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Abstract—In this paper, an efficient 
computational approach is proposed to control 
the normal operating height in a coupled tanks 
system. Since the dynamics of the coupled tanks 
system is in a nonlinear manner, determination of 
the optimal water level in the tanks is challenging 
but useful for operation decision. For simplicity, 
the linear model of the coupled tanks system 
dynamics is suggested to give the true operating 
height of the coupled tanks. In our approach, the 
adjustable parameter is added into the model 
used. The aim is to measure the differences 
between the real plant and the model used 
repeatedly during the computation procedure. In 
this way, the optimal solution of the model used 
can be updated iteratively. On this basis, system 
optimization and parameter estimation are 
integrated. At the end of the iteration, the 
converged solution approximates to the correct 
optimal solution of the original optimal control 
problem, in spite of model-reality differences. For 
illustration, the numerical parameters of the 
coupled tank system are studied and the 
applicable of the approach proposed is shown. In 
conclusion, the efficiency of the approach 
proposed in achieving the desired water level of 
the coupled tanks is highly presented. 

Keywords—optimal control, iterative solution, 
coupled tanks system, model-reality differences, 
adjusted parameter  

I.  INTRODUCTION  

Modelling of a coupled tanks system, which is 
joined by two or more tanks, in engineering process is 
a significant experimental task. The applications of the 
coupled tanks system have been well-defined and 
widely studied in the engineering community, 
especially, the use of control and optimization 
techniques [1]–[4] in determining the operation height 
in the coupled tanks system. In fact, the practical 
aspects of the coupled tanks system are ranged from 
chemical process to mechanical system [5]–[9]. 
Additionally, the basic concept of the coupled tanks 
system is based on the mass balance equation, where 

the inflow and the outflow are balance in the system. 
Mathematically, the coupled tanks system is 
formulated as a set of the ordinary differential 
equations (ODEs), where the solution of the set of 
ODEs, both for the analytic and the numeric, are 
fruitful results [10]–[12].    

In this paper, a simple coupled tanks system is 
considered [1]–[2]. This coupled tanks system, which 
has two joint tanks, two inflows and two outflows, is 
formulated by two nonlinear ODEs. Then, the 
determination of the water level in the tanks is defined 
as an optimal control problem so that the water level 
could be controlled at the normal operating height. In 
our approach, the linear model, which is simplified 
from the original optimal control problem, is proposed 
[13]–[14]. After that the adjusted parameter is added 
into the model used. The aim is to measure the 
differences between the real plant and the model used 
repeatedly during the computation procedure. In this 
way, the optimal solution of the model used can be 
updated iteratively. Therefore, system optimization 
and parameter estimation are integrated. At the end of 
the iteration, the converged solution approximates to 
the correct optimal solution of the original optimal 
control problem, in spite of model-reality differences 
[15]–[18], and the desired water level in the tanks 
would be achieved. 

The rest of the paper is organized as follows. In 
Section 2, the optimal control problem of the coupled 
tanks system and the simplified linear optimal control 
model are described. In Section 3, an expanded 
optimal control problem, which integrates system 
optimization and parameter estimation, is introduced. 
Then, an iterative algorithm is derived for solving the 
optimal control problem of the coupled tanks system. 
In Section 4, the numerical study of the coupled tanks 
system is illustrated to achieve the desired water level 
in the tanks by using the algorithm proposed. Finally, 
some concluding remarks are made.   

II. PROBLEM STATEMENT  

Consider the coupled tanks system with three 
valves as shown in Fig. 1. The dynamic equation for 
each tank is given by  
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Tank 1: 1
1 1 1 3i o

dH
A Q Q Q

dt
                  (1)      

Tank 2: 2
2 2 2 3i o

dH
A Q Q Q

dt
                (2) 

where 1H  and 2H  are the height of water in Tanks 1 

and 2, respectively, 1A  and 2A  are cross sectional 

area of Tanks 1 and 2, respectively, 1iQ  and 2iQ  are 

pump flow rate into Tanks 1 and 2, respectively, 1oQ  

and 2oQ  are flow rate of water out of Tanks 1 and 2, 

respectively, and 3Q  is flow rate of water between 

Tanks 1 and 2. 

 
Fig. 1. Schematic model of coupled tanks system 

Each outlet drain is modelled as a simple orifice. 
According to Bernoulli’s equation for steady,           
non-viscous, incompressible fluid, the outlet flow in 
each tank is proportional to the square root of the 
head of water in the tank, and the flow between the 
tanks is proportional to the square root of the head of 
differential [5]. That is,  

  1 1 1oQ a H          (3) 

 2 2 2oQ a H          (4) 

  3 3 1 2Q a H H                       (5) 

where 1 2,  a a and 3a are proportionality constants, 

which their values depend on the coefficients of 
discharge, the cross sectional area of each orifice and 
the gravitational constant. Therefore, the system 
dynamics of the coupled tanks system in (1) and (2) 
becomes  

1
1 1 1 1 3 1 2i

dH
A Q a H a H H

dt
               (6) 

2
2 2 2 2 3 1 2i

dH
A Q a H a H H

dt
    .         (7) 

Suppose that for the set of inflows 1iQ  and 2 ,iQ the 

water level in the tanks is at some steady state levels 

1H  and 2H . Consider small variations in each inflow, 

which are represented by 1q  in 1iQ , 2q  in 2iQ ,  1h  in 

1H  and 2h  in 2H . Equations (6) and (7) are rewritten 

by    

1  1
 1 1 1 1 1  1

3 1 2  1  2

( )
( )

                          

i

d H h
A Q q a H h

dt

a H H h h


   

   

              (8) 

2  2
2 2 2 2 2  2

3 1 2  1  2

( )
( )

                          

i

d H h
A Q q a H h

dt

a H H h h


   

   

             (9) 

Subtracting (6) and (7) from (8) and (9), the system 
model of the coupled tanks becomes  

 1 1  1
1  1 1

1  1

3
1 2  1  2 1 2

 1

( )

         ( )

dh q a
H h H

dt A A

a
H H h h H H

A

   

     

     (10) 

 2 2 2
2  2 2

2 2

3
1 2  1  2 1 2

2

( )

         ( )

dh q a
H h H

dt A A

a
H H h h H H

A

   

     

       (11) 

Then, this problem of controlling the water level in 
Tank 2, which is defined as an optimal control 
problem and is referred to as Problem (P), is 
described by 

Problem (P):  

Find the optimal small variations of the flow rate 
T

1 2( )q q q  in order to minimize the cost function  

0

2 2 21
0 2 2 1 1 2 22

(( ) ( ) ( ) )
pt s s s

t
J h h q q q q dt            (12) 

subject to the system dynamics (10) and (11) with the 

output measurement 2y h , where 2 ,sh  1
sq  and 2

sq  

are the steady states of the value, 0t  is the initial time 

and pt  is the fixed terminal time. 

It is noticed that Problem (P) is a complex problem 
and solving this kind of problem is computational 
demanding. However, the optimal solution of     
Problem (P) could be obtained by solving the 
simplified problem, which is referred to as Problem 
(M), given by  

0

2 2 21
1 2 2 1 1 2 22

min (( ) ( ) ( ) )
pt s s s

q t
J h h q q q q dt       

subject to                                             
(13) 

 1 1  1
 1

 1  1 12

dh q a
h

dt A A H
  3

 1  2

 1 1 2

( )
2

a
h h

A H H
 


 1  

3 2 2 2
 2  1  2

2 2 2 2 1 2

( )
2 2

adh q a
h h h

dt A A H A H H
   


2  

2y h  
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where T
1 2( )    is the adjustable parameter. 

From (13), the state equation can be written by  

 1  1  3  3  1

 4  2  4  2 2

h k k k h

k k k hh

     
          

 

   

1
 1 1

1
2 2

0

0

A q

qA





  
      

1

2





 
 
 

              (14) 

and the output measurement is rewritten as 

                    1

 2

0 1
h

y
h

 
  

 
                                    (15) 

with 

1
1

 1 12

a
k

A H
 ,  2

2

2 22

a
k

A H
 ,    

3
3

1 1 22

a
k

A H H



,  3

4

2 1 22

a
k

A H H



. 

Here, it is highlighted that adding the adjustable 
parameter into the state equation in Problem (M) is to 
measure the differences between the system model 
and the linear model used repeatedly. By virtue of 
this, the optimal solution of the model used could be 
updated, in turn, approximates to the correct optimal 
solution of Problem (P), in spite of model-reality 
differences.  

III. SYSTEM OPTIMIZATION AND PARAMETER 

ESTIMATION   

Now, denote T
 1  2( )x h h  and T

1 2( )u q q  as 

the state variable and the control input, respectively, 

and 2 2 2:f     represents the set of state 

equation in (10) and (11), which describes the system 
dynamics of the coupled tanks system with state 

variable ( )x t  and control input ( )u t . The weighting 

matrices are given as  

0 0

0 1
Q

 
  
 

 and 
1 0

0 1
R

 
  
 

. 

The terms of T
 1  2( )s s sx h h  and T

1 2( )s s su q q  

are the steady states of the state variable and the 
control input.   

Let us introduce an expanded optimal control 
problem, which is referred to as Problem (E), given by 

0

T1
2 2

min ( ( ) ) ( ( ) )
pt s s

u t
J x t x Q x t x    

               T( ( ) ) ( ( ) )s su t u R u t u   ) 

              2 21 1
1 22 2

|| ( ) ( ) || || ( ) ( ) ||r u t v t r x t z t dt     

subject to                                  
(16) 

( ) ( ) ( ) ( )x t Ax t Bu t t    

( ) ( )y t Cx t  

( ) ( ) ( ) ( ( ), ( ), )Az t Bv t t f z t v t t    

( ) ( )u t v t  

( ) ( )x t z t  

where 2( )v t   and 2( )z t   are introduced to 

separate the control variable and the state variable in 
the optimization problem from the respective signals 

in the parameter estimation problem, and || ||  denotes 

the usual Euclidean norm. The terms 21
12

|| ( ) ( ) ||r u t v t  

and 21
22

|| ( ) ( ) ||r x t z t  with 1r   and 2r   are 

introduced to improve the convexity and to facilitate 
the convergence of the resulting iterative algorithm. It 
is important to note that the algorithm is designed in 

such a way that the constraints ( ) ( )u t v t  and 

( ) ( )x t z t  are satisfied due on the termination of 

iterations, assuming convergence is achieved. The 

state constraint ( )z t  and the control constraint ( )v t  

are used for the computation of the parameter 
estimation and the matching scheme, while the 

corresponding state constraint ( )x t  and control 

constraint ( )u t  are reserved for optimizing the linear 

model-based optimal control problem. Hence, system 
optimization and parameter estimation are mutually 
interactive.    

A. Necessary Conditions  

Define the Hamiltonian function by  

( )H t  T1
2

(( ( ) ) ( ( ) )s sx t x Q x t x     

                  T( ( ) ) ( ( ) ))s su t u R u t u    

                2 21 1
1 22 2

|| ( ) ( ) || || ( ) ( ) ||r u t v t r x t z t     

                T T( ) ( ) ( ) ( )t u t t x t    

           T( ) ( ( ) ( ) ( ))p t Ax t Bu t t   .                      (17) 

where 2( )p t   is the Lagrange multiplier. Then, the 

augmented cost function becomes 

0

1
2

( )
pt

a
t

J H t 
T( ) ( )p t x t T( ) ( ( ) ( ))t y t Cx t   

   T( ) ( ( ( ), ( ), ) ( ) ( ) ( ))t f z t v t t Az t Bv t t      

   T T( ) ( ) ( ) ( ))t v t t z t dt                                     (18) 

where ( ),p t ( ),t ( ),t ( )t  and ( )t  are the 

appropriate multipliers to be determined later. 

Applying the calculus of variation [13]–[14], the 
following necessary conditions for optimality are 
obtained: 

(a) Stationarity:  

T0 ( ( ) ) ( )s
uH R u t u B p t     

     1( ( ) ( )) ( )r u t v t t   .                 (19) 

(b) Costate equation: 

T( ) ( ( ) ) ( )s
xp t H Q x t x A p t      

http://www.jmest.org/
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2 ( ( ) ( )) ( )r x t z t t   .                 (20) 

 

 

(c) State equation: 

( ) ( ) ( ) ( )px t H Ax t Bu t t    .        (21) 

(d) Output equation: 

( ) ( )y t Cx t .                                        (22) 

(e) Boundary condition: 

(0)x  and ( )pp t  are given. 

(f) Adjustable parameter equation: 

( ( ), ( ), ) ( ) ( ) ( )f z t v t t Az t Bv t t   .       (23) 

(g) Multiplier equations: 

T

ˆ( ) ( )
f

t B p t
v


 

   
 

         (24) 

T

ˆ( ) ( )
f

t A p t
z


 

   
 

                     (25) 

where ˆ( ) ( )t p t   and ( ) 0t  . 

(h) Separable variables: 

( ) ( )z t x t , ( ) ( )v t u t , ˆ( ) ( )p t p t  

B. Modified Optimal Control Problem  

Refer to the necessary conditions (19)–(22), a 
modified optimal control problem, which is referred to 
as Problem (MM), is defined by 

0

T1
3 2

min ( ( ) ) ( ( ) )
pt s s

u t
J x t x Q x t x    

      T( ( ) ) ( ( ) )s su t u R u t u   ) 

T T( ) ( ) ( ) ( )t u t t x t      

    2 21 1
1 22 2

|| ( ) ( ) || || ( ) ( ) ||r u t v t r x t z t dt     

subject to                                                        
(26) 

( ) ( ) ( ) ( )x t Ax t Bu t t    

( ) ( )y t Cx t  

with the specified ( )t , ( )t , ( )t , ( )v t  and ( )z t , 

where the boundary conditions (0)x  and ( )pp t  are 

given. 

C. Optimal Control Law 

The optimal control law for Problem (MM), which is 
the expanded optimal control policy, is a feedback 
control. This control law is explained in the following 
theorem. 

Theorem 1 (Expanded optimal control policy):  

Assume that the expanded optimal control policy 
exists. Then, this optimal control law is the feedback 
control law for Problem (MM), given by  

1( ) ( ) ( ) ( ) s
ff au t K t x t u t R Ru                   (27) 

where 

1 T 1( ) ( ) ( )ff a a au t R B s t R t                                  (28) 

  1 T( ) ( )aK t R B S t                                        (29) 

T 1 T( ) ( ) ( ) ( ) ( )a aS t S t A A S t Q S t BR B S t           (30) 

  T T( ) ( ( )) ( ) ( ) ( ) ( )a as t A BK t s t K t t t       

1( ) ( ) ( ) s
aS t t S t BR Ru   sQx                     (31) 

with the boundary conditions ( ) 0pS t   and ( ) 0ps t  , 

and 1 2aR R r I  , 2 2aQ Q r I  , 1( ) ( ) ( )a t t r v t    

and 2( ) ( ) ( )a t t r z t   .  

Proof: From the necessary condition (19), we obtain  

1 1 1( ) ( ) ( )T s
a a a au t R B p t R t R Ru      .       (32) 

Applying the sweep method [13]–[15],  

( ) ( ) ( ) ( )p t S t x t s t                      (33) 

into (32), after some algebraic manipulations, the 
feedback control law (27) is obtained, where (28) and 
(29) are satisfied.     

Also, substitute (33) into the costate equation (20) 
to yield 

( ) ( ) ( ( ) ( ) ( )) ( )T s
a ap t Q x t A S t x t s t t Qx          

(34) 

Differentiating both sides (33) with respect to t gives 

( ) ( ) ( ) ( ) ( ) ( )p t S t x t S t x t s t                (35) 

Notice that (34) and (35) are equivalent. That is,  

    ( ) ( ) ( ) ( ) ( )S t x t S t x t s t                      

( ) ( ( ) ( ) ( )) ( )T s
a aQ x t A S t x t s t t Qx              (36) 

Then, consider the state equation (21) and the 
feedback control (27) in (36). After doing some 
algebraic manipulations by taking into account (28) 
and (29), then (30) and (31) are satisfied. This 
completes the proof.  

Now, taking (27) into (21), the state equation 
becomes  

1( ) ( ( )) ( ) ( ) ( )s
ff ax t A BK t x t Bu t BR Ru t         (37) 

with the output measurement  

( ) ( )y t Cx t .                              (38) 

D. Iteratve Procedure  

From the discussion above, the calculation 
procedure is summarized as an iterative algorithm 
given below: 

http://www.jmest.org/
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Iterative Algorithm 1 

Data ,A ,B ,C ,Q ,R 0 ,x 0 ,t ,pt 1,r 2 ,r ,vk ,zk pk  and 

.f  

Step 0 Compute a nominal solution. Assuming that 

( ) 0,t  1 0,r  2 0,r  solve Problem (M) to 

obtain 0( ) ,u t 0( ) ,x t 0( ) ,p t where (29) and (30) 

are computed for ( )K t  and ( ),S t  respectively. 

Set iteration number 0,i  0 0( ) ( ) ,v t u t  

0 0( ) ( ) ,z t x t 0 0ˆ ( ) ( ) ,p t p t  0[ ,  ].pt t t  

Step 1 Compute the parameter ( )it  from (23). This 

is called the parameter estimation step. 

Step 2 Compute the multipliers ( )it  and ( )it  from 

(24) and (25), respectively. 

Step 3 Using ( ) ,it ( ) ,it ( ) ,it ( )iv t  and ( )iz t , solve 

Problem (MM) using the result that is 
presented in Theorem 1. This is called the 
system optimization step. 

3.1 Solve (31) backward to obtain ( )is t  and solve 

(28), either backward or forward to obtain 

( )i
ffu t . 

    3.2 Use (27) to obtain the new control ( )iu t . 

    3.3 Use (37) to obtain the new state ( )ix t . 

    3.4  Use (33) to obtain the new costate ( )ip t . 

    3.5 Use (38) to obtain the new output ( )iy t .   

Step 4 Test the convergence and update the optimal 
solution of Problem (P). In order to provide a 
mechanism for regulating convergence, a 
simple relaxation method is employed: 

1( ) ( ) ( ( ) ( ) )i t i i
vv t v t k u t v t     

       1( ) ( ) ( ( ) ( ) )i t i i
zz t z t k x t z t               (39) 

 1ˆ ˆ ˆ( ) ( ) ( ( ) ( ) )i t i i
pp t p t k p t p t     

where , , (0,  1]v z pk k k   are scalar gains. If 

1( ) ( )i iv t v t   within a given tolerance, stop; 

else set 1i i  , and repeat the procedure 

staring with Step 1.  

Remarks: 

(a) The nominal solution can be the optimal solution 
that is obtained from the standard linear quadratic 
regulator (LQR) optimal control problem. 

(b) The off-line computation for solving (29) and (30) 
is done at Step 0 before the iteration begin with 

assuming ( ) 0,t  ( ) 0t   and ( ) 0t  . 

(c) The numerical scheme for solving the ordinary 

differential equations ( )S t  and ( )s t  can be used.  

(d) The relaxation method given in (39) establishes a 
matching scheme for the updating of the iterative 
solution.  

IV. RESULT AND DISCUSSION  

For illustration, the numerical simulation on the 
coupled tanks system is studied here. Table 1 shows 
the value of each parameter of the coupled tanks 
system [1]. The steady state values are set at 

T(0.0 0.6037)sx  and T(1.0 0.7) .su  The initial 

state is T(0) (0.0 0.0) ,x  and the time interval is 

[0.0,10.0].t  The algorithm proposed is implemented 

in MATLAB 12 in order to obtain the results.    

TABLE I.  PARAMETERS OF COUPLED TANKS SYSTEM 

Parameter Value Unit 

1H  17.00 cm 

2H  15.00 cm 

1a  10.78 cm
3/2

/sec 

2a , 3a  11.03 cm
3/2

/sec 

1A , 2A  32.00 cm
2 

The simulation results show that the algorithm 
proposed spent the elapsed time 0.163674 seconds to 
obtain the converged solution with two number of 
iterations. The value of the final cost function is 10.59 
units. Moreover, the graphical solutions for the final 
control input, the final state variable and the final 
output measurement are, respectively, shown in      
Fig. 2(a), 2(b) and 2(c). The trajectory of the control 
input diverges at the beginning and then turn towards 

to the steady state value at T(1.0 0.7)su   after 0.5 

second. It stays at the steady state after 2 seconds. 
With this control input, the water level at Tank 2 is 
increasing linearly from the empty situation to stay at 
the normal operating height at 0.6037y  cm after 4.5 

seconds.  

From these simulation results, it is noticed that the 
water level for both tanks should be non-negativity. By 
virtue of this, the constraint of 0x   can be added for 

this purpose. However, the algorithm proposed shows 
the efficiency in controlling the water level at the 
normal operating height in Tank 2 is achieved. Hence, 
the applicable of the algorithm proposed is certainly 
demonstrated.      
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Fig. 2. (a) Final control trajectory and the steady values,         

(b) Final state trajectory and the steady value and                               
(c) Final output trajectory 

V. CONCLUDING REMARKS  

In this paper, the optimal control policy for the 
coupled tanks system with three valves was 
discussed. The mathematical formulation of the 
coupled tanks system was made according to the 
mass balance equation. The flow rate for both inflows 
was used in controlling the water level of the second 
tank. This problem was defined as the nonlinear 
optimal control problem. In our approach, the 
simplified linear model of the original optimal control 
problem, which is added with the adjusted parameter, 

was solved repeatedly. Because of the different 
structure, the adjusted parameter could capture the 
differences between the real plant and the model 
used, in turn, updating the optimal solution of the 
model used. After the convergence was achieved, the 
iterative solution approximated to the correct optimal 
solution of the original optimal control problem, in 
spite of model-reality differences. For illustration, the 
parameters of the coupled tanks system were 
considered in which the simulation result was 
obtained. From the result obtained, the water level of 
the second tank was able to be controlled at the 
desired steady state value by using the algorithm 
proposed. Hence, the efficiency of the algorithm was 
shown. In conclusion, it is emphasized that the 
usefulness of the algorithm proposed in controlling the 
water level in the coupled tanks system is highly 
presented.       

ACKNOWLEDGMENT  

The authors would like to thank the Universiti Tun 
Hussein Onn Malaysia (UTHM) for financial 
supporting to this study under the Fundamental 
Research Grant Scheme (FRGS) VOT 1561.  

REFERENCES 

[1] H.I. Jaafar, S.Y.S. Hussein, N.A. Selamat, 
M.N.M. Nasir and M.H. Jali, Analysis of Transient 
Response for Coupled Tank System via Conventional 
and Particle Swarm Optimization (PSO) Techniques, 
International Journal of Engineering and Technology, 
vol. 6, no. 5, pp. 2002-2007, 2014. 

[2] S.A. Jagnade, R.A. Pandit and A.R. Badge, 
Modeling, Simulation and Control of Flow Tank 
System, International Journal of Science and 
Research (IJSR), vol. 4, Iss. 2, pp. 657–669, 2015. 

[3] A. Sharma, O.P. Verma and M. Singh, 
Mathematical Modeling and Intelligent Control of Two 
Coupled Tank System, Imperial Journal of 
Interdisciplinary Research (IJIR), vol. 2, iss. 10, pp. 
1589–1593, 2016. 

[4] K. Ashokkumar, A Nonlinear Controller for 
Liquid Level Control System, International Journal of 
Scientific & Engineering Research (IJSER), vol. 4, iss. 
6, pp. 987–992, 2013. 

[5] N. Tompkins, “Synchronization Dynamics of 
Coupled Chemical Oscillators”, PhD Thesis, Brandeis 
University, 2015. 

[6] R.M, Soumya, S. Bidyadhar, G. Subhojit, PI 
Controller Design for a Coupled Tank System Using 
LMI Approach: An Experimental Study, Journal of 
Chemical Engineering & Process Technology, pp. 1–
8, 2016. 

[7] M. Saad, A. Albagul and Y. Abueejela, 
Performance Comparison between PI and MRAC for 
Coupled-Tank System, Journal of Automation and 
Control Engineering, vol. 2, no. 3, 316-321, 2014. 

http://www.jmest.org/


Journal of Multidisciplinary Engineering Science and Technology (JMEST) 

ISSN: 2458-9403 

Vol. 4 Issue 2, February - 2017 

www.jmest.org 

JMESTN42352077 6770 

[8] N.B. Almutairi and M. Zribi, Sliding Mode 
Control of Coupled Tanks, Mechatronics, vol. 16, iss. 
7, pp. 427–441, 2006.  

[9] T.G. Hicks, “Handbook of Mechanical 
Engineering Calculations”, 2

nd
 Ed, McGraw-Hill 

Education: New York, 2006.  

[10] J.A. John and R.M. Francis, Modelling and 
Nonlinear Control Design for Coupled Twin Tank 
Level Process, International Journal of Science and 
Research (IJSR), vol. 4, iss. 8, pp. 618–622, 2015.   

[11] J. Seung, A.F. Atiya, A.G. Parlos and K. 
Chong, Parameter Estimation for Coupled Tank Using 
Estimate Filtering, International Journal of Control and 
Automation, vol. 6, no. 5, pp. 91–102, 2013. 

[12] A. Srinivasan and P. Nivethitha, Pneumatic 
Control Valve Stiction Detection and Quantification, 
International Journal of Advance Engineering and 
Research Development, vol. 2, iss. 4, pp. 121–127, 
2015. 

[13] F.L. Lewis, “Applied Optimal Control and 
Estimation: Digital Design and Implementation,” 
Prentice Hall, Inc, 1992.  

[14] A.E. Bryson and Y.C. Ho, “Applied Optimal 
Control,” Hemisphere Publishing Company, New York, 
1975.  

[15] S.L. Kek, K.L. Teo and M.I.A. Aziz, An 
Integrated Optimal Control Algorithm for Discrete–
Time Nonlinear Stochastic System, International 
Journal of Control, vol. 83, pp. 2536–2545, 2010. 

[16] P.D. Roberts and T.W.C. Williams, On an 
Algorithm for Combined System Optimization and 
Parameter Estimation, Automatica, vol. 17, pp. 199–
209, 1981. 

[17] P.D. Roberts and V.M. Becerra, Optimal 
Control of a Class of Discrete-Continuous Nonlinear 
Systems Decomposition and Hierarchical structure, 
Automatica, vol. 37, pp. 1757–1769, 2001. 

[18] V.M. Becerra and P.D. Roberts, Dynamic 
Integrated System Optimization and Parameter 
Estimation for Discrete Time Optimal Control of 
Nonlinear Systems, International Journal of Control, 
Vol. 63, pp. 257–281, 1996. 

 

http://www.jmest.org/

