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Abstract— the state estimation (SE) is the most 
important implemented function in the control 
center of electric power system. Without reliable 
and effective SE all monitoring and control 
functions of the control center are immaterial. The 
SE provides the data base by which all those 
functions can be performed. A hybrid estimator 
incorporating fuzzy logic concepts (if then rules) 
are introduced in the past. In this paper, a fast 
method for power system state estimation is 
introduced which is based on weighted least 
square (WLS) state estimation and fuzzy linear 
regression (FLR) model. The FLR model is based 
on inequality constrained linear programming (LP) 
optimization. In this approach, the WLS method 
will run for first iteration and then the FLR model 
will continue until the convergence is reached. 
The WLS-FLR approach provides not only the 
estimated states but also, an uncertainty range for 
those estimated states with less computational 
time. The effect of fuzziness degree and the 
measurements accuracy on the estimated states 
are discussed in this paper. The effectiveness of 
the proposed method is demonstrated by using 6-
bus, and IEEE 30-bus systems. 

Keywords— State Estimation;Weighted Least 
Square (WLS); Linear programming; Fuzzy Linear 
Regression (FLR); Uncertainty.  

I.  INTRODUCTION 

The most important part of the system operation is 
to have an accurate picture of the system states. A 
simple SCADA (Supervisory Control and Data 
Acquisition) system is able to provide the system 
operators with measured information and the system 
operation conditions which can be filtered by state 
estimator to create a more accurate picture of the 
system status.  

Using the state estimation, the effect of normal 
errors of measurements and the variance of the 
estimated states can be reduced by utilizing the 
redundancy available in the measurement system. The 
gross errors and invalid topological information 
together with the model parameter errors can also be 
detected and identified.  

If the inaccuracy in the measurements is modeled 
by known probability distribution function, then the set 
of feasible estimates can be modeled by the same 
function. Unfortunately, it is difficult to characterize 
statistics of observation errors in practice. In such 
circumstances, it is desirable to provide not only just a 
single ‘optimal’ estimate of each state variable but also 
an uncertainty range within which the true value of the 
state variable be lay. The idea of an uncertainty range 
is recognizable in engineering practice, where the 
accuracy of a particular measurement is often 
described in percent e.g. ±3 %, rather than by 
quantifying the standard deviation or variance. The 
range is governed by the tolerance of the measuring 
instrument which is usually provided by the 
manufacturer. 

     The concepts of uncertainty in the general context 

of engineering analysis, estimation and optimization 

are introduced in [1]. These concepts have been 

extended and developed and applied in several areas, 

e.g. in water distribution networks [2]. The authors in 

[3] introduced bounds on measurements. A 

development of the approach [4] introduced the term 

set, bounded state estimation (SBSE) to increase the 

robustness of the estimation introduced bounds on the 

measurements. The concepts of robust control theory 

allowed the uncertainty in both the parameters and the 

measurements to be applied [2]. A developed method 

[2] of uncertainty analysis based on linear fractional 

transformations (LFT) is introduced. The ellipsoid-of-

confidence bounds can be obtained by recasting the 

LFT problem into a semi definite programming problem 

(SDP).  

Different methods have been introduced to 
estimate the uncertainty interval around the system 
state variables [5, 6].The uncertainty in [5] is modeled 
through deterministic upper and lower bounds on 
measurement errors, which take into account known 
meter accuracies. In this method, WLS is used to 
estimate the expected value of the state variables, and 
then a LP formulation is utilized for estimating the 
tightest possible upper and lower bound on these 
estimates. The linear formulation was limited to 
modeling uncertainty only in the measurements which 
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was due to meters inaccuracies. In fact, other 
inaccuracies of the network mathematical model must 
be added to the uncertainty in the measurements. As 
an extension, authors in [6] have introduced another 
uncertainty analysis method in which the uncertainties, 
are expressed in both measurements and system 
parameters. This analysis assumed that the 
uncertainties be known and bounded. The problem is 
formulated as a constrained nonlinear optimization 
problem and is solved by sequential quadratic 
programming (SQP) technique. 

The main drawback in those formulations was the 
computational upper and lower bounds arise from 
performing two LP or two SQP depending on the 
formulation used. For instance, minimizing a particular 
state variable over the all of the measurement 
inequality constraints provides the lower bound on that 
state variable. In a like manner, maximizing that state 
variable again over the same constraints provides the 
upper bound of that state. Consequently, the CPU 
execution time for both formulation is relatively high. 

The application of fuzzy logic in power system state 
estimation was initiated by Shabani, Prasad, and 
Smolleck in 1996 [7]. The proposed method is based 
on fuzzy if then rules for improving the WLS estimator. 
Fuzzy logic control adaptively adjusts the weighting 
factor in the proposed estimator [7]. For modeling the 
uncertainty in D.C state estimation, a fuzzy linear state 
estimation based on Tanaka’s fuzzy linear regression 
model was proposed [8] and developed [9,10]. The 
measuring system used for estimation process in 
[9,10] were generated using NR load flow program 
without adding noise. In fact, random errors were 
added to the generated data to simulate typical 
measurement errors. The uncertainty in [10] is 
assumed to be present in the measurements only. The 
uncertain measurements are expressed as fuzzy 
number with triangular or trapezoidal membership 
functions. In the trapezoidal membership 
measurements, a WLS is solved for the inner 
breakpoints, and then the outer breakpoints are 
calculated using fuzzy arithmetic and LP. 

The major disadvantage of [9,10] was the linear   
optimization problem will be solved in every iteration of 
NR method to compute the incremental change of 
state variables. Consequentially, for real large-scale 
power systems this method introduces a significant 
amount of computation and CPU time. 

The drawback mentioned above will be improved 
using WLS state estimation with fuzzy linear 
regression model (WLS-FLR approach). In this work, 
the measuring system was generated numerically 
using NR power flow with random variations 1% 
around the base case to simulate typical measurement 
errors. The state estimation results obtained by WLS-
FLR approach are also, compared with the WLS state 
estimation method using some performance indices 
i.e. average absolute error, maximum absolute error, 
and rout mean square error. 

II. TANAKA'S FUZZY LINEAR REGRESSION OVERVIEW 

     Fuzzy linear regression was introduced by Tanaka 

et al. [11] in 1982. The general form of Tanaka’s 

formulation is given by: 

𝑌~ = 𝑓(𝑥, 𝐴) = 𝐴0 + 𝐴1𝑥1 + 𝐴2𝑥2+.  .  . +𝐴𝑛𝑥𝑛 = 𝐴𝑥   (1)  

where, 𝑌~ is the output (dependent fuzzy variable), 
{𝑥1, 𝑥2, . . . , 𝑥𝑛} is a non fuzzy set of crisp independent 

parameters and {𝐴0, 𝐴1, . . . , 𝐴𝑛}  is a fuzzy set of 
symmetric members, unknowns, needs to be 
estimated. Each fuzzy element in that set may be 
represented by a symmetrical triangular membership 
function, shown in Fig. 1, defined by a middle and a 

spread values, 𝑝𝑖  and 𝑐𝑖 , respectively. The middle is 
known as the model value and the spread denotes the 
fuzziness of that model value. 

The membership function µ𝐴𝑖
for each of the 

coefficients 𝐴 is expressed as: 

𝜇𝐴𝑖(𝑎𝑖) = {
1 −

|𝑝𝑖−𝑎𝑖| 

𝑐𝑖
,    𝑝𝑖 − 𝑐𝑖 ≤ 𝑥𝑖 ≤  𝑝𝑖 + 𝑐𝑖    

0                 otherwise                                       
 (2) 

 

Fig. 1. Membership function for the fuzzy coefficient 𝐴𝑖 

     Therefore, since the fuzzy function 𝐴 is a function of 

two parameters, p and c, (1) may be rewritten as: 

     

𝑌~ =

(𝑝0, 𝑐0) + (𝑝1, 𝑐1)𝑥1 + (𝑝2, 𝑐2)𝑥2+.  .  . +(𝑝𝑛, 𝑐𝑛)𝑥𝑛   =

𝐴~
∗  𝑥𝑖                          (3) 

     The membership function for the output fuzzy 

parameter, 𝑌~  is given by  

     

𝜇𝑌~(𝑦) =

{
max(min[𝜇𝐴𝑖(ai)]),               {𝑎|𝑦 = 𝑓(𝑥, 𝑎)} ≠ ∅  
0,                                          otherwise                            

      (4) 

     Now, by substituting (2) into (4), the membership 

function for the output fuzzy parameter, 𝑌~  is given by 

     𝜇𝑌~(𝑦𝑖) = {

1 −
|𝑦−∑ 𝑝𝑖𝑥𝑖

𝑛
𝑖=1 |

∑ 𝑐𝑖|𝑥𝑖|𝑛
𝑖=1

                        𝑥𝑖 ≠ 0

1,                𝑥𝑖 = 0,                     𝑦 = 0 
0,                 𝑥𝑖 = 0,                     𝑦 ≠ 0

       (5) 

     The membership function for the fuzzy output is 

illustrated in Fig. 2. From regression point of view, the 
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foregoing equations may be applied to 𝑚  samples 

where the output can be either non-fuzzy, (certain or 

exact), in which no assumption of ambiguity is 

associated with the output or fuzzy (uncertain), where 

uncertainty in the output is involved due to human 

judgment or meters inaccuracy [12]. 

 
Fig. 2: Fuzzy output function 

     Here, the fuzzy out will be considered as follow, 

when human judgment or imprecise measurements 

are involved in determining the output, the output may 

certainly be fuzzy. The output in such situations is best 

represented by a fuzzy number as 𝑌𝑗= (𝑦𝑗 , 𝑒𝑗), where 𝑦𝑗 

is the middle value and 𝑒𝑗 represents the uncertainty in 

measurement 𝑗, as seen in Fig. 3. 

 
Fig. 3. An example of fuzzy output 

     The membership function for the observed fuzzy 

output is given as: 

     µ 𝑌𝑗(𝑦) = 1 −
|𝑦𝑗−𝑦|

𝑒𝑗
                                                 (6) 

     An estimate of (6) can be obtained from (5) as: 

     µ𝑌𝑗
∗(𝑦) = 1 −

|𝑦𝑗−∑ 𝑝𝑖 𝑥𝑖𝑗
𝑛
𝑖=1 |

∑ 𝑐𝑖| 𝑥𝑖𝑗|𝑛
𝑖=1

    for  𝑗 = 1, … 𝑚           (7) 

     In summary, the main objective of fuzzy linear 

regression is to determine the fuzzy parameters 𝐴~
∗  

that minimize the sum of spread as in 

     𝑚𝑖𝑛 { ∑ ∑ 𝑐𝑖𝑥𝑖𝑗

𝑛

𝑖=0

𝑚

𝑗=1

}                                                           (8) 

Subject to: 
∑ 𝑝𝑖𝑥𝑖𝑗  𝑛

𝑖=1 − (1 − ℎ) ∑ 𝑐𝑖𝑥𝑖𝑗
𝑛
𝑖=1 + (1 − ℎ)𝑒𝑗  ≤  𝑦𝑗           (9) 

∑ 𝑝𝑖𝑥𝑖𝑗  𝑛
𝑖=1 + (1 − ℎ) ∑ 𝑐𝑖𝑥𝑖𝑗

𝑛
𝑖=1 − (1 − ℎ)𝑒𝑗 ≥  𝑦𝑗         (10) 

     Note that the term (1 − ℎ)𝑒𝑗  is due to the 

introduction of fuzziness (uncertainty) in the 

measurements. As mentioned, the (9) represents the 

𝑦𝑗  when it lies in the interval to the left of the middle 

value with the uncertainty with respect to it added to 

that interval. In like manner, (10) represents the 𝑦𝑗 

when it lies in the interval to the right of the middle 

value with the uncertainty with respect to it added to 

that interval. The proof and detailed derivation for both 

cases of Tanaka's model may be found in [11,13].  

III. FUZZY LINEAR REGRESSION APPROACH  

     The main purpose of SE in electric power system 

is to find the estimate �̂� of the true state 𝑥 which best 

fits the measurements 𝑧  related to 𝑥  through the 

nonlinear model [14]: 

𝑧 = ℎ(𝑥) + 𝑒                                                        (11) 

where, 𝑧 is the 𝑚-dimensional measurement vector; 

𝑥 is the 𝑛-dimensional (𝑛 < 𝑚) state vector of 

voltage magnitudes and angles; 

ℎ(𝑥) is the nonlinear vector function relating 

measurements to states; 

𝑒 is the 𝑚 - dimensional measurement error 

vector; 

𝑛 is the number of state variables; 

𝑚 is the number of measurements. 

     The estimate of the unknown state vector 𝑥  is 

designated by �̂� and is finding out by the linearization 

(11) around some operating point 𝑥0. This is based on 

taking the first-order Taylor series expansion and 

ignoring the higher order terms as follows, 

∆𝑧 = 𝐻(𝑥0) ∆𝑥 + 𝑒                                              (12) 

where, ∆𝑧 = 𝑧 − ℎ(𝑥0); 

           𝐻 =  𝜕ℎ(𝑥0) 𝜕𝑥⁄  is the Jacobian matrix (𝑚 × 𝑛); 

           ∆𝑥 = �̂� − 𝑥0 

     The estimates are usually solved by the Newton-

Raphson (NR) method which computes the state 

corrections ∆𝑥  at each iteration until appropriate 

convergence is attained. The linearized power system 

in (12) for the 𝐻𝑡ℎ measurement can be rewritten as: 

∆𝑧𝑗 = ∆𝑥1𝐻𝑗1 + ∆𝑥2𝐻𝑗2+.  .  . +∆𝑥𝑛𝐻𝑗𝑛                  (13) 
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     The change in the system state variables ∆𝑥 can be 
defined as a fuzzy membership function having a 
middle and a spread values, 𝑝𝑖 and  𝑐𝑖 , respectively. 
Then, (13) can be expressed as: 

∆𝑧𝑗 = (𝑝1, 𝑐1)𝐻𝑗1 + (𝑝2, 𝑐2)𝐻𝑗2+.  .  . +(𝑝𝑛, 𝑐𝑛)𝐻𝑗𝑛  (14) 

where,  𝑝𝑖  is the middle value, which represents the 

value of the change in the system state variables ∆𝑥𝑖, 

at the current iteration of the linearized model. The 

spread 𝑐𝑖  on the other hand, which is symmetric, 

corresponds to the incremental confidence interval of 

that state variable. Therefore, ∆𝑥 can be defined: 

∆𝑥 = [(𝑝1, 𝑐1)  (𝑝2, 𝑐2)  . . .  (𝑝𝑛, 𝑐𝑛)]                      (15) 

     Fuzzy linear regression model is modified as an 
alternative method in order to be used for modeling the 
uncertainty in power system state estimation. The 

optimal state estimate vector �̂� will be determined by 
minimizing the sum of the spread of all state variables. 
The change in state variables, subject to a number of 
constraint representing measurements can be 
expressed as:  

     𝑚𝑖𝑛 (∑ ∑ 𝑐𝑖𝐻𝑖𝑗

𝑛

𝑖=1

𝑚

𝑗=1

 )                                                       (16) 

Subject to: 

∑ 𝑝𝑖𝐻𝑖𝑗

𝑛

𝑖=1

− (1 − ℎ) ∑ 𝑐𝑖𝐻𝑖𝑗

𝑛

𝑖=1

+ (1 − ℎ)𝑒𝑗 ≤  ∆𝑧𝑗            (17) 

∑ 𝑝𝑖𝐻𝑖𝑗

𝑛

𝑖=1

+ (1 − ℎ) ∑ 𝑐𝑖𝐻𝑖𝑗

𝑛

𝑖=1

− (1 − ℎ)𝑒𝑗 ≥ ∆𝑧𝑗             (18) 

     Note that ℎ is the degree of the fuzziness and is 

specified by the decision maker. In the context of 

power system state estimation 𝑒𝑗  may represent the 

transducer tolerance which is usually provided by the 

manufacturer of the meter itself, i.e. (±3). This model 

is inequality linear programming optimization model 

and will be solved by the function linprog incorporated 

in the MATLABT optimization ToolboxTM  [15]. In the 

NR approach, the state variable is updated by 

�̂�𝑘+1 = �̂�𝑘 + ∆𝑥𝑘                                                               (19) 

where, the incremental change in state variable ∆𝑥𝑘, is 

computed by fuzzy linear model above, (16-18), and it 

can be expressed 

∆𝑥 = [𝑝1, 𝑝2, . . . , 𝑝𝑛]𝑇                                                        (20) 

where, 𝑝𝑖  correspond to the middle value of the 

incremental change of the system state variables at 

the iterations 𝑘. Since the optimal spreads represent a 

quantified measure of how uncertain we are about 

their respective middles i.e. state variables, and then 

the interval of confidence due to uncertainty can be 

constructed by adding or subtracting the spreads to or 

from their respective middles. For instance, the lower 

and upper bound of the incremental changes at 

iteration k can be calculated as: 

     ∆𝑥𝑘
− = ∆𝑥𝑘 − [𝑐1, 𝑐2, . . . , 𝑐𝑛]𝑇                       (21) 

     ∆𝑥𝑘
+ = ∆𝑥𝑘 + [𝑐1, 𝑐2, . . . , 𝑐𝑛]𝑇                                 (22) 

     Finally, the lower and upper bound of the interval of 

all state variables at iteration k can be computed: 

     �̂�𝑘+1
− = �̂�𝑘 + ∆𝑥𝑘

−                                                               (23) 

�̂�𝑘+1
+ = �̂�𝑘 + ∆𝑥𝑘

+                                                  (24) 

     It is important to mention that the problem of power 

system state estimation consists of determining the 

best estimate solution of the state variables of the 

power system which best fits the redundant set of 

measurements 𝑧 . The FLR model formulation above 

provides the set of estimates (middle values) along 

with an upper and lower bound for that estimated 

middle values without needing to any other additional 

estimator with high computational time. 

    Since the weighted least square is faster than linear 

programming optimization, the WLS will run for first 

iteration as in [16] and then the FLR model (16-20) will 

continue until the stopping criterion is reached. The 

tolerance of 0.0000001 was taken as convergence 

criteria. After the WLS-FLR approach was converged, 

the upper and lower bounds of the estimated states 

can be computed using, (21-24). Note that in this study 

it is found that the WLS state estimation seems to 

have no effect on the computation of the estimated 

middle value of the estimated states when applied for 

first iteration. Consequentially, the CPU time required 

for FLR method may be improved especially in case of 

large-scale power systems.  

IV. SIMULATION RESULTS AND DISCUSSION 

This section presents typical results obtained by 
applying the WLS-FLR approach to the 6-bus, and 
IEEE 30-bus test systems. The programs for WLS-FLR 
method was coded in MATLAB M-files and run on a 
TOSHIBA Pentium IV machine. In this work, the 
measuring system was generated numerically using 
NR power flow with random variations of 1% around 
the base case. To simulate parametric uncertainty, 
elements of the admittance matrix have been 
perturbed by adding uniformly distributed random 
values to the nominal values of those elements over 
an interval [-1%, 1%]. 

Simulated test data for 6-bus sample power system 
is given in [14] shown in Fig. 4, which has 19 number 
of measurements. The redundancy level of the 
measurement is 1.3. The uncertainty in measurements 
is assumed to be of ±3% of nominal values, while the 
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uncertainties due system parameters are bounded 

by ±1%. 

 

Fig. 4. 6-bus test system 

Table I presents typical results obtained by the 
WLS state estimation and WLS-FLR method when 
applied to the 6-bus network. As for the uncertainty 
interval, the estimated upper and lower bound are 
shown in Table 1. It may be noticed that the estimated 
center points appear to be fuzzy due to the 
inaccuracies in the measurements and system 
parameters as expected. The information given in 
table I are also presented in Fig. 5 and Fig. 6 for 
voltage magnitudes and phase angles respectively. 

     It should be noted that the estimated center points 

(middle value) lie exactly in the middle of the 

confidence interval. This particular outcome is 

expected since a symmetric spread was adopted by 

FLR to model the uncertainties. The estimated center 

points of the interval obtained by the WLS-FLR method 

are also, identical to those obtained by WLS algorithm. 

It is obviously that the estimated center points of 

interval obtained by WLS-FLR are close to the actual 

values. Note that in this particular test case, it is found 

that the degree of fuzziness ℎ seems to have no 

significant effect on the computation of spreads. This is 

due to the fact that FLR technique estimates the 

incremental changes of state variables in the linearized 

domain which are relatively very small. The WLS-FLR 

approach converged in 4 iterations with execution time 

0.0321s, see Table III.  

 
Fig. 5. Estimated voltage and uncertainty bounds for six-

bus network 

 

Fig. 6. Estimated voltage phase angle and uncertainty bounds 

for six-bus network     

     TABLE I. ESTIM62ATED STATE VARIABLES (VOLTAGE MAGNITUDE AND ANGLE) AND THEIR LOWER AND UPPER POUNDS FOR 

6-BUS NETWORK WITH (h=0.5) 

Bus 
No. 

WLS Lower bound WLS-FLR (Middle) Upper bound 

Voltage Angle Voltage Angle Voltage Angle Voltage Angle 

1 1.0500 0 1.0220 0 1.0500 0 1.0781 0 

2 1.0499 -0.0623 1.0212 -0.0642 1.0499 -0.0623 1.0787 -0.0603 

3 1.0699 -0.0726 1.0405 -0.0755 1.0699 -0.0726 1.0993 -0.0698 

4 0.9952 -0.0740 0.9662 -0.0764 0.9952 -0.0740 1.0243 -0.0715 

5 0.9970 -0.0941 0.9677 -0.0968 0.9971 -0.0941 1.0264 -0.0913 

6 1.0103 -0.1031 0.9801 -0.1071 1.0103 -0.1032 1.0405 -0.0993 
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     Similarly, simulated test data for IEEE 30-bus 
power system [17] has 98 number of measurements 
and there are 59 state variables (voltage magnitudes 
and voltage angles). The uncertainty measurement is 
assumed to be of ±5 % of nominal values. The degree 
of freedom is 39. The values are in p.u for voltage 
magnitude while the phase angle values are in radian. 

     Table II provides the estimated voltage magnitude 

and angles with their lower and upper bounds for IEEE 

30-bus test system using WLS-FLR technique. In this 

table, columns 2 and 3 represent the estimated sates 

using WLS while columns 4 to 8 depict the estimated 

states with their lower and upper bounds using WLS-

FLR. The results obtained by the FLR model are 

identical to those obtained by WLS-FLR. The WLS-

FLR approach converged in 5 iterations with execution 

time 0.2840s, as shown in Table III. 

     Table III provides the computational time for the 

test cases used. The CPU execution time of the FLR 

method required for convergence is relatively higher 

that WLS and WLS-FLR methods. This slightly more 

CPU time of the fuzzy linear regression may be 

attributed to having to solve a constrained state 

estimation linear programming problem as mentioned 

earlier. It may be seen form Table III that the CPU 

execution time of the WLS-FLR method is lower than 

FLR model. This outcome is expected since WLS run 

for first iteration which eliminates the time required to 

solve LP problem for one iteration. 

     TABLE II. ESTIM62ATED STATE VARIABLES (VOLTAGE MAGNITUDE AND ANGLE) AND THEIR LOWER AND UPPER POUNDS FOR 

6-BUS NETWORK WITH h=0.5. 

Bus 
No. 

WLS Lower bound WLS-FLR (Middle) Upper bound 

Voltage Angle Voltage Angle Voltage Angle Voltage Angle 

1 1.0569 0 1.0284 0 1.0657 0 1.1030 0 

2 1.0402 -0.0973 1.0097 -0.1008 1.0490 -0.0956 1.0882 -0.0904 

3 1.0202 -0.1271 0.9866 -0.1342 1.0292 -0.1248 1.0719 -0.1155 

4 1.0062 -0.1678 0.9711 -0.1774 1.0171 -0.1651 1.0630 -0.1529 

5 1.0059 -0.2522 0.9695 -0.2654 1.0149 -0.2477 1.0603 -0.2301 

6 1.0113 -0.2019 0.9734 -0.2122 1.0191 -0.1980 1.0647 -0.1839 

7 1.0026 -0.2325 0.9615 -0.2458 1.0105 -0.2281 1.0595 -0.2103 

8 1.0091 -0.2155 0.9696 -0.2273 1.0169 -0.2114 1.0642 -0.1955 

9 1.0314 -0.2583 0.9891 -0.2755 1.0363 -0.2521 1.0834 -0.2286 

10 1.0264 -0.2864 0.9939 -0.3077 1.0345 -0.2795 1.0750 -0.2514 

11 1.0662 -0.2584 1.0276 -0.2821 1.0684 -0.2527 1.1091 -0.2233 

12 1.0405 -0.2726 1.0170 -0.2956 1.0510 -0.2699 1.0850 -0.2441 

13 1.0540 -0.2715 1.0296 -0.2961 1.0631 -0.2698 1.0965 -0.2435 

14 1.0233 -0.2887 1.0019 -0.3197 1.0335 -0.2867 1.0651 -0.2536 

15 1.0181 -0.2909 0.9946 -0.3180 1.0289 -0.2870 1.0631 -0.2561 

16 1.0272 -0.2838 1.0012 -0.3091 1.0364 -0.2805 1.0715 -0.2519 

17 1.0227 -0.2894 0.9913 -0.3190 1.0308 -0.2854 1.0704 -0.2518 

18 1.0070 -0.3027 0.9759 -0.3300 1.0198 -0.2953 1.0638 -0.2606 

19 1.0055 -0.3055 0.9723 -0.3314 1.0201 -0.2982 1.0678 -0.2650 

20 1.0104 -0.3014 0.9768 -0.3272 1.0229 -0.2936 1.0691 -0.2599 

21 1.0129 -0.2945 0.9811 -0.3146 1.0207 -0.2860 1.0604 -0.2574 

22 1.0128 -0.2944 0.9825 -0.3155 1.0213 -0.2858 1.0602 -0.2560 

23 1.0051 -0.2994 0.9781 -0.3328 1.0150 -0.2952 1.0520 -0.2576 

24 0.9998 -0.3027 0.9773 -0.3307 1.0118 -0.2948 1.0464 -0.2589 

25 0.9974 -0.2887 0.9985 -0.2974 1.0117 -0.2860 1.0249 -0.2746 

26 0.9742 -0.2936 0.9833 -0.2760 0.9869 -0.2860 0.9904 -0.2960 

27 1.0063 -0.2817 1.0089 -0.2845 1.0235 -0.2794 1.0380 -0.2742 

28 1.0107 -0.2132 0.9705 -0.2254 1.0183 -0.2092 1.0660 -0.1931 
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29 0.9794 -0.3014 0.9979 -0.2806 1.0009 -0.3006 1.0039 -0.3206 

30 0.9657 -0.3117 0.9702 -0.3149 0.9902 -0.3075 1.0102 -0.3000 

                               TABLE III. CPU TIME WITH WLS, FLR and WLS-FLR METHODS. 

Test 
System 

WLS FLR FLR-WLS 

CPU 
Time (s) 

Iterations 
CPU 

Time (s) 
Iterations 

CPU 
Time (s) 

Iterations 

6-bus 0.0072 5 0.0551 4 0.0321 4 

IEEE 30-bus 0.0271 5 0.3495 5 0.2840 5 

     The accuracy of the WLS and WLS-FLR 

approaches are also, compared using some 

performance indices i.e. the average absolute (𝑒𝑎𝑣 ) 

errors, maximum absolute ( 𝑒𝑚𝑎𝑥 ) errors, and rout 

mean square (𝑒𝑟𝑚𝑠) errors as illustrated in Table 4. It 

may be observed from Table IV that the estimated 

middle value obtained by WLS-FLR approach are 

more accurate rather than WLS state estimation.  

Table IV. SUMMARY OF STATE ESTIMATION ERRORS 

FOR WLS AND WLS-FLR APPROACHES FOR IEEE 30-

BUS SYSTEM 

 WLS WLS- FLR 

 Voltage  Angle Voltage  Angle 

𝒆𝒂𝒗 0.0149 0.0050 0.0081 0.0025 

𝒆𝒎𝒂𝒙 0.0288 0.0126 0.0147 0.0149 

𝒆𝒓𝒎𝒔 0.0173 0.0059 0.0086 0.0039 

V. CONCLUSION  

     In this paper, WLS-FLR method has been 

illustrated through the application on 6-bus and IEEE 

30-bus test systems. Fuzzy regression and linear 

programming models were employed to estimate the 

state variables and their respective lower and upper 

bounds. The advantage of this method is that errors in 

the measurements are expressed as fuzzy numbers 

with a triangular membership function that has middle 

and spread value reflected on the estimated states. 

Results obtained show that the computational 

performance of the WLS state estimator is improved 

by this approach. 

     In order to evaluate the WLS-FLR approach, a 

comparison between the WLS state estimation, FLR 

model, and WLS-FLR approach are performed based 

on the convergence and the time assessment for test 

systems used. Simulation results indicate that the 

WLS-FLR approach is more suitable for modeling the 

uncertainty in power system state estimation with both 

less computational time and high accuracy. 
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