
Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 4, April - 2017

www.jmest.org

JMESTN42352129 7009

Evaluation Of The Performance Of GPU Global
Memory Coalescing

Dae-Hwan Kim

Department of Computer and Information,
Suwon Science College, 288 Seja-ro, Jeongnam-myun,

Hwaseong-si, Gyeonggi-do, Rep. of Korea
kimdh@ssc.ac.kr

 Abstract—Nowadays, GPU is widely used for

graphics and general-purpose parallel
computations. In the GPU software development,
memory coalescing is one of the most important
optimization techniques, which reduces the
number of memory transactions. In this paper, the
performance of the global memory coalescing is
evaluated in the recent GPU Titan X Pascal
processor. The experimental result shows that the
coalesced access improves the performance by
2.3 times compared to the uncoalesced one for
the benchmark programs while the performance
degradation is relatively small by the unaligned
access, which ranges from 1.2% to 31.3%.

Keywords—GPU; performance; global memory;
coalescing; alignment

I. INTRODUCTION

GPU (Graphics Processing Unit) is a specialized
processor designed to handle graphics operations
mainly for the rendering of 2D and 3D graphics. GPU
contains a powerful SIMD (Single Instruction Multiple
Data) engine which is normally superior to the CPU
vector processor, and thus, many researches are
made to utilize GPUs for parallel processing
applications [2, 4, 8, 9] in addition to graphics
computation. In 2002, Harris et al. [1] coined the term
GPGPU (General-Purpose computations on GPUs) for
using GPUs for general-purpose computation.
Nowadays, GPGPU is widely used in many parallel
applications such as deep learning, image processing,
and video encoding. In AlphaGo for Go game, it is
reported that the number of used processors are 1,920
CPUs and 280 GPUs [10].

Major GPU vendors such as NVIDIA and AMD
provide GPU as not only the rendering graphics engine
but also the multicore computing platform. They
supports programming languages such as CUDA
(Compute Unified Device Architecture) [5, 6], and
OpenCL (Open Computing Language) [3]. In 2006,
NVIDIA introduced CUDA, a general purpose
computing platform, which is the software layer to the
GPU. Now, it is supported by all the GPUs of NVIDIA.
The CUDA platform is cooperated with the widely used
programming languages such as C, and C++. This
enables programmers to use GPU resources easily
when developing GPU software. NVIDIA defines
CUDA compute capabilities to describe the features
supported by the GPU hardware. The first CUDA

GPUs had compute capability 1.0 while the compute
capability is 6.1 for the recent Titan X Pascal GPU [7].

In GPU program, most data resides in the global
memory. Therefore, it is important to maintain a large
amount of coherence in memory accesses. This
reduces the number of memory transactions, which
leads to the performance improving.

In this paper, the performance of global memory
coalescing is evaluated on the recent NVIDIA Titan X
Pascal processor. The additional discussion is given to
the unaligned memory accesses.

The rest of this paper is organized as follows.
Section II shows the background of GPU architecture,
and Section III gives the overview of the global
memory coalescing technique. Detailed evaluation is
presented in Section IV, and conclusions are given in
Section V.

II. BACKGROUND

Control

Cache DRAM

ALU

Fig. 1. GPU architecture

The GPU processor normally has hundreds or
thousands of cores, operating on a common memory
like DRAM. Fig. 1 shows the typical GPU architecture.
The computing power is excellent with these cores, but,
the memory latency is high. Therefore, a lot of
arithmetic computation is needed to hide memory
latency and achieve good performance.

In Cuda, threads are independent and can be
executed in parallel. A warp is the group of 32 threads
that are executed simultaneously, which is the smallest
executable unit of parallelism. A block consists of

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 4, April - 2017

www.jmest.org

JMESTN42352129 7010

addresses from a warp

warps, and a grid is composed of blocks which are
independent.

There are several memory spaces in CUDA. They
are register, shared, local, texture, constant, and
global memory. Local memory and shared memory are
visible to the thread and all the threads in the block,
respectively. All the threads in a grid can access the
global memory. Two additional spaces, constant and
texture, are read-only and accessible by all the threads.
The global memory is largest among the memory
spaces. In access latency, the register file is fastest,
and shared memory is next. Three slowest memory
spaces are global, local, and texture. The device
memory features are shown in Table I.

TABLE I. DEVICE MEMROY FEATURES [6]

Memory
Location

on/off
chip

Cached Access Scope

Register On n/a R/W 1 thread

Local Off * R/W 1 thread

Shared On n/a R/W
All threads in

block

Global Off * R/W
All threads,

host

Constant Off Yes R
All threads,

host

Texture Off Yes R
All threads,

host

* Cached only on devices of compute capability 2.x.

III. GLOBAL MEMORY COALESCING

Global memory can be accessed by the 32-, 64-, or
128-byte memory transaction. This transaction needs
to be aligned to its size. Only the aligned 32-, 64-, or
128-byte segment can be accessed by memory
transaction. Thus, if the memory access is not aligned,
more segments are transferred than are needed.

Global memory transactions of a warp are
coalesced when the requirements are satisfied for the
access addresses and the alignments. When a warp of
32 threads executes a global memory instruction, it
coalesces the memory accesses into the memory
transactions depending on the size of the data
accessed by each thread and the distribution of the
memory addresses.

Global memory coalescing is one of the most
important optimization techniques in CUDA program
because the number of memory transactions impacts
on the performance. Therefore, it is important to
maximize coalescing by performing optimal global

memory data layout and the efficient memory
addressing.

Global memory accesses are cached in L2 cache in
CUDA compute capability 5.0 and above. On the other
hand, the L1 caching is controlled by the -dlcm option.
They can be cached in both L1 and L2 (-Xptxas -
dlcm=ca) or in L2 only (-Xptxas -dlcm=cg). If only L2
cache is used, a memory access is serviced with a 32-
byte memory transaction whereas the transaction is
128 bytes for both L1 and L2, which are a cache line
size.

Fig. 2 shows the simplest case of coalescing. The i-
th thread in a warp accesses i-th word in a cache line
where the start address of memory accesses is 128. In
this case, a single 128-byte transaction can service all
the memory accesses of the warp.

 128 160 192 224 256

Fig. 2. Coalesced access [6]

Consider the case that sequential threads in a warp
access sequential locations in a memory, but the first
address is not aligned with a cache line. Then, two
128-byte L1 cache lines are requested. Fig. 3 shows
the unaligned access pattern.

 128 160 192 224 256

Fig. 3. Unaligned access [6]

Fig. 4 shows other examples of global memory
accesses. In this example, suppose that compute
capabilities is above 2.0, and an each thread accesses
a 4-byte word. Consider first the aligned access
pattern. If cached, a single 128-byte transaction
services all the threads accessing from the address
128. Otherwise, four 32-byte L2 memory transactions
are required. Next, consider the misaligned pattern. In
this case, if cached, two 128-byte transactions are
required. When L1 cache is not used, five 32-byte
transactions are necessary.

addresses from a warp

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 4, April - 2017

www.jmest.org

JMESTN42352129 7011

 128 160 192 224 256

 128 160 192 224 256

Fig. 4. Other aligned and unaligned acccess
examples [6]

IV. EVALUATION

Experiments are performed on GTX Titan X Pascal
processor [7] released in 2016. Table II shows the
specification of the processor. It has 3,584 cores, and
base and boost clocks are 1,417MHz, and 1,531MHz,
respectively. Memory clock is 10Gpps, and standard
config is 12GB. Interface width and band width are 384
bits, and 480 GB/sec, respectively.

TABLE II. TITAN X PASCAL SPECIFICATION

Titan X Pascal Specification

Engine
Spec

Cores 3.584

Base Clock (MHz) 1,417

Boost Clock (MHz) 1,531

Memory
Spec

Clock 10 Gbps

Standard config 12GB

Interface width 384 bits

Band Width (GB/sec) 480

Table III shows the CUDA kernel programs used in
the experiment, which contain the coalescing and
uncoalescing global memory access code. Two array
elements are accessed that are 4-byte float and 1-byte
char types, respectively. Suppose that the dimension
is one for each of both the block of threads and the
grid of blocks, and the number of threads is 1,024 for
each block. Then, a global thread index is computed
as blockIdx.x * 1,024 + threadIdx.x. In the coalescing
code, the memory address of each thread is given by
the global thread index, blockIdx.x * 1024+ threadIdx.x.
For the threads in a warp, the block index (blockIdex.x)
is the same, and the local thread index (threadIdx.x) is
sequential. Now, memory accesses of a warp are
coalesced because the addresses of a warp are
sequential. On the other hand, in the uncoalescing

example, the memory address of each thread is given
by threadIdx.x * 1,024 + blockIdx.x. Now, the address
difference of adjacent threads of a warp is 1,024, and
thus, the accesses can not be coalesced.

TABLE III. EXPERIMENTAL COALESING AND

UNCOALESING CODE

Assume that the number of threads is 1,024 in each
code

Type Code

Coalesce
d float array
access

float Pixel[1024*1024];

__global__ void
coal_float_kernel(float *Pixel)

{

Pixel[blockIdx.x*1024+
threadIdx.x] ++;

}

Coalesce
d char array
access

char Pixel[1024*1024];

__global__ void
coal_char_kernel(char *Pixel)

{

Pixel[blockIdx.x*1024+
threadIdx.x] ++;

}

Uncoales
ced float
array access

float Pixel[1024*1024];

__global__ void
uncoal_float_kernel (float*Pixel)

{

Pixel[threadIdx.x *1024
+blockIdx.x]++ ;

}

Uncoales
ced char
array access

char Pixel[1024*1024];

__global__ void
uncoal_char_kernel (char *Pixel)

{

Pixel[threadIdx.x *1024 +
blockIdx.x]++ ;

}

Fig. 5 shows the performance of the uncoalescing
denoted by UNCOAL compared to the coalescing
global memory access denoted by COAL. For the float
type memory access, the execution speed of the
UNCOAL code is just 47.5% of the coalescing
accesses. For the char type, the performance
degrades as the 38.5% of the coalesced one.

addresses from a warp

addresses from a warp

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 4, April - 2017

www.jmest.org

JMESTN42352129 7012

Fig. 5. Performance of uncoalescing memory access

Table IV shows the experimented CUDA kernel
programs which have unaligned global memory access
code. There exist 16 unaligned offsets from 1 to 16
represented by unAlign1 to unAlign16, respectively.
There also exist 16 programs for the character type
Pixel array, which are quite similar to the float type
programs.

TABLE IV. EXPERIMENTAL UNALIGN ACCESS CODE

Assume that the number of threads is 1,024 in
each code

Unaligned array access

float Pixel[1024*1024];

__global__ void unAlign1 (float *Pixel)

{

Pixel[blockIdx.x*1024+ threadIdx.x+1]++ ;

}

__global__ void unAlign2 (float *Pixel)

{

Pixel[blockIdx.x*1024+ threadIdx.x+2]++ ;

}

__global__ void unAlign3 (float *Pixel)

{

Pixel[blockIdx.x*1024+ threadIdx.x+3]++ ;

}

.

__global__ void unAlign16 (float *Pixel)

{

Pixel[blockIdx.x*1024+ threadIdx.x+16]++ ;

}

Fig. 6 shows the performance of the unaligned
access pattern denoted by Un1 to Un16, which

represent unaligned offsets from 1 to 16 compared to
the aligned coalescing access denoted by COAL,
respectively. For the float type memory access, the
performance of Un1, to Un16 are 88.8%, 88.5%,
86.4%, 84.4%, 95.1%, 88.0%, 95.8%, 79.0%, 87.2%,
81.8%, 94.5%, 86.7%, 96.4%, 94.8%, 86.4%, and
75.1%, respectively. The values range from 79.0% to
96.4%. For the char type, they are 98.8%, 88.8%,
74.9%, 90.8%, 76.7%, 79.0%, 68.7%, 86.3%, 85.4%,
88.8%, 97.5%, 86.3%, 71.2%, 79.4%, 89.8%, and
86.8%, respectively. The range is from 68.7% to
98.8%. The performance degrades from 1.2% to
31.3%. The performance loss by the unaligned access
is relatively small compared to the uncoalesced access.

Fig. 6. Performance of unaligned memory access

V. CONCLUSIONS

In this paper, the performance of the global
memory coalescing is evaluated on the GPU Titan X
Pascal processor. The Uncoalescing access results in
a significant performance loss by the average of 57.0%.
For the unaligned accesses, the performance
degradation is relatively small compared to the
uncoalescing. The evaluation on other GPU
processors remains as a future work.

REFERENCES

[1] M. Harris. GPGPU.org. http://www.gpgpu.org,
2002.

[2] E. S. Larsen, D. McAllister, “Fast matrix
multiplies using graphics hardware,” in Proceedings of
Supercomputing 2001, Denver, CO, 2001.

[3] A. Munshi (Ed.), The OpenCL Specification,
Khronos OpenCL Working Group, version: 1.0,
Document Revision:48, 2009.

[4] S. Mittal and J. S. Vetter. “A survey of cpu-
gpu heterogeneous computing techniques. ACM
Comput. Surv., 47(4), pp.1–35, July 2015.

[5] NVIDIA, CUDA C Prgoramming Guide 8.0,
2017.

[6] NVIDIA, CUDA C Best Practices Guide 8.0,
2017.

100.0

47.5

100.0

38.5

0

50

100

150

COAL UNCOAL

float char

0.0

20.0

40.0

60.0

80.0

100.0

120.0

float char

http://www.jmest.org/

Journal of Multidisciplinary Engineering Science and Technology (JMEST)

ISSN: 2458-9403

Vol. 4 Issue 4, April - 2017

www.jmest.org

JMESTN42352129 7013

[7] NVIDIA, https://www.nvidia.com/en-
us/geforce/ products/10series/titan-x-pascal/.

[8] J. D. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell, “A
survey of general-purpose computation on graphics
hardware,” in Proc. Eur. Assoc. Comput. Graph., pp.
21–51, 2005.

[9] J. D. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Kruger, A. E. Lefohn, and T. J. Purcell, “A
Survey of General-Purpose Computation on Graphics
Hardware,” in Computer Graphics Forum, Volume 26,
number 1, pp. 80-113, 2007

[10] D. Silver, A. Huang, C. J. Maddison, A. Guez,
L. Sifre, G. Van Den Driessche, J. Schrittwieser, I.
Antonoglou, V. Panneershelvam, M. Lanctot, et al.
“Mastering the game of go with deep neural networks
and tree search,” Nature, 529(7587), pp. 484–489,
2016. .

http://www.jmest.org/

