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Abstract— We discuss the energy decay 
estimates and the local existence results of the 
solutions for the nonlocal hyperbolic problem 
with no dissipation 

2( ) || ( ) || ( ) 0,ttu x u t u    ,Nx R  0,t   

with initial conditions 0( ,0) ( )u x u x  and 

1( ,0) ( ),tu x u x  in the case where 3,N   and 

1( ( )) ( )x g x   is a positive function lying in 

/ 2( ) ( ).N N NL R L R
 We prove that we have 

unique local solution for our problem in the case 
when the initial energy is small.     

Keywords—Quasilinear Hyperbolic Equations, 
Unbounded Domains, Generalized Sobolev 
Spaces. 

I. Introduction 

In this work we study the following degenerate 
wave equation with no dissipation 

(1.1) 
2( ) || ( ) || ( ) 0ttu x u t u    , 

(1.2) 0( ,0) ( ),u x u x  1( ,0) ( ),tu x u x  

, 0Nx R t  , with initial conditions 0u , 1u  in 

appropriate function spaces, 3.N   The case of 

1N  , equation (1.1)  describes the nonlinear 

vibrations of an elastic string. Throughout the 

paper we assume that the function   and 

: Ng R R  satisfy the following condition 

(G) ( ) 0,x   for all 
Nx R  and  

1( ( )) ( )x g x    / 2( ) ( )N N NL R L R
. 

This class will include functions of the form 

0( ) | |ax c x  , 0   and  0a  ,  resembling 

phenomena of slowly varying wave speed around 

the constant speed 0c . Many results treat the 

case of ( )x   constant (in bounded or 

unbounded domains). It must be noted, that this 
case is proved to be totally different from the 

case of ( ) 0,x c   as x  (see [8]).  

The original equation is  

(1.3)    
2 2

2

02 2

0

( )
2

L
u u Eh u u

ph p f
t t L x x


    

    
    

  for 0 

< x < L, t ≥ 0, where u = u(x, t) is the lateral 
displacement at the space coordinate x and the 
time t, E the Young modulus, p the mass density, 

h the cross-section area, L the length, 0p  the 

initial axial tension, δ the resistance modulus  

and f the external force. When 0p = 0 the 

equation is considered to be of degenerate type 
and the equation models an unstretched string or 
its higher dimensional generalization. Otherwise it 
is of nondegenerate type and the equation models 
a stretched string or its higher dimensional 
generalization. When δ = f = 0, the equation 
was introduced by G. Kirchhoff [12] in the study 
of oscillations of stretched strings and plates. 
That’s why equation (1.3) is called the Kirchhoff 
string. 
In the case treated here the problem becomes 
complicated because the equation does not give rise 
to compact operators. The homogeneous Sobolev 
spaces combined with equivalent weighted 

pL spaces, is the appropriate space to overcome 
these difficulties. In our paper we assume that f (u)  
= 0 (we have no external force), in order to study the 
behavior of the solutions for this kind of equations. 
This case is rather interesting in the class of the 
homogeneous Sobolev spaces as we will study. 
In the case of bounded domain, when δ = 0 and 

0f  , the global existence is rather well studied 

in the class of analytic function spaces (e.g.see 
[5]). H. Crippa [3] has proved local in time 
solvability in the class of usual Sobolev spaces. 
A. Arosio and S. Garavaldi [1] have shown the 
existence of a unique local solution in the case 
of mildly degenerate type. For δ ≥ 0 and f (u) = 
0, in the degenerate case, the global existence 
of solutions has been shown by K. Nishihara 
and Y. Yamada [16], when the initial data are 
small enough. When δ > 0 and f (u) = 0, M. 
Nakao [14] has derived decay estimates for the 
solutions. In particular, T. Kobayashi [13] 
constructed a unique weak solution using a 
Faedo-Galerkin method for a quasilinear wave 
equation with strong dissipation (see also [4, 15]). 
K. Nishihara [17] has derived a decay estimate from 
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below of the potential of solutions. In the case of  δ ≥ 

0 and 0f  , M. Hosoya and Y. Yamada [7] have 

studied the non-degenerate case with linear 
dissipation and proved the global existence of a 
unique solution under small initial data. R. Ikehata [9] 
has shown that for sufficiently small initial data, global 
existence can be obtained, even when the influence 
of the source terms is stronger than that of the 
damping terms. 
In the case of unbounded domains, P. ’Ancona and 
S. Spagnolo [6] have shown the global existence of a 

unique C∞ solution for the non-degenerate type with 

small 0C
 data. G.Todorova [21] studied the global 

existence and nonexistence of solutions both in the 
bounded and unbounded domain cases with 

nonlinear damping and small enough 0C
initial data. 

Finally, N. Karahalios and N. Stavrakakis [10]-[11] 
have proved global existence and blow-up results for 
some semilinear wave equations with weak damping 

on all .NR  

The presentation of this paper has as follows: In 
Section 2  we discuss properties of the 

homogeneous Sobolev space 
1,2 ( )ND R and some 

weighted 
pL  spaces, in order to overcome 

difficulties of non-compactness arising from the 
unboundedness o f  the domain. In Section 3, we 
show the existence of a unique local weak 
solution and we obtain energy decay estimates 
for the problem (1.1)-(1.2) with  

0 1( , )u u 1,2 2( ) ( ),N N

gD R L R   when the  

initial energy 0 1( , )E u u  which corresponds to the 

problem, is non-negative and small.   
 

Notation:  We denote by RB the open ball of 
NR  

with center 0 and radius R. Sometimes for 

simplicity we use the symbols 0C
, 

1,2 , ,1 ,pD L p   for the spaces 

0 ( )NC R
,

1,2 ( )ND R , ( )p NL R , respectively; 

|| ||p for the norm 
( )

|| || p NL R
 , where in case of 

2p  we may omit the index.  

 

II. Preliminary Results  

In this section, we briefly mention some facts, 
notation and results, which will be used later in this 

paper. The space 
1,2 ( )ND R  is defined as the 

closure of 0 ( )NC R
 functions with respect to the 

energy norm 1,2

2|| || : | | .
N

D

R

u u dx   It is known 

that  

2

1,2 22( ) ( ) : ( ( ))
N

N N N NND R u L R u L R
 

    
 

 

and 
1,2( )ND R is embedded continuously in 

2

2 ( )
N

NNL R , that is, there exists 0k   such that   

(2.1)   1,22

2

|| || || || .N D

N

u k u


  

We shall frequently use the following generalized 
version of Poincaré’s inequality 
 

(2.2) 
2 2| | ,

N NR R

u dx gu dx     

for all 0u C and 2

N

g L , where  

2 1

/2: || ||Nk g    (see [2, Lemma 2.1]). It is shown 

that 
1,2 ( )ND R  is a separable Hilbert space. The 

space 
2 ( )N

gL R is defined to be the closure of 

0 ( )NC R
functions with respect to the inner product  

(2.3) 2 ( )
( , ) :N

g
N

L R

R

u v guvdx  . 

It is clear that 
2 ( )N

gL R  is a separable Hilbert 

space. The following Lemmas will be proved to be 
useful in the sequel. For the proofs we refer to [11], 
(we note that g is a positive function). 

Lemma 2.1 Let 
/ 2( ) ( ).N N Ng L R L R  Then the 

embedding 
1,2 2

gD L  is compact.  

Lemma 2.2 Let 

2

2 2 ( )

N

NN pN pg L R  . Then the 

following continuous embedding 
1,2 p

gD L  is valid, for 

all 1 2 /( 2).p N N    

Remark 2.3 The assumption of Lemma 2.2 is satisfied 

under the hypothesis (G), if p ≥ 2. 

Lemma 2.4 Let g satisfy condition (G). If 
*1 2 /( 2),q p p N N      then the following 

weighted inequality  

(2.4) 1,2

1

0|| || || || || ||p q
g gL L D

u C u u  ,  

is valid, for all (0,1),  for which  
*1/ (1 ) / / ,p q p    and 0 .C k   

 

To study the properties of the operator −φ∆, we 

consider the equation 

(2.5) ( ) ( ) ( ), ,Nx u x x x R      

without boundary conditions. Since for every 

0,u v C  we have  

(2.6) 2( , ) ,
g

N

L

R

u v u vdx      

http://www.jmest.org/
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we may consider equation (2.5) as an operator 

equation of the form 

(2.7) 
2 2 2

0 0 0, : ( ) , .g g gA u A D A L L L      

Relation (2.6) implies that the operator 

0A     with domain of definition 0 0( )D A C , 

is symmetric. From (2.2) and equation (2.6) we 

have that  

(2.8) 2 2

2

0( , ) || || ,
g gL L

A u u u  for all 0( )u D A . 

So the operator 0A     is a symmetric,  

strongly monotone operator on 
2

gL . Hence,  

Friedrich’s extension theorem  [22, Theorem  

19.C] is applicable.  The energetic scalar  

product given by (2.6) is  

               ( , )
N

E

R

u v u vdx    

and the energetic space  is the completion  

of D( 0A ) with respect to ( , )Eu v . It is obvious 

that the energetic space EX is the homogeneous 

Sobolev space 
1,2D . The energetic extension 

EA     of 0A , (2.9) 
1,2 1,2: D D    , 

is defined to be the duality mapping of 
1,2.D  We 

define D(A) to be the set of all solutions of 

equations (2.5), for arbitrary 
2 .gL Friedrich’s 

extension A  of 0A  is the  restriction of the 

energetic extension EA  to the set D(A). The 

operator A     is self-adjoint and therefore 

graph-closed. Its domain D(A),  is a Hilbert 

space with respect to the graph scalar product 

2 2( )( , ) ( , ) ( , ) ,
g g

D A L L
u v u v Au Av   for all 

, ( ).u v D A The norm induced by the scalar 

product is  
1/ 2

2 2

( )|| || | | | | ,
N N

D A

R R

u g u dx u dx
  

   
  
   

which is equivalent to the norm 

2

1/ 2

2|| || | | .
g

N

L

R

Au u dx
  

  
  
 So we have 

established the evolution triple 

(2.10) 
1,2 2 1,2( ) ,gD A D L D    where all the 

embeddings are dense and compact. Finally, for 
later use, it is necessary to remind that the 
eigenvalue problem 

(2.11) ( ) ,x u u      
Nx R , 

 has a complete system of eigensolutions 

{ , }n nw   satisfying the following properties  

(2.12)

1,2

1 2

, 1,2,..., ,

0 ..., , .

j j j j

j

w w j w D

asj

 

  

    


    

 

 

In order to clarify the kind of solutions we are 
going to obtain for the problem (1.1)-(1.2), we 
give the definition of the weak solution for this 
problem. 
Definition 2.5 A weak solution of the problem 
(1.1)-(1.2) is a functionu such that  

(i) 

2 2 1,2

2 2

[0, ; ( )], [0, ; ],

[0, ; ],

t

tt g

u L T D A u L T D

u L T L

 


 

(ii) for all  0 [0, ] ( ) ,Nv C T R  satisfies the 

generalized formula  

(2.13) 2

0

( ( ), ( ))
g

T

tt L
u v d  

2

0

|| ( ) || ( ) ( ) 0
N

T

R

u u v dx d   
 

      
 
   

 
and (iii) satisfies the initial conditions 

1,2 2

0 1( ,0) ( ) , ( ,0) ( )t gu x u x D u x u x L    . 

III. Existence Results and Energy Decay 
Estimates  

 
In order to obtain a local existence result for the 
problem (1.1)-(1.2), we need information 
concerning the solvability of the corresponding 
non-homogeneous linearized problem restricted in 

the sphere :RB  ( 3 .1 )  

2|| || 0ttu v u    , ( , ) (0, ),Rx t B T   

0 1( ,0) ( ), ( ,0) ( ), ,t Ru x u x u x u x x B    

( , ) 0,( , ) (0, ),Ru x t x t B T    

 1,20, ;v C T D   an d   20, ; .t gv C T L    

Proposition 3.1 Assume that 
1,2 2

0 1, gu D u L   and 

3,N   then the linear wave equation (3.1) has a 

unique solution such that  

 1,20, ;u C T D   and   20, ; .t gu C T L  

Proof. The proof follows the lines of [11, Proposition 
3.1]. The Galerkin method is used, based on the 
information taken from the eigenvalue problem 
(2.11). 
Next, we will prove the following Theorem 

Theorem 3.2 We assume that 3N   and 0 0.u  If 

1,2 2

0 1( , ) gu u D L   and satisfy the non-degenerate 

condition 
2

0|| || 0,u   then there exists 

1,2

2

0 1(|| || ,|| || ) 0
D

T T u u   , such that the problem 

(1.1)-(1.2) admits a unique local weak solution 
u satisfying: 

http://www.jmest.org/
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   1,2 20, ; , 0, ; .t gu C T D u C T L  Moreover, if 

|| ( ) || 0u t   and 1,2 2|| ( ) || || ( ) ||
g

tD L
u t u t   for 

0,t  then .T   

Proof.  For 0T   and 0R  , we define the two 

parameter space of solutions 
1,2 2

, 2

0 1

(0, ; ) : (0, ; ),
: ,

(0) , (0) , ( ( )) , [0, ]

t g

T R

t

v C T D v C T L
X

v u v u e v t R t T

   
  

     

where  2 1,2

2 2( ( )) || ( ) || || ( ) || .
g

t L D
e u t u t u t   

It is easy to see that ,T RX  can be organized as a 

complete metric space with the distance 

0 1( , ) : sup ( ( ) ( )),t Td u v e u t v t   where 

2 1,2

2 2

1( ) :|| || || || .
g

t L D
e v v v  We define the non-

linear mapping S in the following way.  

For every , ,T Rv X u Sv   is the unique solution 

of our problem. Using the fact that 

0 0|| || 0,u M    we prove that there exist T > 0, 

R > 0 such that S maps ,T RX  into itself and S is 

a contraction mapping with respect to the 

metric (.,.).d By applying the Banach contraction 

mapping theorem, we obtain a unique solution u 

belonging to ,T RX . Therefore it follows from the 

continuity argument for wave equations that this 
solution u belongs to our space. For more details 
we refer to [18]. 

  Next, we multiply equation (1.1) by  2 tgu  and 

ingrate over 
NR to get 

22 2 || ( ) || 0
N N

tt t t

R R

gu u dx u t uu dx     .  So we 

get  

2

2 41
|| ( ) || || ( ) || 0.

2gL

d
u t u t

dt

 
   

 
 We define the 

energy for our problem 

(3 .2 )  2

2 41
( ) || ( ) || || ( ) || .

2gL
E t u t u t    

So, we obtain the following relation 

(3.3) ( ) 0.
d

E t
dt

  

We integrate the previous equation in [0, t] to get 
the following 

0

( ) 0

t
d

E t dt
dt

 , ( ) (0) 0,E t E   and finally 

(3.4) ( ) (0)E t E . 

Next, we multiply relation (3.2) by 2ug  and 

integrate over 
NR  to get  

22 ( ) 2 ( ) ( ) || ( ) || 0ttuu g x x g x u t    and  

(3.5) 
22 2 || || 0

N N

tt

R R

uu gdt u uudt     . On the 

other hand we have the following relation 

( ) ' .t t t ttuu u u uu  Thus we get  

(3.6) 
2( ) ' ,tt t tuu uu u  and 

22 2 2 .
N N N

tt t t

R R R

d
uu gdt guu dt gu dt

dt
     

Then we obtain 

(3.7) 2 2

22 2( , ) 2 || || .
g g

N

tt t tL L

R

d
uu gdt u u u

dt
   

Using relations (3.6) and (3.7), relation (3.5) 
becomes 
(3.8) 

2 2

2 22( , ) 2 || || 2 || || 0
g g

N

t tL L

R

d
u u u u uudt

dt
          

where  we have that   

(3.9) 

2 2 2

4

2 || || 2 || || || ||

2 || ( ) || ,

NR

u uudt u u

u t

     

 


 

where we used the relation 
2|| || .

NR

uudt u     

Next, using relation (3.9) , we obtain from relation 
(3.8) the following 

2 2

2 42( , ) 2 || || 2 || || 0.
g g

t tL L

d
u u u u

dt
     Thus we 

get the following equality 

(3.10)  2 2

4 22( , ) 2 || || 2 || || .
g g

t tL L

d
u u u u

dt
    

We integrate relation (3.10) in [0, t] and we get 

2 2

4 2

0 0 0

2 ( ( ), ( )) 2 || ( ) || 2 || ( ) || .
g g

t t t

t tL L

d
u t u t dt u t dt u t dt

dt
    

 
So, we have that 

2 2 2

4 2

0 1

0 0

2( , ) 2( , ) 2 || ( ) || 2 || || .
g g g

t t

t tL L L
u u u u u t dt u dt    

Thus, we obtain the following estimate 

(3.11)

2

2 2 2

4

0 1

0

2

0

2 || || 2( , )

2 || || || || 2 || || .

g

g g g

t

L

t

t tL L L

u dt u u

u u u dt

 

 





 

From relations (3.2) and (3.4), we get the following 
equality 

2

2 41
|| ( ) || || ( ) || (0)

2g
t L

u t u t E   . Thus we have 

that  

(3.12)  2

2|| ( ) || (0)
g

t L
u t E     and  

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 6, June - 2017 

www.jmest.org 

JMESTN42352255 7503 

(3.13) 
4 2 1/ 21

|| || (0) || || (2 (0)) .
2

u E u E      

We obtain from relation (3.12) that  

2

2 2 2

2

4

0 1

0

2

0

4

0 1

0

4 || || 2( , )

2 || || || || 2 || ||

2 || || 2( , ) (0) (0).

g

g g g

g

t

L

t

t tL L L

t

L

u dt u u

u u u dt

u dt u u E E

 

  

   







 

So, we have (using Young’s inequality) 

 

2

2

2

4

0 1

0

0 1

0 1

4 || || 2( , ) 2 (0)

4( , ) 2 2 (0)

2 2( , ) 2 (0)

g

g

g

t

L

L

L

u dt u u E

u u E

u u E

  

  

 



 

(3.14) 
2

0 ,I  

 where  

(3.15)  2

2

0 0 12 2( , ) 2 (0) .
gL

I u u E   

Let  max 0,4 ,   then 

(3.16) 2

2 4 1 2

0

0

|| ( ) || || ( ) || .
g

t

L
u t u t dt I     

For later use, we introduce the following important 

function ( )H t , where 

(3.17) 
2

2

2

2

|| ( ) ||
( ) || ( ) || .

|| ( ) ||

g
t L

u t
H t u t

u t


  


 

Next, we multiply equation (1.1) by tu g  and 

integrate over 
NR  to get  (3.18) 
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2 2 2

2 2 2
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1 1
|| ( ) || || ( ) || || ( ) || 0

2 2

|| || || || || || 0.
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g
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R R

t

t L

u u gdt u t u u dt

d d
u t u t u t

dt dt

d d
u u u

dt dt

      

     

    

 

   

Since we have that 0|| || 0,u  for 0 0u  , we have 

that || ( ) || 0u t   near 0.t   Let 

 sup [0, ) :|| ( ) || 0,0 .T t u s s t        

If  T    , we have that || ( ) || 0u T  . We 

multiply relation (3.19) by 
2|| ( ) ||u t   for 0 t T   

and we get the following equality 

(3.19) 
2

2

2 2

|| ||( , )
( ) 2 0.

|| || || ||

g
t Lt

uu ud
H t

dt u u

   
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  
 

Since 

(3.20) 
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1
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
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and 

(3.21) 
1/ 2

2

| ( ), ( ) |
( )

|| ( ) ||

tu t u t
H t

u t

 



,  

we  observe that  

(3.22) ( ) 0,
d

H t
dt

  ( ) (0),H t H  

for some 0t  , which means that relation (3.22) 

holds for 0 ,t T   because of contradiction. On 

the other hand, if || ( ) || 0,u T   we get from 

(3.22) that lim || ( ) || 0.t T tu t    Then, from the 

uniqueness of the solution (see [20], 
Proposition 4.1, p. 125) for equation (1.1), we 

remark that (1.1) has a trivial solution on [0, ]T , 

with    ( ), ( ) 0,0tu T u T  . This contradicts the 

hypothesis that 0 0.u   Finally, we conclude that 

T  , that is || ( ) || 0u t   for 0.t   

 Thus we get, after all these calculations,    
 that equation (1.1) gives a unique local solution 

u, which belongs to  2 2

0 [0, ); ( ) .k k N

k C T H R

   

 
Finally, we have from relations (3.4), (3.17) and 
(3.22), that  

1,2 2|| ( ) || || ( ) ||
g

tD L
u t u t C    for 0.t   

That completes the proof of our Theorem.  
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