
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 10, October - 2017

www.jmest.org

JMESTN42352313 8310

Remote Operating System Identification Using
Artificial Neural Networks

O. O. Obe, B. K. Alese

Department of Computer Science, Federal University

of Technology

P. M. B. 704, Akure, Nigeria.

M. A. Oduwale

Department of Computer Science, Ondo State

University of Science and Technology

P. M. B. 353, Okitipupa, Nigeria.

Abstract—The need to determine the identity of

an Operating System is valuable in areas such as

network security, internet modeling, and end to

end application design. Various techniques have

been used to solve the problem of remote

operating system identification such as rule-

based tools (e.g. network mapper). However,

these techniques fail to detect the operating

system with high accuracy. In this study,

multilayer perceptron model that utilizes back

propagation neural network based classifier was

developed for accurately fingerprinting operating

system of remote host. This network was

simulated using Neural Designer simulator. The

result of this study was compared with Network

mapper and machine learning technique using

accuracy. The result comparison proved that

Back Propagation neural network based classifier

is far more accurate than rule-based tools on

packet traces for fingerprinting.

Keywords—Feed Forward, Back Propagation,
Feed Forward Neural Network, Operating System,
Neural Designer

I. Introduction

Remote Operating System identification systems

popularly known as operating system (OS)

Fingerprinting, is an essential part of the assessment

process of a network security. Operating system

(OS) fingerprinting is the process of determining the

identity of the Operating System of a remote host on

the internet. This may be accomplished passively by

sniffing network packets travelling between hosts, or

actively by sending carefully crafted packets to the

target machine and analyzing the response, it

leverages the fact that different operating systems

implement differing TCP/IP stacks, each of which has

a unique signature. Even between versions or

patches of an operating system there exist subtle

differences as developers include new features and

optimize performance [11].

The operating system fingerprinting is a process of

remotely detecting and determining the identity of a

target system by observing the TCP/IP packets that

are generated by that system [1].

Operating system fingerprinting, also known as

TCP/IP stack fingerprinting, is the process of

determining the operating system of a target system

based on inferring properties of its TCP/IP protocol

stack from observed packets [5].

Robust and practicable operating system (OS)

Fingerprinting must meet some requirements. At first,

it must be accurate, i.e. it does not fingerprint the

operating system (OS) falsely; secondly, it must be

quick for allowing large network scans; furthermore, it

also need that the signature database can be

extended easily. To meet these requirements, the

design of the classifier in the OS tools plays an

important role.

Operating system fingerprinting is the process of

learning what operating system is running on a

particular device. By analyzing certain protocol flags,

options, and data in the packets a device sends onto

the network, we can make relatively accurate

guesses about the operating system (OS) that sent

those packets. By pinpointing the exact operating

system (OS) of a host, an attacker can launch a

precise attack against a target machine.

Ultimately, most of the researchers have derived

various tools for fingerprinting operating system. In

this research, the artificial neural networks concept

was used using neural designer simulator to

fingerprint correctly.

1.1. Related Studies

[6] used Passive Operating System Identification

from TCP/IP Packet Headers to fingerprint.

New classifiers were developed using machine-

learning approaches including cross-validation

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 10, October - 2017

www.jmest.org

JMESTN42352313 8311

testing, grouping OS names into fewer classes, and

evaluating alternate classifier types.

[1] used Machine Learning Techniques to improve

Operating System Fingerprinting. TCP/IP

communication is setup between machines to

capture and analyze TCP/IP packets for more

accurate and fine grained OS detection using packet

correlation approach was built.

[4] utilized support vector machine to classify OS

fingerprint. An evaluation of using a support vector

machine (SVM) to classify operating system

fingerprints in the Nmap security scanner. In solving

a simplified version of operating system

classification, the SVM got marginally more accurate

results than Nmap’s built-in classifier.

[9] used Machine Learning Techniques for Advanced

Passive Operating System Fingerprinting. This paper

focused on automating the generation and updating

of the signatures for passive fingerprinting. It deals

with fingerprints which do not have an exact match

with an already known signature using classification

algorithms.

[10] developed a new tool and technique for remote

operating system fingerprinting. This work present an

original Operating System detection method, based

on temporal response analysis.

2. Methodology

We studied the technical variables from the packet

header file of the operating system. We selected

twelve input variables from the signature datasets.

We trained a three-layered feed-forward neural

network model with backpropagation algorithm.

Output values were recorded and compared with the

target.

The model was simulated using Neural Designer

simulator.

3. Design and Implementation

We applied Neural Designer Simulator to enhance

modular techniques in the design of basic functional

components. There are six main functional modules

of the fingerprinting system (Fig. 1). These include

the data gathering module, input phase, neural

network module, performance functional, training

strategy module and the output module.

Fig 1. Conceptual diagram of the neural-network-based fingerprinting

software

At one end, datasets signatures were gathered.

Numeric formats were submitted to the input phase.

The digital signature datasets were thereafter

submitted to the neural network module as input

signals for training the network or testing as

applicable. The neural network module had the

features to save the network configuration for trained

networks for subsequent testing and to submit the

result of the tested input to the output module

wherein it could be displayed or printed. The

conceptual diagram of the system is shown in fig. 1.

3.1. Setting up the Network

3.1.1 Task Description

The neural network defines a function which

represents the model. A neural network is defined

within Neural Designer as a multilayer perceptron. It

is a class of universal approximator. This neural

network is used to span a function space for the

variational problem at hand.

3.1.2 Data Set

The first step is to prepare the data set, which is the

source of information for the remote operating

system identification problem.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 10, October - 2017

www.jmest.org

JMESTN42352313 8312

The pOf.dat file contains the data for this example. In

this example we have a data set with 13 variables

(columns) and 100 instances (rows).

3.2. Training Strategy

The next step in solving this problem is to assign the

training strategy, which is composed of two different

algorithms:

 Initialization algorithm

 Main algorithm

3.3. Running the Network

The training data were used to run the network.

4. Results

A Neural Network produces a set of outputs for each

set of inputs applied.

The outputs depend, in turn, on the values of the

parameters.

Table 1 shows the input values and their

corresponding output values. The input variables are

X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11 and

X12; and the output variable is X13

Table 1: Input values and their corresponding output values

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13

1 128 8.19e+003 0 6 1 1 0 3 1 1 1 0 0.168

2 255 0 7 0 1 0 0 1 1 1 1 0 0.994

3 128 8.19e+003 0 2 1 1 0 3 1 1 1 0
10.9

4 128 8.19e+003 0 8 1 1 0 3 1 1 1 0 0.168

5 64 6.55e+004 0 4 1 1 1 3 1 1 1 1 10

6 64 0 10 6 1 1 1 1 1 1 1 0 0.0311

7 64 0 20 10 1 1 1 1 1 1 1 0 0.105

8 128 6.55e+004 0 1 1 1 0 3 1 1 1 0 0.005

9 128 8.19e+003 0 6 1 1 0 3 1 1 1 0 0.168

10 64 1.64e+004 0 0 1 0 0 0 0 0 0 0 5.99

The following deductions can be derived from the inputs-outputs table

1. X13 is the output data

2. 0.005 – 0.168 indicate a varying range of Windows operating system versions

3. 5.99 - 10.9 indicate a varying range of Unix operating system versions

5. Conclusions

This research demonstrated the applicability of

training data to ANN for solving selection

problem. The artificial neural network has

been able to establish a useful method of

accurately fingerprinting operating system.

This research utilized a three-layer feed forward

neural network model trained with back

propagation learning algorithm.

Though training may be tedious and expensive, it is

opined that if a network is well trained with a proper

set of input data, artificial neural networks will

generate better results than other traditional

techniques.

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 10, October - 2017

www.jmest.org

JMESTN42352313 8313

REFERENCES

[1] Al-Shehari, T. and Shahzad, F. (2014).

Improving Operating System Fingerprinting

using Machine Learning Tecniques.

International Journal of Computer Theory

and Engineering, Vol. 6, No. 1. pp. 1 – 6.

[2] Burroni, J. and Sarraute, C. (2005). Using

Neural Networks for remote OS

Identification; In Proceedings of the Pacific

Security Conference (PacSec ’05), Tokyo,

Japan, November 15-16.

[3] Chris, T. (2011). An Overview of Remote

Operating System Fingerprinting”.

URL:http://www.sans.org/reading_room/whit

epapers/testing/overview-remote-operating-

system-fingerprinting_1231.pdf (12 March

2015).

[4] Fifield, D. (2010). OS Fingerprint

classification using a support vector machine

[5] Greenwald, L. G and Thomas T. J (2007).

Toward undetected Operating system

fingerprinting. In Proceedings of the First

USENIX Workshop on Offensive

Technologies (WOOT’07), Boston, MA.

[6] Lippmann, R., Fried, D., Piwowarski, K., and

Streilein, W. (2003). Passive Operating

System Identification From TCP/IP Packet

Headers. In Proceedings of the ICDM

Workshop

[7] Negnevitsky, M. (2005), Artificial Intelligence

- A Guide to Intelligent Systems, 2nd Edition,

Pearson Education Inc., Essex, England.

[8] Sarraute, C., and Burroni, J. (2008).Using

Neural Networks to improve classical

Operating System Fingerprinting techniques;

Electronic Journal of SADIO, Vol. 8, No. 1,

pp. 35–47. Retrieved from:

http://www.coresecurity.com/files/attachment

s/SarrauteEJS.pdf

[9] Schwartzenberg, J. (2010). Using Machine

Learning Techniques for Advanced Passive

Operating System Fingerprinting URL:

eprints.eemcs.utwente.nl/18789/01/Julius_-

_Final_version.pdf. (15 January, 2015).

[10] Veysset, F., Courtay, O., Heen, O. (2002).

New Tool and Technique for Remote

Operating System Fingerprinting. Intranode

Research Team. v1.1

[11] Wenwei, L., Dafang, Z., and Jinmin, Y.

(2005). Remote Operating System

Fingerprinting Using BP Neural Network.

http://www.jmest.org/
http://www.sans.org/reading_room/whitepapers/testing/overview-remote-operating-system-fingerprinting_1231.pdf
http://www.sans.org/reading_room/whitepapers/testing/overview-remote-operating-system-fingerprinting_1231.pdf
http://www.sans.org/reading_room/whitepapers/testing/overview-remote-operating-system-fingerprinting_1231.pdf
http://www.coresecurity.com/files/

