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Abstract— Present paper explores the Matlab 
implementation of the normal mode analysis and 
predicts the waves propagating in rotating thermo 
visco-elastic transversely isotropic half space. At 
the beginning the paper deals with the 
mathematical development of the physical 
problem satisfying the boundary conditions. 
Resulting linear equation has been solved with the 
help of Matlab software. To demonstrate the 
behaviors of phase velocities and attenuation 
quality factor the Grapher has been used. 
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I.  INTRODUCTION  

The study of wave propagation in anisotropic 
materials has been a subject of extensive significance 
in the literature. It is of great importance in a variety of 
applications ranging from seismology to nondestructive 
testing of composite structures used in aircraft, 
spacecraft, or other engineering industries. Polymers 
or polymer-based matrix composites are widely used 
in these industrial environments. These materials 
possess isotropic or anisotropic properties that can 
strongly affect the propagation of waves. The 
dynamical interaction between the thermal and 
mechanical fields in solids also has a great number of 
practical applications in modern aeronautics, 
astronautics, nuclear reactors and high energy particle 
accelerators. The generalized theory of 
thermoelasticity has drawn widespread attention 
because it removes the physically unacceptable 
situation of the classical theory of thermoelasticity, that 
is, that the thermal disturbance propagates with the 
infinite velocity. The Lord-Shulman theory [1] and 
Green–Lindsay theory [2] are two important 
generalized theories of thermoelasticity. Recently, 
Chandrasekharaiah [3], Hetnarski and Ignazack [4] in 
their surveys, considered the theory proposed by 
Green and Naghdi [5-7] as an alternate way of 
formulating the propagation of heat. This theory is 
developed in a rational way to produce a fully 
consistent theory that is capable of incorporating 
thermal pulse transmission in a very logical manner. 
The development is quite general and the 
characterization of material response for the thermal 
phenomena is based on three types of constitutive 
functions that are labeled as type I, type II, and type III. 

Some researchers in past have investigated 
different problem of rotating media. Chand et al. [8] 
presented an investigation on the distribution of 
deformation, stresses and magnetic field in a uniformly 

rotating homogeneous isotropic, thermally and 
electrically conducting elastic half-space. Many 
authors (Schoenberg and Censor [9]; Clarke and 
Burdness [10]; Destrade [11]) studied the effect of 
rotation on elastic waves. (Sharma and Thakur [12], 
Sharma [13]) discussed effect of rotation on different 
type of waves propagating in a thermoelastic medium. 
Othman [14] investigated plane waves in generalized 
thermoelasticity with two relaxation times under the 
effect of rotation. Othman and Song [15] presented the 
effect of rotation in magneto-thermoelastic medium. 
Mahmoud [16] discussed the effect of Rotation, Gravity 
Field and Initial Stress on Generalized Magneto-
Thermoelastic Rayleigh Waves in a Granular Medium.  

 

The inelastic behavior of the Earth’s material plays 
an important role in changing the characteristics of 
seismic waves, in defining seismic source functions 
[17], and in determining the internal structure of the 
Earth. The general theory of viscoelasticity describes 
the linear behavior of both elastic and inelastic 
materials and provides the basis for describing the 
attenuation of seismic waves due to inelasticity. Gupta 
[18] discussed the reflection of waves in visco-
thermoelastic transversely isotropic medium. In spite of 
these studies, relatively less attention has been paid to 
studying the reflection of waves in viscoelastic 
transversely isotropic half space by considering the 
equations of generalized thermoelasticity [6,7], which 
has motivated the authors to carry out the present 
work.  

In this article, effect of viscoelasticity on the 
propagation of waves in a rotating transversely 
isotropic medium in the context of thermo-visco-
elasticity with GN theory of type-II and III has been 
investigated. A cubic equation resulting in the three 
values of phase velocities and attenuation quality 
factor has been obtained. Furthermore the expressions 
for the amplitude ratios of the reflected wave 
corresponding to the three incident waves have been 
obtained. These expressions are then evaluated 
numerically and plotted graphically (by using Grapher) 
to manifest the effect of viscoelasticity.  

II. FORMULATION OF THE PROBLEM 

In the context of thermoelasticity based on Green-

Naghdi theory of type II and type III, the equation of 

motion for the transversely isotropic medium, taking the 

rotation term about y-axis as a body force is  
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where 


is the uniform angular velocity and  is the 

density of the medium. The generalized energy equation 

can be expressed as  
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The constitutive equations have the form  
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the deformation tensor is 

defined by 
,2)( ,, ijjiij uue   ijt are components of 

stress tensor, iu  the mechanical displacement, ije are 

components of infinitesimal strain, T the temperature 

change of a material particle, 0T  the reference uniform 

temperature of the body, ijK is the thermal conductivity, 

*
ijK  are the characteristic constants of the theory,

 

klijklij C    are the thermal elastic coupling tensor, kl

are the coefficient of linear thermal expansion, c the 

specific heat at constant strain, ijklC  are characteristic 

constants of material following the symmetry properties  

.,,, **
jiijjiijjiijjiklklijijkl KKKKCCC    The 

comma notation is used for spatial derivatives and 

superimposed dot represents time differentiation. 

 

Following Slaughter [19], the appropriate 

transformations have been used on the set of equations (3), 

to derive equations for transversely isotropic medium. We 

restrict our analysis for two dimensions, in which we 

consider the component of the displacement vector in the 

form  

                   ),0,( 31 uuu 
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 (4)                                                                                                                             

Here we consider plane waves propagating in plane such 

that all particles on a line parallel to 2x -axis are equally 

displaced. Therefore, all the field quantities will be 

independent of 2x  coordinate, i.e. .0/ 2  x  Thus, the 

field equations and constitutive relations for such a medium 

reduces to: 
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where 33313133131111 ,  CCCC   and we have 

used the notations ,333,513,111  for the material 

constants. 

It is convenient to change the preceding equations 

into the dimensionless forms. To do this, the non-

dimensional parameters are introduced as:
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where oo TtL ,, are parameters having dimension of length, 

time and temperature respectively. 

 

 

III. PLANE WAVE PROPAGATION AND REFLECTION OF 

WAVES 

 

Let 
),0,( 31 ppp 


denote the unit propagation 

vector, 
c

and 


 are respectively the phase velocity 
and the wave number of the plane waves propagating 

in 31 xx 
plane. For plane wave solution of the 

equations of motion of the form 
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With the help of equations (8) and (9) in equations 
(5)-(7), three homogeneous equations in three 
unknowns are obtained. Solving the resulting system 
of equations for non-trivial solution results in 
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The roots of this equation give three values of
2c . 

Three positive values of c  will be the velocities of 
propagation of three possible waves. The waves with 

velocities 321 ,, ccc
 correspond to three types of quasi 

waves. We name these waves as quasi-longitudinal 
displacement (qLD) wave, quasi thermal wave (qT) 
and quasi transverse displacement (qTD) wave. 

IV. NUMERICAL RESULTS AND DISCUSSION 

In order to illustrate the theoretical results obtained in the 

preceding sections, we now present some numerical results. 

The following relevant physical constants for Cobalt 

material are taken from Dhaliwal et al. [20] for a 

thermoelastic transversely isotopic material, 
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 For a particular model of a thermo-visco-elastic 

transversely isotropic solid, the relevant parameters are 

expressed as: 
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A. Flow Chart: 

 

 

B. Program  

MATLAB is an integrated technical computing 
environment that combines numeric computation, 
advanced graphics and visualization, and a high-
level programming language oriented towards 
matrix computation. There are functions for data 
analysis and visualization, numeric computation, 
engineering and scientific graphics, modeling, 
simulation, and prototyping, programming and 
application development. Writing the Matlab 
program to solve the problem is rather 
straightforward. To simplify the code, we initially 
assume that the motion lies in a plane (x-z plane). 
We convert the second order partial differential 
equations into a system of homogeneous linear 
equations by introducing a plane wave solution 
(represented by equation 9). Resulting system of 
homogeneous equations possess a unique if and 
only if the determinant of the coefficient matrix is 
non-zero. This will lead to a cubic equation in c^2. 
We can readily code such an equation in Matlab by 
invoking one of the available routines: roots (c). As 
an input we just need to provide the values of the 
coefficients of the cubic equation, viz., A, B, C and 
D. The calling function is: 

function r = roots(c) 
if size(c,1)>1 && size(c,2)>1 
    error('MATLAB:roots:NonVectorInput', 'Input must be a vector.') 
end  
if ~all(isfinite(c)) 
    error('MATLAB:roots:NonFiniteInput', ... 
          'Input to ROOTS must not contain NaN or Inf.'); 
end  
c = c(:).'; 
n = size(c,2); 
r = zeros(0,1,class(c));  
inz = find(c); 
if isempty(inz),      % All elements are zero 
    return 
end  % Strip leading zeros and throw away.  % Strip trailing zeros, but remember 
them as roots at zero. 
nnz = length(inz); 
c = c(inz(1):inz(nnz)); 
r = zeros(n-inz(nnz),1,class(c));   % Prevent relatively small leading coefficients 
from introducing Inf  by removing them. 
d = c(2:end)./c(1); 
while any(isinf(d)) 
    c = c(2:end); 
    d = c(2:end)./c(1); 
end  % Polynomial roots via a companion matrix 
n = length(c); 
if n > 1 
    a = diag(ones(1,n-2,class(c)),-1); 
    a(1,:) = -d; 
    r = [r;eig(a)]; 
end 
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C. Graphs  

Graphical representation (with the help of Grapher) 
is given for the variations of the phase velocities and 
attenuation quality factors for the qLD, qTD and qT 
waves to compare the results in two cases, one for 
transversely isotropic thermo-visco elastic half-space 
(TIV) and other from isotropic thermo-viscoelastic half-
space (IV). Fig. 1(a, b, c) represents the variations of 
phase velocities of the waves while Fig. 2(a, b, c) 
represents the attenuation quality factors for the three 
waves. In these figures solid line represents the 
variations for transversely isotropic medium (TI) while 
the dotted curves represent the variations for isotropic 
medium (I). The curves with center symbol correspond 
to the variations with the viscoelastic effect while the 
curves without center symbol represent the behavior 
after neglecting the viscoelastic effect.  
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Fig. 1 Phase velocities of (a) qLD wave, (b) qT 

wave, and (c) qTD wave 
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Fig. 2 Attenuation Quality factors of (a) qLD wave, 
(b) qT wave, and (c) qTD wave 

 

V. CONCLUSION  

The output of the function is used to get the values 
of the phase velocity and attenuation coefficient. 
The physical quantities displacement, temperature, 
amplitude ratios depend not only on time ‘t’ and 
space coordinates but also on the characteristic 
parameter of the Green-Naghdi theory of type II 
and type III. Here, all variables are taken in non-
dimensional form. The approach adopted to 
discuss the propagation of waves is summarized 
into the flow chart shown in the Appendix. It is 
depicted that for all the waves the value of phase 
velocity and attenuation quality factor starts with 
initial oscillation and attains a constant behavior.  
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