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Abstract—In this paper a Timoshenko micro-
beam model based on the modified couple stress 
theory is established to capture the size effects on 
the vibrational and dynamical behavior of the 
system. Mechanical properties of the micro-beam 
are supposed to vary through thickness based on 
the power law. Governing equations are derived 
using the Hamilton’s principle. For free vibration 
analysis, a closed-form solution approach is 
presented. The verification of the model is 
accomplished by comparing the obtained results 
with benchmark results existing in the literature. A 
detailed consideration for the effects of material 
length scale parameter, power index and ratio of 
beam length to beam thickness upon the 
vibrational behavior of the model are reported. It 
is observed that these parameters have 
substantial role in the dynamic behavior of micro-
structures.  

Keywords—Micro-beam; Modified couple 
stress theory; Vibration Analysis; Timoshenko 
Beam Theory, Nondimensional Frequency 

I.  INTRODUCTION  

With the advance of Micro/Nano-technology, 
devices with thickness dimensions at the order of 
microns and sub microns are of high interest. They 
have some benefits in comparison to macro devices 
such like: they are light, often inexpensive and more 
durable. The most used geometrical shapes for the 
simulations of such devises are beams and plates. 
Since the controlled experiments in micro structures 
are difficult and cost a lot, affording the decent 
mathematical models is vital [1], [2]. 

Functionally graded materials (FGMs) belong to a 
class of graded composites. These non-homogenous 
materials are a mixture of two components with 
diverse mechanical properties which are being 
designed to exploit the benefits of the both 
constituents. An intentionally smooth variation of the 
materials in one specific direction is used to make 
graded materials capable of possessing different 
properties. Functionally graded materials usually 
consist of metal and ceramic phases. Ceramic part of 
the material delivers high temperature resistance and 
metal part impedes fracture due to thermal stresses in 
few cycles of loading. Material gradation causes 
smaller stress impositions. Moreover these stresses 
can be located in desired positions of the structure. 

Ceramic parts, because of their low thermal 
conduction coefficients can bear high temperature 
gradients. The ductile metal phase also increases the 
potential to withstand under rough dynamic loadings. 
Facing high shear stresses at the location of jointing 
two different components of composites is a serious 
problem which can be obviated by using material 
variant rules, existing in functionally graded materials. 
Thus ameliorated stress distribution, enhanced 
thermal gradient resistance and increased toughness, 
are all salient characters of functionally graded 
materials that make such mechanical devices 
applicable in biomechanics, optoelectronics, 
Micro/Nano-technologies. With simultaneous growth 
of micro structures and material technologies, 
functionally graded materials are extensively used in 
micro-scaled devices such as thin films in the form of 
shape memory alloys, micro-switches, micro-
actuators, Micro/Nano-electro-mechanical systems 
(MEMS and NEMS) [3] through [8].  

Some researchers have published different works 
regarding non-homogenous micro-structures. Studies 
in [9] through [12] are experimentally validated. They 
show that when the dimensions of a structure are 
scaled down, it is crucial to capture the size-
dependent response of the system which is not 
afforded by classical continuum mechanics theories; 
as a result, researches tried to present non-classical 
theories in order to consider the small scale effects in 
micro and Nano-structures. Strain gradient theory, 
couple stress theory and modified couple stress 
theory are of the most prevalent theories used. Strain 
gradient theory proposed in [13] accounts for three 
intrinsic material length scale parameters. The 
mentioned parameters above, relate curvature tensor, 
deviator tensor and dilatation tensor to the stress 
tensor. Couple stress theory presented in [14], [15] 
and [16] uses four material parameters, including two 
classical and two additional parameters. Based on this 
theory, a group of researchers in [17] proposed that 
three equilibrium equations should be considered for 
the material element; classical equilibrium equations 
of forces and moments of forces and an additional 
equation for the equilibrium of moments of couples. 
They made an inference that this additional equation 
implies the symmetry of the couple stress tensor. So 
they improved the constitutive equations and 
presented the modified couple stress theory. Besides 
the continuum theories, beam theories play significant 
role in the prediction of static and dynamic response 
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of the structures. Euler-Bernoulli beam theory is 
simple in comparison to the other theories since the 
shear characteristics and deformations are neglected. 
This is a decent theory when the ratio of length to the 
thickness is larger than 20. However, to prognosticate 
more accurate behavior, especially when the beam is 
thicker, some restrictive assumptions should be 
omitted and shear characteristics should be 
accounted. In this case Timoshenko and other high 
order beam theories are suitable.     

Utilizing modified couple stress theory, the 
mechanical properties of an Euler–Bernoulli beam in 
the static condition in [18] is studied. In [19] size-
dependent free vibration behavior of carbon reinforced 
polymer micro-cantilevers based on the modified 
couple stress theory is carried out, in which used 
Euler-Bernoulli beam model and the axially-graded 
material in in consideration. In another research, free 
vibration behavior of micro-scaled structures using the 
modified couple stress theory and three different 
beam theories: Euler-Bernoulli, Timoshenko and third 
order shear deformation theories is accomplished 
[20]. In [21] functionally graded Timoshenko Nano-
beam model for free vibration analysis is modeled, 
and non-local elasticity theory and principle of 
minimum potential energy for obtaining the governing 
equations are utilized. In [22], researchers have 
studied dynamic response of a functionally graded 
micro beam based on the strain gradient theory. They 
modeled thick beams using Timoshenko beam theory. 
Another group of researchers in [23] presented 
Timoshenko size-dependent model, using the 
nonlocal elasticity theory. Free vibration analysis of 
Euler-Bernoulli micro beams using an approximate 
method is carried out in [24], which is based on the 
modified couple stress theory. In another research 
paper, vibration analysis of a temperature-dependent 
micro-beam is reported. This study is based on the 
modified couple stress theory and the thermo-
mechanical properties of the system are varying 
according to temperature shifts and thermal stresses 
play a major role in the characteristic determination 
[25].     

In this paper, free lateral vibration response of 
functionally graded Timoshenko micro beam is 
presented. The beam is graded in the direction of the 
thickness. The modified couple stress theory in 
addition to the Hamilton’s principle is used to obtain 
the governing equations, boundary and initial 
conditions. The effects of material length scale 
parameter upon dimensionless natural frequencies of 
a simply-supported micro beam are reported. Also, for 
first time, higher order modes of vibration influenced 
by gradient index and wide range of slenderness 
ratios are obtained. The other noble case of this paper 
is to use different distribution rule for functionally 
graded materials and inertia-based process for 
calculating the dimensionless frequencies. 

II. MATHEMATICAL MODELING 

a. Modified couple stress theory 

With the modified couple stress theory, strain 
energy function depends on both strain and rotation 

gradients. In the Cartesian coordinates, ux, uy and uz 

are defined as the displacement field vectors in the 
directions of the beam’s length, width and thickness. 
The displacement gradient tensor ui,j  can be 

decomposed into symmetric and anti-symmetric parts 
as the tensors of strain and rotation, respectively: 

ui,j = εij + ωij   (1) 

Where  

εij =
1

2
(ui,j + uj,i)    (2) 

ωij =
1

2
(ui,j − uj,i)   (3) 

Using the alternator ϵ rotation vector dual to the 
rotation tensor can be defined as: 

θi =
1

2
ωjkϵijk     (4) 

Now gradient of rotation is defined as: 

κij = θi,j =
1

2
ωkl,jϵikl    (5) 

Where 𝜅 denotes the curvature tensor. 

Constitutive equations of the modified couple 
stress theory are defined by the strain energy density 

function es [23]: 

es =
1

2
λεiiεjj + G εijεij + 2Gl2κijκij  (6) 

That λ and G are two classical Lame constants. l Is 
Lame-type non-classical material parameter which 
introduces the couple stress effects. 

Eq. (1) leads to the constitutive equations as: 

σij =
∂es

∂εij
= 2Gεij + λδijεkk  (7) 

ϱij =
∂es

∂κij
= 4Gl2κij (8) 

In which σij and ϱij denote the classical stress and 

couple stress tensors. 

The strain energy of the deformed linear elastic 
body based on the classical strain and curvature 
tensors is associated to the symmetric classical stress 
and deviatoric couple stress tensor. This energy for a 

body occupying volume V is defined as: 

Us =
1

2
∫ (σij: εij + ϱij: κij) dV

V
 (9)   

 
Figure 1. Schematic of the micro FG beam. 

 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 3, March - 2017 

www.jmest.org 

JMESTN42352086 6809 

b. Fuctionally graded materials 

In Figure 1. a functionally graded micro beam of 
length 𝐿 , width 𝑏   and thickness ℎ  is shown. We 
supposed that the micro beam is made up of two 
dissimilar materials and the effective mechanical 
properties of the beam vary through the thickness 
direction. 

Using decent medley rule for micro structures, one 
can describe the effective mechanical properties 

𝑃 based on the rule of mixture as: 

P = PaVa + PsVs  (10) 

Where Pa  and Ps  are the effective mechanical 
properties of the constituents, Va  and Vs  are the 
volume fractions, restricted by the following equation: 

Va + Vs = 1 (11) 

We used power-law form to define the mechanical 
properties of the micro structure. The volume fraction 
of the second material is defined by: 

Va = (
z

h
+

1

2
)k (12) 

In which k  denotes the power-law exponent that 
specifies the material variation contour through the 
thickness direction. The three requisite properties for 
delineation are Young’s modulus, shear modulus and 

density which can be replaced with 𝑃 as follows: 

E(z) = (Ea − Es) (
z

h
+

1

2
)

k

+ Es  (13) 

G(z) = (Ga − Gs) (
z

h
+

1

2
)

k

+ Gs (14) 

ρ(z) = (ρa − ρs) (
z

h
+

1

2
)

k

+ ρs   (15) 

It can be easily depicted that the micro functionally 
graded beam reaches pure material properties at the 
top and bottom surfaces. 

c. Timoshenko beam theory 

In the Timoshenko beams, shear strain due to 
distortion is not being neglected; hence, rotation angle 
is not equal to derivation of the lateral displacement. 
According to this theory, axial displacement,𝑢, lateral 

displacement, 𝑤, of any point on the neutral axis is 
expressed as follows [24, 25]: 

ux(x, y, z) = u(x, t) − zθ(x, t)    (16) 

uy(x, y, z) = 0       (17) 

ux(x, y, z) = w(x, t)  (18) 

Where θ, shows the total angle of rotation of the 
cross section. 

Nonzero strains are obtained as: 

εxx =
∂u

∂x
− z

∂θ

∂x
     (19) 

εxz = εzx =
1

2
(

∂w

∂x
− θ)  (20) 

κxy = κyx =
−1

4
(

∂2w

∂x2 −
∂θ

∂x
)  (21) 

d. Governing equations of motion 

Governing equations expressing the vibrational 
motions are obtained using the Hamilton’s principle. 

δ [∫ (T − Us)dt
t2

t1
] = 0    (22)  

In which 𝑇  is kinetic energy and 𝑈𝑠  is potential 
energy. 

Exerting the Eqs. (13)-(21) into Eq. (24) gives the 
potential energy. Also kinetic energy for a Timoshenko 
beam is obtained using Eq. (19): 

Us =
1

2
∫ {(2G(z) + λ(z))εxx

2 + 4G(z)εxz
2 +

V

4G(z)l2κxy
2} dV  (23) 

T =
1

2
∫ ρ(z){(

∂ux

∂t
)

2

+ (
∂uz

∂t
)2}

V
dV (24) 

Using variation calculus and the detail by detail 
method, final form of the energy terms can be 
expressed as following:   

∫ 𝛿𝑈𝑠
𝑡2

𝑡1
= ∫ ∫ {(𝑆1

𝜕3𝑢

𝜕𝑥3 + 𝑆2
𝜕4𝑤

𝜕𝑥4 + 𝑆3
𝜕3𝜃

𝜕𝑥3 −
𝐿

0

𝑡2

𝑡1

𝑆7 (
𝜕2𝑤

𝜕𝑥2 −
𝜕𝜃

𝜕𝑥
))𝛿𝑤 − (𝑆4

𝜕2𝑢

𝜕𝑥2 + 𝑆5
𝜕3𝑤

𝜕𝑥3 + 𝑆6
𝜕2𝜃

𝜕𝑥2 −

𝑆7 (
𝜕𝑤

𝜕𝑥
− 𝜃))𝛿𝜃 − (𝐷1

𝜕2𝑢

𝜕𝑥2 + 𝐷2
𝜕3𝑤

𝜕𝑥3 + 𝐷3
𝜕2𝜃

𝜕𝑥2)𝛿𝑢} 𝑑𝑥𝑑𝑡(25) 

∫ 𝛿𝑇 = ∫ ∫ {(𝐷4
𝜕3𝑢

𝜕𝑥𝜕𝑡2 + 𝐷5
𝜕4𝑤

𝜕𝑥2𝜕𝑡2 + 𝐷6
𝜕3𝜃

𝜕𝑥𝜕𝑡2 −
𝐿

0

𝑡2

𝑡1

𝑡2

𝑡1

𝐹4
𝜕2𝑤

𝜕𝑡2 ) 𝛿𝑤 − (𝐷7
𝜕2𝑢

𝜕𝑡2 + 𝐷8
𝜕3𝑤

𝜕𝑥𝜕𝑡2 + 𝐷9
𝜕2𝜃

𝜕𝑡2) 𝛿𝜃 − (𝐹1
𝜕2𝑢

𝜕𝑡2 +

𝐹2
𝜕3𝑤

𝜕𝑥𝜕𝑡2 + 𝐹3
𝜕2𝜃

𝜕𝑡2)𝛿𝑢} 𝑑𝑥𝑑𝑡 (26) 

Coefficients used in Eqs. (20) and (21) are defined 
in the following: 

𝑆2 =
1

4
𝑙2 ∫ 𝐺(𝑧)𝑑𝐴

𝐴
 (27) 

Neglecting the shear effects, some of the 
coefficients are obtained based on the modulus of 
elasticity. 

𝑆4 = ∫ 𝐸(𝑧)(−𝑧)𝑑𝐴
𝐴

   (28) 

𝑆6 = ∫ 𝐸(𝑧)(𝑧2)𝑑𝐴 +
1

4
𝑙2 ∫ 𝐺(𝑧)𝑑𝐴

𝐴𝐴
  (29) 

𝑆7 = 𝑘𝑠 ∫ 𝐺(𝑧)𝑑𝐴
𝐴

     (30) 

𝐷1 = ∫ 𝐸(𝑧)𝑑𝐴
𝐴

  (31) 

𝐷7 = ∫ 𝜌(𝑧)(−𝑧)𝑑𝐴
𝐴

             (32) 

𝐹1 = ∫ 𝜌(𝑧)𝑑𝐴
𝐴

      (33) 

𝑆1, 𝐷2, 𝐷4, 𝐷5, 𝐷6, 𝐷8, 𝐹2 = 0, (34) 

𝐷3 = 𝑆4, 𝐹3 = 𝐷7          (35) 

Using Eqs. (27)-(35) into the Eq. (22), gives a 
system of coupled partial differential equations, known 
as the governing equations. 

III. Solution procedure 

For the governing equations, related to free 
vibration of a simply-supported FG micro beam, an 
analytical solution based on the Navier method is 
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presented. Navier method as a kind of discretizing 
approach which expands the displacement and 
rotation functions as products of undetermined 
coefficients and specific trigonometric functions which 

satisfy the boundary conditions, at = 0, 𝐿  . The 
functions are defined in the following form: 

𝑤(𝑥, 𝑡) = ∑ 𝑎𝑛 sin(𝛼𝑥)𝑒𝑖𝜔𝑛𝑡∞
𝑛=1 , 𝛼 = (𝑛𝜋) 𝐿⁄  (36) 

𝜃(𝑥, 𝑡) = ∑ 𝑏𝑛 cos 𝛼𝑥 𝑒𝑖𝜔𝑛𝑡∞
𝑛=1    (37) 

𝑢(𝑥, 𝑡) = ∑ 𝑐𝑛 cos 𝛼𝑥 𝑒𝑖𝜔𝑛𝑡∞
𝑛=1  (38) 

In which 𝑎𝑛, 𝑏𝑛, 𝑐𝑛  are the coefficients to be 
determined for each 𝑛 . Boundary conditions of a 
simply-supported beam are as follows: 

𝑤|𝑥=0,𝐿,                    
𝜕2𝑤

𝜕𝑥2 |
𝑥=0,𝐿

   (39) 

Substituting Eqs. (36)-(38) into Eqs. (25)-(26) 
leads to the following system of equations: 

(𝐹4𝜔𝑛
2 − 𝑆2𝛼𝑛

4 − 𝑆7𝛼𝑛
2)𝑎𝑛 + (−𝑆3𝛼𝑛

3 + 𝑆7𝛼𝑛)𝑏𝑛 =
0 (40) 

(−𝑆5𝛼𝑛
3 + 𝑆7𝛼𝑛)𝑎𝑛 + (𝐷9𝜔𝑛

2 − 𝑆6𝛼𝑛
2 − 𝑆7)𝑏𝑛 +

(𝐷7𝜔𝑛
2 − 𝑆4𝛼𝑛

2)𝑐𝑛 = 0   (41) 

(𝐹3𝜔𝑛
2 − 𝐷3𝛼𝑛

2)𝑏𝑛 + (𝐹1𝜔𝑛
2 − 𝐷1𝛼𝑛

2)𝑐𝑛 = 0 (42) 

Determinant of the coefficient matrix of the above 
equations, gives frequency equation in the form of 
polynomial for each 𝑛. Setting this polynomial equal to 
zero gives the frequency of each mode.  

IV. Results and discussion 

Steel and alumina (𝐴𝑙2𝑂3) are the two constituents 
of the simply-supported functionally graded micro 
beam investigated in this study. The mechanical 
properties vary through the thickness direction based 
on a power-law, Table 1 shows these mechanical 
properties of pure steel and alumina. The beam length 

and width are equal to 𝐿 = 10000, 𝑏 = 1000  micro 
meters. Natural frequencies are non-dimensionalized 

using the following equation,�̂� = 𝜔𝐿2√𝜌𝑎𝐴 𝐸𝑎𝐼⁄ , where 

𝐼 = 𝑏ℎ3 12⁄  is the second moment of inertia of the 
beam cross section and 𝐴 is area of the cross section. 
The dimensionless frequencies are accompanied with 
slenderness ratio, material distribution for three 
modes of vibration. According to experimental tests 

reported by Lame, non-classical parameter (𝑙) is taken 
15 micro meters. 𝑘𝑠  represents the shear correction 
factor which for rectangular cross sections is equal to 
5/6. For verification and check validity of the present 
analysis, the results are compared with those of Euler-
Bernoulli FG Nano beam ([21]) in Tables 2-3 and 
Timoshenko FG Nano beam ([23]) in Tables 4-5.  

Putting the material length scale parameter equal 
to zero gives the equations which the corresponding 
solution procedure culminates in dimensionless 
frequencies of classical theory shown in Tables 2-5. 
Tables 4-5 show that, generally the modified couple 
stress theory overestimates classical frequencies 
rather than those of the non-local elasticity theory. 
Dimensionless frequencies based on the modified 

couple stress theory for the first three modes of 
vibration are shown in Tables 6-7; results are shown 
in the division of different slenderness ratios and 
diverse power indexes. According to Tables 6-7, as 
the power index increases the frequency decreases 
and as the slenderness ratio increases the frequency 
increases. 

Figs. 1-3 demonstrate the variation of 
dimensionless frequencies with varying material 
distribution (power index) and specific slenderness 
ratios for the first, second and three mode of vibration. 
It can be observed that there is a sharp gradient when 

the power index is in small range0 < 𝑘 < 2; rate of 
changes reduce at 2 < 𝑘 < 5  and finally, the 
frequency has the least variation with power index for 
5 < 𝑘 < 10. To make an inference for so large power 
index values, we expect an independent behavior of 
the micro structure. Figs. 1-3 also substantiate the 
reduction of frequencies by increasing power index 
and decreasing slenderness ratio concluded from 
Tables 6-7. 

Fig. 4 demonstrates the gradation of 
dimensionless frequency with slenderness ratios. As it 
can be seen, for all power indexes, frequency 
increases as the slenderness ratio takes larger 
quantities. Also it seems that the rates of changes 
with slenderness ratio are similar to each other for 
different material distributions.  

V. Conclusion 

The free vibration analysis of functionally graded 
micro beam based on the modified couple stress 
theory is presented in this study. The simply-
supported micro beam is modeled according to the 
Timoshenko beam theories. The non-classical 
constitutive equations are formed due to assumptions 
of the modified couple stress theory. The Hamilton’s 
principle is used to derive the governing equations, 
initial and boundary conditions. Based on the Navier 
method, an analytical solution is proposed. Numerical 
results express the effect of the material length scale 
parameter upon the vibration behavior of the FG micro 
beam. As a result it seems crucial to exert the non-
classical parameter, mentioned above in the vibration 
analysis of micro structures. The other incisive case 
playing a tangible role in the analysis is the power 
index. Due to the results, it is feasible to reach the 
specific frequency by selecting the appropriate power 
quantity. Effects of the slenderness ratios and 
comparative dimensions of the micro beam are 
characterized such that smooth gradation of 
frequency is obtained by different beam length to 
thickness ration. Consequently, a fastidious design 
with respect to the material length scale parameter, 
decent power index value and slenderness ratio 
results in the desired and predictable dynamic 
behavior of the FG micro beams. 

 
 
 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 3, March - 2017 

www.jmest.org 

JMESTN42352086 6811 

TABLE 1. Mechanical Properties of FGM Constituents 

Properties Steel Alumina 

𝜌 7800 (Kg m3⁄ ) 3960 (Kg m3⁄ ) 

𝐸 210 (GPa) 390 (GPa) 

𝜈 0.3 0.24 

 

 
TABLE 2. Comparison of Non-dimensional Natural Frequencies With [21] (2012). (k=0,0.1,0.2,0.5) 

𝐿/ℎ Mode of 

vibration 

𝑘 = 0 [21] 

𝑘 = 0 

𝑘 = 0.1 [21] 

𝑘 = 0.1 

𝑘 = 0.2 [21] 

𝑘 = 0.2 

𝑘 = 0.5 [21] 

𝑘 = 0.5 

20 𝑛 = 1 9.8509 9.8797 9.1813 9.2129 8.6792 8.7200 7.7322 7.8061 

 𝑛 = 2 38.9365 39.6419 36.2903 36.9488 34.3057 34.9276 30.5615 31.1114 

 𝑛 = 3 84.5731 89.6599 78.8629 83.5840 74.5713 79.0261 66.4399 70.4278 

50 𝑛 = 1 9.9965 9.8724 9.3181 9.2045 8.8092 8.7115 7.8489 7.7998 

 𝑛 = 2 39.9079 38.8778 37.1997 36.8214 35.1683 34.8045 31.3341 31.0042 

 𝑛 = 3 88.0944 88.6492 82.1110 82.9145 77.6230 78.3897 69.1537 69.8720 

100 𝑛 = 1 10.3913 9.8700 9.6900 9.2038 9.1634 8.7111 8.1670 7.7981 

 𝑛 = 2 41.5447 39.4849 38.7409 36.8000 36.6358 34.7868 32.6519 30.9909 

 𝑛 = 3 88.6414 88.8594 82.6154 82.8224 78.0967 78.3028 69.5750 69.7968 

 

TABLE 3. Comparison of Non-dimensional Natural Frequencies With [21] (2012). (k=1,2,5,10) 

𝐿/ℎ Mode of 

vibration 

𝑘 = 1 [21] 

𝑘 = 1 

𝑘 = 2 [21] 

𝑘 = 2 

𝑘 = 5 [21] 

𝑘 = 5 

𝑘 = 10 [21] 

𝑘 = 10 

20 𝑛 = 1 6.9830 7.0904 6.4099 6.5244 5.9289 6.0025 5.6631 5.7058 

 𝑛 = 2 27.5964 28.0910 25.3240 25.7847 23.4137 23.8575 22.3632 22.7937 

 𝑛 = 3 59.9393 63.6216 54.8715 58.4009 50.5741 53.9949 48.3104 51.5621 

50 𝑛 = 1 7.0876 7.0852 6.5033 6.5189 6.0118 5.9990 5.7417 5.7001 

 𝑛 = 2 28.2943 28.0048 25.9604 25.7083 23.9968 23.7856 22.9186 22.7194 

 𝑛 = 3 62.4458 63.1454 57.3038 57.9879 52.9822 53.6120 50.6098 51.1902 

100 𝑛 = 1 7.3713 7.0833 6.7527 6.5182 6.2286 5.9970 5.9464 5.7005 

 𝑛 = 2 29.4706 27.9902 26.9970 25.6984 24.9011 23.7762 23.7730 22.7115 

 𝑛 = 3 62.8355 63.0799 57.6835 57.9299 53.3600 53.5616 50.9705 51.1345 

 

TABLE 4.  Comparison of Non-dimensional Natural Frequencies With [23] (2013). (k=0,0.1,0.2,0.5) 

𝐿/ℎ 𝑘 = 0 [23] 

𝑘 = 0 

𝑘 = 0.2 [23] 

𝑘 = 0.2 

𝑘 = 0.5 [23] 

𝑘 = 0.5 

20 9.8509 9.8296 8.6792 8.6600 7.7322 7.7149 

50 9.9965 9.8631 8.8092 8.6895 7.8489 7.7413 

100 10.3913 9.8680 9.1634 8.6938 8.1670 7.7451 
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TABLE 5. Comparison of Non-dimensional Natural Frequencies With [23] (2013). (k=1,2,5,10) 

𝐿/ℎ 𝑘 = 1 [23] 

𝑘 = 1 

𝑘 = 5 [23] 

𝑘 = 5 

𝑘 = 10 [23] 

𝑘 = 10 

20 6.9830 6.9676 5.9289 5.9172 6.2286 5.6521 

50 7.0876 6.9917 6.0118 5.9389 5.7417 5.6730 

100 7.3713 6.9952 6.2286 5.9421 5.9464 5.6760 

 

TABLE 6. Non-dimensional Natural Frequencies Based On The Modified Couple Stress Theory. (k=0,0.1,0.2,0.5) 

𝐿/ℎ Mode of 

vibration 

𝑘 = 0 𝑘 = 0.1 𝑘 = 0.2 𝑘 = 0.5 

10 𝑛 = 1 9.7183 9.0576 8.5622 7.6276 

𝑛 = 2 37.1922 34.6661 32.7707 29.1903 

𝑛 = 3 78.5071 73.1835 69.1854 61.6187 

30 𝑛 = 1 9.8999 9.2272 8.7227 7.7712 

𝑛 = 2 39.3869 36.7108 34.7039 30.9176 

𝑛 = 3 87.8443 81.8767 77.4009 68.9546 

90 𝑛 = 1 10.2935 9.5979 9.0757 8.0882 

𝑛 = 2 41.1491 38.3683 36.2810 32.3332 

𝑛 = 3 92.4923 86.2419 81.5502 72.6765 

 

 

Table 7. Non-dimensional natural frequencies based on the modified couple stress theory. (k=1,2,5,10) 

𝐿/ℎ Mode of 

vibration 

𝑘 = 1 𝑘 = 2 𝑘 = 5 𝑘 = 10 

10 𝑛 = 1 6.8877 6.3210 5.8448 5.5826 

𝑛 = 2 26.3458 24.1516 22.2994 21.2955 

𝑛 = 3 55.5778 50.8746 46.8814 44.7601 

30 𝑛 = 1 7.0182 6.4418 5.9579 5.6907 

𝑛 = 2 27.9199 25.6235 23.6940 22.6310 

𝑛 = 3 62.2624 57.1284 52.8103 50.4393 

90 𝑛 = 1 7.3011 6.6909 6.1749 5.8957 

𝑛 = 2 29.1864 26.7470 24.6835 23.5675 

𝑛 = 3 65.6023 60.1177 55.4778 52.9693 
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Fig 1. Variation of non-dimensional natural frequencies of the first mode with power index. 

 

Fig 2. Variation of non-dimensional natural frequencies of the second mode with power index. 

 

Fig 3.  Variation of non-dimensional natural frequencies of the third mode with power index. 

 

Fig 4. Gradation of non-dimensional natural frequencies with slenderness ratios. 
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