
Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 8, August - 2017 

www.jmest.org 

JMESTN42352344 7911 

Self-Energy And Energy Loss Of Charge 
Particle Channeling In Carbon Nanotubes 

*Bahaa H. Abbass      ** Khalid A. Ahmad    ** Riyahd  K. Ahmed 

**Al-Mustansiriyah University, College of Science, Department of Physics. 

Baghdad-Iraq 

baha565@yahoo.com 

baha565b@gmail.com 

Abstract—By developing a semiclassical kinetic 
model to simulate the plasmon excitation of 
carbon nanotubes and the transport of charged 
particles moving through nanotubes. The 
analytical expressions of the dielectric function 
and the energy loss function are obtained for 
zigzag and armchair nanotubes of metallic 
properties, respectively. Numerical results display 
several very distinct peaks in the curves of loss 
function, showing effects from the collective 
excitation. As well, the stopping power and self-
energy are calculated while charged particles 
move along the axis of nanotubes with different 
geometries, under the influence of friction 
coefficients. The results had been achieved by 
using the programs are written in FORTRAN 90 
using software Computer Visual FORTRANV6.6, 
which performed for the numerical calculation, 
showing the influence of the damping factor, the 
nanotube radius, and the particle position on its 
self-energy, loss function and the stopping power.  

Keywords—carbon nanotube, stopping power, 
self-energy 

I. INTRODUCTION  

   When the carbon nanotube was discovered, there has been 

a growing interest in interactions of charged particles with 

the nanotubes, which has many applications in fields of 

research and technology. For example, important 

information about the electronic structure of carbon 

nanotubes can be obtained using the electron probe 

techniques, such as the transmission-electron microscopy 

[1] and the electron energy-loss spectroscopy (EELS) [2,3]. 

In particular, in some of the most intriguing applications, it 

has been demonstrated that carbon nanotubes may be used 

to efficiently directing )deflect and focus  ( charged particle 

beams [4,5], in the way quite similar to crystal channeling. 

A powerful theoretical tool for studying such interactions is 

provided by the dielectric response formalism, which has 

been implemented in restricted geometries in a number of 

pioneering studies by Ritchie and co-workers [6]. Important 

contribution in that direction has been reported by Stӧckli 

et al.[7], who have described the dielectric properties of 

carbon nanotubes by means of the hydrodynamic theory of 

plasmon excitations in a 2D electron gas on a cylindrical 

surface, in order to interpret the EELS data for collective 

excitations on single-wall carbon nanotubes, caused by the 

incidence of fast electrons perpendicular to the nanotube. 

Given the properties of the hydrodynamic model, such a 

study is suitable for describing the high-energy electrons 

passing through, or close by, the carbon nanotubes. On the 

other hand, experimental study of transport, or channeling, 

of charged particles through carbon nanotubes in the 

paraxial direction seems feasible, at present, only in the 

systems of the so-called ‘‘ropes,’’ or bunches, of nanotubes 

[8]. In such systems, the interactions of charged particles 

with the medium may be described, in a first approximation, 

by the model of a cylindrical cavity in the bulk of a solid 

[9-11]. Carbon nanotubes present systems that are quite 

different from the cavities in solids or nanowires made of 

different materials. Although all these systems share the 

same underlying cylindrical geometry, carbon nanotubes 

cannot be modeled as a part of a 3D structure. It is well 

known that, in general, the dielectric functions of nanotubes 

exhibit rather rich and complex properties regarding the 

dependence on the longitudinal wave number, the 

frequency, and the angular momentum of the elementary 

excitations, in ways that are strongly influenced by the 

geometric structure of the nanotube, such as its radius and 

the chiral angle [12-15].The dielectric formalism [16] used 

to study the energy loss of charged particles moving parallel 

to the axis in cylindrical tubules. In that formalism, the 

elementary excitations of the electron gas are described by 

dielectric function in the random-phase approximation 

(RPA( [17].  

 

II. THEORETICAL REVIEW 

   Zigzag nanotubes (n, l=0) and armchair nanotubes (n, 

l=n) are regarded as infinitesimally thin and infinitely long 

cylindrical cavities. The (n, l) nanotube naming scheme can 

be thought of as a vector in an infinite graphene sheet that 

describes how to roll up the graphene sheet to make the 

nanotube. The radius a of a nanotube is connected to l and 

n in the form of 𝒂 =
𝒃√𝟑(𝒍𝟐+𝒍𝒏+𝒏𝟐)

𝟐𝝅
, where (b=1.44 𝑨𝟎) is 

the length of the C-C bond of the surface of the nanotube. 

The electrons of the nanotube surface are assumed to meet 

the Fermi equilibrium distribution function, with the 

chemical potential of graphite being null valued [16] 

𝒇𝟎(𝒑) =
𝟏

𝟏+𝐞𝐱𝐩{
𝜺(𝒑)

𝒌𝑩𝑻
}
                (1) 

where 𝜺 = 𝜺(𝒑) is the electron energy with respect to Fermi 

level, 𝑘𝐵  is the Boltzmann constant, T is the temperature 

which remains at 273 K here, and p is the electron’s two 

dimensional quasimomentum tangential to the nanotube’s 

surface. In this Work, taken 𝝅 electrons as the aim for their 

important effects on electronic properties. By using the 

tight-binding model, the energy dispersion relations for 

zigzag and armchair nanotubes can be given as [18-20] only 
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m=0 can be relied on, and the term of 𝒗∅ would be ignored, 

for zigzag (n,0) :       

𝜺(𝒑) =

±𝜸𝟎√𝟏 + 𝟒𝒄𝒐𝒔 (
𝟑𝒃𝒑𝒛

𝟐ℏ
) 𝒄𝒐𝒔 (

√𝟑𝒃𝒑𝝓

𝟐ℏ
) + 𝟒𝒄𝒐𝒔𝟐 (

√𝟑𝒃𝒑𝝓

𝟐ℏ
) (2) 

and for armchair (n, n) : 

𝜺(𝒑) =

±𝜸𝟎√𝟏 + 𝟒𝒄𝒐𝒔 (
𝟑𝒃𝒑𝝓

𝟐ℏ
) 𝒄𝒐𝒔 (

√𝟑𝒃𝒑𝒛

𝟐ℏ
) + 𝟒𝒄𝒐𝒔𝟐 (

√𝟑𝒃𝒑𝒛

𝟐ℏ
)   (3) 

where 𝒑𝒛 and 𝒑𝝓 are the projections of p on the axis and the 

𝝓 direction of the nanotube,) 𝜸𝟎 =3.033 eV( is the 

interaction energy for the nearest-neighbor carbon atoms. 

The sign ±  corresponds to the conduction and valence 

electrons, respectively. Different from the graphene plane, 

carbon nanotubes have a structure with a long fiber axis and 

a circumference of atomic dimensions. So, while the 

number of allowed states in the axial direction is large, the 

number of states in the circumferential direction is limited, 

resulting in the discrete values of the momentum𝒑𝝓. Using 

the periodic boundary condition, the allowed values 

for 𝒑𝝓can be written for zigzag (n, 0) :          

𝒑𝝓 =
𝟐𝝅ℏ𝒔

√𝟑𝒏𝒃
,  s=1,2,… ,n                                                         (4) 

for armchair (n, n) : 

𝒑𝝓 =
𝟐𝝅ℏ𝒔

𝟑𝒏𝒃
 ,  s=1,2,… ,n                                                        (5) 

 

   The dielectric function of the electron gas 𝝐(𝒌, 𝒎, 𝝎, 𝒂) 

on the nanotube surface with the form as: 

𝝐(𝒌, 𝒎, 𝝎, 𝒂) = 𝟏 − 𝟒𝝅𝒂𝑰𝒎(𝒌𝒂)𝑲𝒎(𝒌𝒂)𝝌(𝒌, 𝒎, 𝝎, 𝒂),    
(6) 

     where 𝟒𝝅𝒂𝑰𝒎(𝒌𝒂) 𝑲𝒎(𝒌𝒂) is the Fourier transform of 

the electron-electron Coulomb interaction on the surface of 

nanotube, and 𝝌(𝒌, 𝒎, 𝝎, 𝒂)  is the response function, 

which has different expressions for zigzag and armchair 

nanotubes in this model, for zigzag: 

𝝌(𝒌, 𝒎, 𝝎, 𝒂)

=
𝟒

𝝅ℏ

𝟏

√𝟑𝒏𝒃
∑ ∫ 𝒅𝒑𝒛

𝝏𝒇𝟎

𝝏𝜺

𝟐𝝅/𝟑𝒃

−𝟐𝝅/𝟑𝒃

𝒏

𝒔=𝟏

(
𝒎
𝒂

) 𝒗𝝓 + 𝒌𝒗𝒛

(
𝒎
𝒂

) 𝒗𝝓 + 𝒌𝒗𝒛 − 𝝎 − 𝒊𝜸
, (𝟕) 

for armchair: 

𝝌(𝒌, 𝒎, 𝝎, 𝒂) =

𝟒

𝝅ℏ

𝟏

𝟑𝒏𝒃
∑ ∫ 𝒅𝒑𝒛

𝝏𝒇𝟎

𝝏𝜺

𝟐𝝅/√𝟑𝒃

−𝟐𝝅/√𝟑𝒃
𝒏
𝒔=𝟏

(
𝒎

𝒂
)𝒗𝝓+𝒌𝒗𝒛

(
𝒎

𝒂
)𝒗𝝓+𝒌𝒗𝒛−𝝎−𝒊𝜸

, (8) 

  So, the dielectric function obtained here is not only related 

to the longitudinal wave number k, the angular momentum 

m, the frequency 𝝎 of the elementary excitation, and the 

radius of the nanotube, but also the chiral angle of the 

nanotube which indicates the different energy dispersion 

relation of electrons in Eqs. (2) and (3). 

Considering the asymptotical properties of the modified 

Bessel function, the term 𝑲𝒎 (𝒌/𝒂)/𝑰𝒎(𝒌/𝒂) in equations 

of self-energy and stopping power approaches zero at a 

rapid rate as k increases. Thus more contribution will be 

made to the stopping power in the case of smaller m and k 

in this theoretical model. 

    In the following calculations, a proton Q=1 discussed 

when it’s moving along the axis of the nanotube 𝝆𝟎 = 𝟎 in 

zigzag nanotubes and armchair nanotubes, 

respectively.Thus, on account of axial symmetry, in the 

expression of the response function. [21]. 

It is convenient to consider separately the values of the total 

potential 𝛗 = 𝛗𝟏inside the nanotube (𝝆 < 𝑎)and 𝛗 = 𝛗𝟐 

outside the nanotube ( 𝝆 > 𝑎) . The former part of the 

potential is composed of the potential 𝛗𝟎due to the moving 

charged particle and the induced potential 𝛗𝒊𝒏𝒅 due to the 

charge polarization on the nanotube surface, so that  

𝛗𝟏 = 𝛗𝟎 + 𝛗𝒊𝒏𝒅  . Taking into account the natural 

boundary conditions at 𝝆 = 𝟎  and 𝝆 = ∞ , the potential 

𝛗𝒊𝒏𝒅  can be expanded in terms of the cylindrical Bessel 

functions term 𝑲𝒎 (𝒙)/𝑰𝒎(𝒙), [11, 16] as follows: 

𝛗𝐢𝐧𝐝(𝒓, 𝒕)

=
𝓠

𝝅
∑ ∫ 𝒅𝒌𝒆𝒊𝒌(𝒛−𝒗𝒕)+𝐢𝐦(∅−∅𝟎)

+∞

−∞

∞

𝒎=−∞

𝐼𝑚(𝑘 𝝆𝟎 )𝐼𝑚( 𝒌𝝆) 

𝑲𝒎(𝒌𝒂)

𝑰𝒎(𝒌𝒂)
[𝝐−𝟏(𝒌, 𝒎, 𝝎, 𝒂) − 𝟏],                                          (9) 

 

So, the detailed expressions of the self-energy and stopping 

power are given as 

𝑬𝒔𝒆𝒍𝒇 =
𝟏

𝟐
𝓠𝛗𝒊𝒏𝒅(𝒓, 𝒕)|𝒓=𝒓𝟎(𝒕) = 

 

𝓠𝟐

𝟐𝝅
∑ ∫ 𝒅𝒌𝑰𝒎

𝟐 (|𝒌|𝝆𝟎)
𝑲𝒎(|𝒌|𝒂)

𝑰𝒎(|𝒌|𝒂)

∞

−∞

𝒎=∞

−𝒎=∞

× {𝑹𝒆 [𝝐−𝟏(𝒌, 𝒎, 𝝎, 𝒂)
− 𝟏]},                                                      (𝟏𝟎) 

 

 

 

𝑺 = 𝓠
𝛛𝛗𝒊𝒏𝒅(𝒓,𝒕)

𝝏𝒛
|𝒓=𝒓𝟎(𝒕) =

𝓠𝟐

𝟐𝝅
∑ ∫ 𝒅𝒌𝑰𝒎

𝟐 (|𝒌|𝝆𝟎)
𝑲𝒎(|𝒌|𝒂)

𝑰𝒎(|𝒌|𝒂)
× 𝑰𝒎

∞

−∞
𝒎=∞
−𝒎=∞ [𝝐−𝟏(𝒌, 𝒎, 𝝎, 𝒂) − 𝟏],                                                         (11) 

 

From Eq. (11) one may notice that the resonant excitations could be figured out in the case that the damping coefficient 

approaches zero 𝜸 → 𝟎+.  
As the function 𝒁𝒎(𝒌, 𝝎) = 𝟒𝝅𝒂𝑰𝒎(𝒌𝒂)𝑲𝒎(𝒌𝒂)𝑹𝒆 𝝌(𝒌, 𝒎, 𝝎, 𝒂) equal zero, the energy loss function [−𝝐−𝟏(𝒌, 𝒎, 𝝎, 𝒂)] in 

Eq. (10) transforms into a Delta function, leading to 

 

𝑺=
𝓠𝟐

𝟐𝝅
∑ ∫ 𝒌𝒎𝑰𝒎

𝟐 (|𝒌𝒎|𝝆𝟎) 
𝑲𝒎(|𝒌|𝒂)

𝑰𝒎(|𝒌|𝒂)

𝝏𝒁𝒎(𝒌,𝝎)

𝝏𝒌

∞

−∞
𝒎=∞
−𝒎=∞ |𝒌=𝒌𝒎

−𝟏  ,                                                                                                                 (12) 

Where: 

 𝒌𝒎 is determined by the condition of the collective resonance 𝒁𝒎(𝒌, 𝝎) = 𝟎
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III RESULTS 

 

     The dielectric functions   ε(k, m, ω, a) vs the frequency ω  for  zigzag nanotube )27,   0( and armchair nanotube  )15, 15(  are 

shown in Figures  (1), with  𝜸/𝛚𝒑=0.001,  m = 0 and 𝛚𝒑 = (
𝟒𝛑𝒏𝟎

𝒂
)

𝟏
𝟐⁄  = 0.5 a.u.,  

 𝒏𝟎  is the surface density of  the  valence electrons, which is obtained  from the integration of equilibrium distribution functions 

 𝒏𝟎 =
𝟒

(𝟒𝛑ℏ)𝟐 ∫ 𝐝𝐩𝗳𝟎 (𝐚, 𝐩), [22].  

 

 

 

 

FIG.1. The dielectric functions dependent on the frequency 𝛚  for zigzag )27, 0( carbon nanotubes are shown in (a, b, c) 

and armchair (15, 15) carbon nanotubes are shown in (e, f, g)  , with m =0,  𝜸/𝛚𝒑=0.001 and different k=0.1, 0.2, and 0.3. 

The real (Re) and the imaginary (Im) of the dielectric function is shown by the blue and the red curves, respectively. 
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FIG.2.The loss functions dependent on the frequency, 𝛚 for zigzag (27, 0) carbon nanotubes are shown in (a, b, c) and 

armchair (15, 15) carbon nanotubes are shown in (e, f, g), with m=0, and different k and values 𝜸. 

The real part Re and the imaginary part  Im of the dielectric function are shown by the blue and the red curves, respectively. One 

can see from this figure that the curves of Re and Im exhibit similar shapes. Which the theoretical formulation is based on the 

quantum RPA. Obviously, as the arrows point out in Fig.1, the trend of  Re  is becoming zero with the increasing of ω, while Im 

approaches zero with the infinitesimally small damping, corresponding to collective excitations on the nanotube surface.  

Plasmon peaks are also shown in Fig.1, in which the energy loss function small damping, corresponding to collective excitations 

on the nanotube surface. Im[𝜺−𝟏(𝒌, 𝒎, 𝝎, 𝒂 ) is calculated dependent on the frequency ω  but for different damping 𝜸. The 

biggest damping factor adopted here is 𝜸 = 𝟎. 𝟎𝟓 𝛚𝒑≈ 0.68 eV. 

It can be observed that the plasmon peaks are damped to become lower and wider for more friction from the atoms.
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FIG.3. The loss functions dependent on the frequency ω for a zigzag )27, 0 (carbon nanotubes are shown in (a, b, c) and 

for a armchair )15, 15( carbon nanotubes are shown in (e, f, g), with 𝜸/𝛚𝒑=0.001, and different k and m values. 

The angular momentum m=0, 1, and 2. As m decreases and 

k increases, the peak value keeps increasing, suggesting 

more energy loss. 

    However, considering the asymptotical properties of the 

modified Bessel function, the term  𝑲𝒎 (𝒌/𝒂)/𝑰𝒎(𝒌/𝒂) in 

equations of self-energy and stopping power approaches 

zero at a rapid rate as k increases. Thus more contribution 

will be made to the stopping power in the case of smaller m 

and k in this theoretical model. 

    In the following calculations, a proton Q=1 discussed 

when it’s moving along the axis of the nanotube 𝝆𝟎 = 𝟎 in 

zigzag nanotubes and armchair nanotubes, respectively. 

Thus, on account of axial symmetry, only m=0 can be relied 

on, and the term of 𝒗∅ would be ignored in the expression 

of the response function. [21] 

 

-40

10

60

110

160

0 0,2 0,4 0,6Im
[-

1
/ε

(k
,m

,ω
,a

)]

ω(a.u)

-a-
Zigzag(27,0) m=0

k=0.1

k=0.2

k=0.3

-40

10

60

110

160

0 0,2 0,4 0,6Im
[-

1
/ε

(k
,m

,ω
,a

)]

ω(a.u)

-e-
Armchaire(15,15) m=0

k=0.1

k=0.2

k=0.3

-40

10

60

110

160

0 0,1 0,2 0,3 0,4 0,5

Im
[-

1
/ε

(k
,m

,ω
,a

)]

ω(a.u)

-b-
Zigzag(27,0) m=1 k=0.1

k=0.2

k=0.3

-40

60

160

0 0,2 0,4 0,6Im
[-

1
/ε

(k
,m

,ω
,a

)]

ω(a.u)

-f-

Armchaire(15,15) m=1

k=0.1

k=0.2

k=0.3

-40

10

60

110

160

0 0,1 0,2 0,3 0,4 0,5

Im
[-

1
/ε

(k
,m

,ω
,a

)]

ω(a.u)

-c-
Zigzag(27,0), m=2

k=0.1

k=0.2

k=0.3

-40

10

60

110

160

0 0,1 0,2 0,3 0,4 0,5Im
[-

1
/ε

(k
,m

,ω
,a

)]

ω(a.u)

-g-

Armchaire (15,15)m=2

k=0.1

k=0.2

k=0.3

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 8, August - 2017 

www.jmest.org 

JMESTN42352344 7916 

 

FIG.4. Effects of the particle position  𝝆𝟎 on the velocity dependence of the self-energy with 𝜸/𝛚𝒑=0.001  are shown in(a 

(and (c), for a proton moving in zigzag )27, 0( and carbon nanotubes and armchair ) 15, 15( carbon nanotube, 

respectively.(b(and (d) shown the stopping power with friction coefficient (γ=0), for a proton moving in zigzag )27, 0( 

carbon nanotubes and armchair ) 15, 15( carbon nanotube, respectively. 

 

   The influence of the charged particle position   𝝆𝟎 on the 

dependence of the self-energy and the energy loss on 

velocity are shown in Figs. (4), for a=20 and with zero 

friction coefficient (γ=0). 

  For a fixed velocity, both the self-energy and the stopping 

power have the smallest magnitude when the particle moves 

along the nanotube axis, and increase in magnitude when 

the particle position shifts closer to the surface of the 

nanotube. One also observes that the positions of extreme a 

in both sets of curves shift to lower velocities as the particle 

position moves closer to the wall of the nanotube. 

IV Conclusion 

    In this work, a theoretical calculation is used to describe 

the electron excitation on the surface of the zigzag and 

armchair nanotubes of metallic character. From the electron 

dispersion relation of the nanotube, the real band structure 

of electrons can be embodied to affect the characters of the 

dielectric function 𝝐(𝒌, 𝒎, 𝝎, 𝒂)  and the loss function 

Im[ −𝝐−𝟏(𝒌, 𝒎, 𝝎, 𝒂)] . General expressions of the 

dielectric function and energy loss function are accordingly 

derived, which are relative to the radius and chiral angle of 

the nanotubes. The plasmon excitation, which is dependent 

on the nanotube geometry, the longitudinal wave number, 

the angular momentum, and the friction coefficient, can be 

identified from the dielectric function profiles and the sharp 

peaks in the loss function. And then, the self-energy, and 

the stopping power are obtained for a charged particle 

moving paraxially in nanotubes. The simulation results are 

shown and indicate strong dependences on the damping 

factor and the nanotube geometry. As the damping factor 𝜸 

increases, the self-energy and the stopping power keep 

decreasing in magnitude, and the extrema position of the 

stopping power move to the lower velocity region, 

suggesting more damping effects on the collective 

excitation. The stopping power results also show that the 

damping            𝜸 = 𝟎. 𝟎𝟎𝟏𝝎𝒑 is small enough to be taken 

as a case without damping. And in this case, as the radius of 

the two kinds of nanotube increases, the self-energy and the 

stopping power decrease in magnitude, but with almost no 

shifts of the maxima position. [16]. The results obtained 

make researchers believe that the present model is available 

and apt for studies of the transport behavior through 

nanotubes, especially for different nanotube geometries and 

even for multiwall nanotubes in future work. 
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