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Abstract—An unmanned rover vehicle is a 
surface creeping robot with many practical 
applications and it also acts as a testbed for 
simulation and verification of control algorithms. 
The control of steering dynamics of an unmanned 
rover using nonlinear adaptive control method 
has been considered. The system parameters are 
assumed unknown and the technique of nonlinear 
adaptation using manifold immersion is 
performed for their estimation. Reference tracking 
is obtained. The experimental validation of the 
theoretically proposed controller is presented by 
implementing discrete time realization of control 
algorithm using digital controller interfaced in real 
time with Simulink. The potential of proposed 
algorithm relies upon the flexibility in the 
structure of control algorithm and promising 
transient behavior of closed loop system 
dynamics. 
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I.  INTRODUCTION 

An Unmanned Rover Vehicle (URV) or 
Autonomous Surface Vehicle (ASV) is a rover vehicle 
that lies in the domain of Remotely Operated Vehicles 
(ROV) running on land. It has various commercial 
applications as well as military uses. It has no crew so 
it presents many advantages in military applications 
and dangerous or tedious environmental conditions by 
reducing risk of loss of human life and time saving. 
They can be deployed to perform tasks such as mine 
counter measures, surveillance and reconnaissance, 
anti-warfare, fast on land attack robot, combat training, 
oil and gas exploration and construction, terrain data 
collection and environmental surveys. 

There is a boom in the development of URV over 
past few decades. The unpredictable environmental 
conditions and complex dynamics of URVs make them 
a challenging system to be modelled and controlled. It 
also acts as a benchmark to simulate and test new and 
advanced control techniques. A mini URV has 
nonlinear dynamics. Moreover, by involving dynamics 
of the driving motor actuator along with the motor 
amplifier, complicates the problem still more as it adds 
more state variables in system dynamics, which 
tantamount to increase in the order of the system. To 
add to the difficulty, there are various uncertain system 
parameters. Hence there is always a room for a better 
and effective control technique for URV robot. 

There are various control techniques available in 
literature. Control of a passively steered rover using 3-
D kinematics is presented in [1], which considers 
differential wheel velocities for motion control. Motion 
planning and stochastic control with experimental 
validation on a planetary rover is presented in [2]. 
Trajectory tracking control of the Lunar Rover is 
investigated in [3], which focuses on a real Lunar rover 
trajectory tracking case, with respect to the sampling 
interference, transmission delay and energy limitation, 
a control-sampling co-design approach based on 
quadric optimal control is detailed. Research on 
intuitive controlling of unmanned Lunar Rover is 
presented in [4]. Path-tracking in URV is accomplished 
using feedback control of the position and orientation 
errors, measured with respect to the planned path 
trajectory in [5]. Online trajectory optimization using 
receding horizon guidance control for rovers is 
presented in [6], which is developed for guidance 
control with the real-time trajectory optimization. 
Dynamical reduction and output-tracking control of the 
Lunar Exploration Light Rover is presented in [7] with 
dynamical equations reduction using the Chaplygin 
reduction of nonholonomic systems. An artificial 
immune system for fault tolerant control of an over-
actuated rover is considered in [8]. 

Most of these techniques consider the linear 
system model or a reduced order model of the system. 
Moreover, controllers do not have many tenable 
parameters to gain much control over system 
responses. Many controllers suffer degradation of 
response as the operation conditions change or the 
system parameters vary with time. We have applied a 
robust adaptive nonlinear control algorithm that relies 
on robustification of reduced order system controller 
against full order system dynamics [11]. The controller 
is also robust against unknow system parameters and 
has a lot of free tenable parameters to gain control 
over feedback dynamic response of the system output. 

II. HARDWARE OVERVIEW 

The hardware of rover vehicle is shown in Fig. 1. It 
consists of two DC motor driven vehicle carrying belts. 
DC motors have gear heads that increase the torque 
and payload carrying capacity of the rover. GPS and 
IMU sensors provide measurements. Rover has a data 
transceiver along with a camera transmitter for 
connection with the ground station as it will further be 
elaborated in the coming sections. The driving belts 
provide two forces on the rover platform producing 
counter torques, which producing steering manoeuvre 
of the rover as shown in Fig. 2. The control problem is 
to track the yaw angle of the vehicle, as measured by 
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the sensors, by manipulating the speeds of the two 
drive motors. 

 

Fig. 1 Rover hardware. 

 

Fig. 2. Rover control problem formulation. 

III. THE CONTROL ALGORITHM SYNTHESIS 

Consider a nonlinear parameter uncertain system, 

     ,
e e

p s p u f p g p u   (1) 

where 
n

p  and 
m

e
u  . The state vector p

evolves on a smooth manifold  of dimension n , which 

is spanned by tangential manifold to the system map s

. The system map s in (1) has been decomposed into a 

drift vector field (.)f and a controlled vector field g . In 

(1),  eu U p is the system forcing function with U a 

state dependent input set which belongs to the control 

bundle  
p

U p



. The topological manifold immersion 

based nonlinear control approach involves defining a 
reduced order exosystem. The state trajectories of the 

exosystem evolve on a C


 submanifold Q  . The 

problem of controller design then boiled down to 
synthesize a control law that dynamically immerses the 
state trajectories of full order system to the manifold Q . 

Let us consider an exosystem with state vector
q

q 

with q n , which contains origin in its reachable set. 

This can be achieved by defining the vector field  q  

of the exosystem that governs the evolution of q as 

given by (2). 

 q q     (2) 

Defining a smooth submanifold for the exosystem 
of (2) as: 

  Q ;
n q

p p q q      (3) 

The controlled integral curves of system map s can 

be attracted by the submanifold Q if partial differential 

(4) along with the condition in (5) is satisfied [9]. 

       f q g q L       (4) 

2
( ) 0     (0)  as tq t q      (5) 

Here  ( )
q

qL  


  is the so-called Lie 

derivative. Also      , 0q v q    on the 

submanifold Q  and   ,u v p p  is the synthesized 

feedback control law that renders Q attractive.  . is 

the implicit description of Q  and it is given by 

parameterized form in (6). 

    0p p q       (6) 

Introducing state variable to define “off” the 
submanifold Q dynamics given by: 

 
  

,

, ,
s u p

L s p p
q




 



 




 
 
 

  (7) 

In terms of and any constant 0  , the 

synthesized controller   the system mapping is given 

by, 

  , ,p s p p   (8) 

For any general system of form, 

1 1 1 2 1 2

2  1 2

( ) ( )

( )
T

p p p p

p p u

 

  

 

 
  (9) 

where (.)
i
 and (.) are smooth mappings,

 i
 are 

unknown parameters and 
1 1 1

( )p p is globally stable, 

then for constants 0  and 0k  , the geometric 

adaptive estimates of 
 i

 are given by [9]. 
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 (10) 

and the corresponding geomantic synthesized 
control law is given by, 

 
 

2
2 1 1

2 2  1
T

 1  1

( )
ˆ ˆ( , )
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 (11) 

The vector  
T

 1 2  1

ˆ( ) ( , )p p    is given by: 

2

 1 1 1
0

( ) ( , )
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Here
1 1
( )V p  is any mapping such that for some 

class-K function (.) , we have,  

1
1 1 1
( ) ( )L V p p


    (14) 

and 
1

0  , 
2

0  are constants [9]. 

IV. SYSTEMS DYNAMICS AND CONTROL 

Consider the Rover in the Fig. 2.  If   denotes yaw 

rover body rod and denotes the yaw rate then the 

system state variables for yaw dynamics are described 
by (15). 

   
T T

1 2 3
p p p p      (15) 

The system dynamics are given by, 

   

   

   

Τ
2
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T
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    (16) 

Now (2) and (8) evaluate to following expressions. 

   
Τ

2

2 1 2 1
q q k k       (17) 

    
T

1 2 1 1 2
,p q q q q q    (18) 

   
1 3 3 4

,p k p k       (19) 

The reduced order system is given by (20). 

1 2

2

2 1 2 2 1

3 1

p p

p k p k

p





 

 



  
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  (20) 

The system in (20) immerses to system described 
by (21). 

1 2

2

2 1 2 1

p p

p k k 



  
  (21) 

Let us consider feedback linearization of (21) as, 

1
: 0u u     (22) 

The immersion control law is given by, 

  1 3 3

4

,p
k p

k

 

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   (23) 

Using (21) and (22) we get, 

 
T

2 1 2 2
p p k p k u     (24) 

For the estimation of unknown parameters in (24), 
using the results in (9) through (14), we get. 
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
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 
T

1 2 2 2 1 2 1 1 2 2

2

ˆ2k p kp p
p


      


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
    (30) 

The parameter estimates in (10) leads us to, 

5 1 6 2

2 2

7 1 8 2 9 1 2 10 2 1 11 1 1

ˆ
ˆ ˆ

c p c p

c p c p c p p c p c p


 




   

 
 
 

    (31) 

The control law in terms of estimates parameters is 
given by, 

  
2 2  1 2 1  1  1

ˆ ˆ ˆ( , ) 2 ( )u p kp p p              (32) 

At the last the reference tracking is achieved by 
modifications of control law as, 

  1 3 3

4

,' ( )p
k p

t
k

 
 

  
   (33) 

A typical classical proportional derivative tracker 
law can be used to follow reference command as given 
by, 

( ) ( ( ))t e t      (34) 
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  3
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.
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p d
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d
k k

dt
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 
 
 

             (35) 

The control law in (33) can be split to produce drive 
signals of two motors according to the splitter 
algorithm given by (36). 
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 
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 
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 
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

  (36) 

Here,
thi

 is the upper threshold value of 
th

i motor 

drive signal dead zone and '
m

 is the mean value of 

signal ' . 

V. SUMULATION AND TESTING 

The values of various system parameters are given 
in Table 1. Using these values, the closed loop system 
is simulated in Fig. 3. The simulation result for yaw 
reference tracking response is shown in Fig. 4. 

TABLE I.  SYSTEM PARAMETER VALUES 

Parameter Value Parameter Value 

3
k  145 

4
c  0.018 

4
k  7.15 

5
c  -0.25 

k  61 
6

c  -214 

1
  4.1 

7
c  5×10

-4
 

2
  1.0 

8
c  845.0 

  2.1×10
-3

 
9

c  0.25 

1
c  -6.25 

10
c  -750.0 

2
c  72.0 

11
c  -0.05 

3
c  -3.25 

12
c  0.125 

The yaw response is stable with zero steady state 
error. The simulation result for the yaw rate response 
is shown in Fig. 5. The yaw rate decays to zero within 
1.5 seconds. The simulation result for manipulated 
variables response is shown in Fig. 6. The magnitude 
of manipulated variables is within practical limits and 
drives the plant output to the desired reference signal. 

 

Fig. 3. Simulation of system in MATLAB/Simulink

 

Fig. 4. Yaw reference tracking. 

 

Fig. 5. Yaw rate response. 
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Fig. 6. Manipulated variables’ response. 

The experimental rapid control Prototyping (RCP) 
Simulink model of the closed loop system with 
reference tracker is shown in Fig. 7. The schematic 
representation of experimental hardware setup is 
shown in Fig. 8. It shows explicitly the components of 
the ground station as well as components of the URV. 
The complete experimental setup is shown in Fig. 9, 
which shows the components of ground station as well 
as that of unmanned rover vehicle. 

 The experimental result for yaw reference tracking 
response is shown in Fig. 10. Response of yaw rate 
variable is shown in Fig. 11. The Manipulated variables 
representing the magnitudes of drive signals of both 
gear headed DC motors driving the belts are shown in 
Fig. 12. 

 

Fig. 7. RCP Simulink model of the closed loop system. 
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Fig. 8. Schematic representation of experimental hardware setup. 

 

 

Fig. 9. Complete experimental setup. 

 

 

Fig. 10. Experimental yaw reference tracking. 

 

Fig. 11. Experimental yaw rate response. 

 

Fig. 12. Experimental Manipulated variables’ response. 

Yaw reference response is stable with zero steady 
state error in Fig. 10. The simulation result for the yaw 
rate response as shown in Fig. 11, decays to zero 
within 1.5 seconds. The simulation result for 
manipulated variables response as shown in Fig. 12, 
has magnitude of variables within practical limits and 
drives the plant output to the desired reference signal. 

VI. CONCLUSIONS 

A robust nonlinear adaptive controller for the yaw 
dynamics or steering of a mini URV has been 
presented. System parameters are considered 
unknown and they are estimated using nonlinear 
adaptation. The proposed control technique is 
simulating in Simulink. The theoretical technique is 
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tested in real time using digital controllers and data 
acquisition cards. The control algorithm has a lot of 
free tenable parameters. The results showed 
promising behavior of closed loop system in the 
presence of parameters uncertainties. Moreover, a 
greater control of closed loop system dynamics is 
possible owing to the flexibility in control algorithm. 
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