( *2*

3 IfIbbcdd     

When *

1 1
  , postulate that

t
u be the solution of 

(4.1). Define that )(,)(
2

tuqtz  , so     

),,(ˆ)0()()(,)(
2

*

1

*

2
zzGqtzituqtz  

 
       

(4.7) 
where 







22
),(

},Re{2

),(}),Re{2),(,(ˆ

2

0211

2

20

0

z
WzzW

z
WzzW

zqu

zzWzqzzWGG

t



                         

(4.8) 

We know that if
t

u is real, then ),( zzW  also real. 

Here, we only think over real solutions. For eq. (4.5) 

can be rewritten as ),()()( *

1

* zzgtzitz   , where 


222

),(
2

21

2

0211

2

20

zz
g

z
gzzg

z
gzzg . 

substituting (4.3) and (4.5) into the differential 

equation qzqzuW
t

  , it has 

    

),,,(

0,ˆ)}(ˆ)0({Re2

)0,1[)},(ˆ)0({Re2

12

12







zzHAW

GqfqPAW

qfqPAW
W

def














 

where     

.
2

)(

2
)()(

2
)(),,(

2

21

2

0211

2

20





zz
H

z
HzzH

z
HzzH




 

Expanding the above equation and comparing the 
factors, there are  

).(

),()()2(

),()()2(

1111

0202
*
1

*

2020
*
1

*







HAW

HWIiA

HWIiA







 

Further,  
),()(),,()(  qzzqzzWtuu

t
   

therefore, it has )0(),(
2

qzzg  ),(ˆ zzG , where 
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},)

)(0(]))(0()0(

)()0()(2[)]()[{(

2*

)2(
20

2*)2(
20

2
2

*

*
2

*1*
1

**
120











I

bbcWIbbcWqS

IfqIfIfdiDg 

     },))(0(

]))(0()0()0()(

))0()0()(([)]()[{(
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obtained. Moreover, we can compute the following 
parameters to estimate the direction and stability of 

periodic solutions bifurcating from the endemic 
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where

2
 indicates the directions of the Hopf 

bifurcation, 
2

 expresses the stability of the bifurcate 

periodic solutions, 
2

T represents the period of the 

bifurcating periodic solutions. 
    By the value of these parameters above, we can 

get the following theorem 4.1 . 
Theorem 4.1. If )0(0

2
 , the Hopf bifurcation is 

super-critical (sub-critical); If )0(0
2

 , 

the bifurcation periodic solutions are trajectory 
asymptotically stable(unstable); And the period of the 
periodic solutions is increasing ( decreasing ) if 

)0(0
2

T . 

V. Numerical simulations 
In this section, by different parameters, we present 

some numerical simulation results of system (2.1) to 
support these conclusions in this paper. 

By choosing 11  I)I(f(I) , 350.μ  , 
1

d 1.0 , 


2

d 20. , 150
3

.d  , 10
4

.d  , 10.d  , 1γ , 2β , 

010.b  , c 550. , 1
1
τ , 

2
τ 10. , we can calculate 

the basic reproduction number as 1120
01

 .R , 

therefore when 1
1
τ and 10

2
.τ  , the disease-free 

equilibrium is asymptotically stable if 1
01
R ( see Fig.1 

) , which result is consistent with the analysis in section 
3. 

(b) While, if we choose 850.μ  , 010
1

.d  , 

20
2

.d  , 30
3

.d  , 
4

d 10. , 10.d  , γ 8 ,  10 , 

b 1 , 30c , 1
1
 , 1.0

2
 , the basic reproduction 

is 17.21
01

R . Hence, when 1
1
 and 1.0

2
 , the 

endemic equilibrium is asymptotically stable if 1
01
R ( 

see Fig.2 ) . 
(c) When choosing 83.0 , 10

1
.d  , 20

2
.d  , 

30
3

.d  , 10
4

.d  , d 10. , 12 , 7 , 1b , 3c , 

2
1
 , 2

1
 , then, 119.9

0
R and the periodic 

solution is asymptotically stable 
when 2

1
 and 23.0

2
 ( see Fig.3, Fig.4 ) . 

(d) For system (2.2), if we choose the same 
function of f , and let 75.0 , 10

1
.d  , 

2d 2.0 , 

150
3

.d  , 10
4

.d  , 10.d  , 18 , 20 , 1b ,  

15c , 
1
 0

1
2.0  33.0 , 0

2
 , thus, the endemic 

equilibrium is asymptotically stable 

when 0

1
2.0  and 

2
 0 ( see Fig.5 ) . 
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Fig. 1. The disease-free equilibrium

0E is asymptotically 

stable if 10 R when 11  and 1.02  . 
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Fig. 2. The endemic equilibrium is asymptotically stable 

if 10 R when 11  and 1.02  . 
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Fig. 3. The endemic equilibrium is asymptotically stable 

if 10 R when 21  and 23.02  . 

(e) In addition, based on (d), if 40
4

.d  , 21c , 

18.126 1

11
  , we can also conclude that the 

endemic equilibrium is asymptotically stable 

when 1

11
26   and 0

2
 ( see Fig.6 ) . 
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))(),(),(( tStRtI of system (2.1) when 21  and 

23.02  . 
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Fig. 5. The endemic equilibrium is asymptotically stable 

when 33.02.0 0
11   and 02  .   
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Fig. 6. The endemic equilibrium is asymptotically stable 

when 18.126 1
11   and 02  . 

(f) Furthermore, let 75.0 , 10
1

.d  , 20
2

.d  , 

150
3

.d  , 10
4

.d  , 10.d  ,  18 , 30 , 1b , 

15c , )18.1,33.0(),(1 10

1 11
  , 0

2
 , we can get 

the asymptotically stability of the periodic solution 
when )18.1,33.0(),(1 10

1 11
  and 0

2
 ( see Fig.7, 

Fig.8 ). It’s concluded that the exposed is going to 
eradicate and the infected will be controlled in a small 
number. 
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Fig. 7. The periodic solutions is asymptotically stable 

when ),(73.0 10
1 11

  and 02  . 
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Fig. 8. The ../../../../../../../../Program 
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e ../../../../../../../../Program 

Files/Youdao/Dict/7.0.1.0227/resultui/dict/?keyword=diagr

am ))(),(),(( tItEtS  

))(),(),(( tStRtI  of  system (2.1)when  73.01  

),( 10

11
 and 02  . 

(g) Eventually, it’s obtained that  42.7720g  

i694.0 , ig 28.3219.64
02

 , 
11

g i78.042.0  , 

ig 4.173071.3388
21

 , iC 87.27434.1700)0(
1

 , 

additionally, 
2

 08.3400  , 051.80
2

 and 

071.403
2

T . Consequently, the Hopf bifurcation is 

sub-critical, the bifurcation periodic solutions are 
asymptotically stable and the bifurcating period is 
decreasing . 

VI.Conclusions  
In this paper, we introduced three elements into a 

saturated recovery SEIR epidemiological system which 
are two delays, general nonlinear incidence rate and 
saturated recovery rate. Analyzing the basic 
reproduction number and Lyapunov function,we 
investigated the local and global stability of the 
disease-free equilibrium,concluded that the disease 
will die out, if the basic reproduction number can be 
controlled in the scope of )1,0( well ( see Fig.1 ). In 

addition, the locally asymptotically stability of the 
endemic equilibrium and the Hopf bifurcation were 
studied in six different cases by different basic 
reproduction number.  

It is obvious that, after adding the saturated 
recovery rate to system (2.1), the infected is 
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significantly closer to the origin comparing Fig.2 to 
Fig.9. In this paper, we only discussed a bifurcation at 
the positive endemic equilibrium of system (2.2), one 
can estimate the forward and backward bifurcation 
further. 
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Fig. 9. The endemic equilibrium is more closer to the 

origin in system (2.1) than in [14] when 11  and 1.02  . 

What’s more, we can see that the exposed is more 
stable and closer to the origin, when the latent 

period
2

 is equal to0 compared Fig.3 with Fig.7, so in 

this case, the latent delay can be neglected. And for 
that the function of )21(2)( IIIf  is also adapted to 

system (2.1), hence,  the applicability of general 
nonlinear incidence rate is wider than nonlinear 
incidence rate . 

Based on the work in this paper, we can investigate 
the existence of global Hopf bifurcations by using the 
global Hopf bifurcation theorem [26] for system (4.1). 
Here, we omit it due to limited space of the paper. 
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